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ABSTRACT: Recent ultrafast optical experiments show that excitons in large biological light-
harvesting complexes are coupled to molecular vibration modes. These high-frequency
vibrations will not only affect the optical response, but also drive the exciton transport. Here,
using a model dimer system, the frequency of the underdamped vibration is shown to have a
strong effect on the exciton dynamics such that quantum coherent oscillations in the system
can be present even in the case of strong noise. Two mechanisms are identified to be
responsible for the enhanced transport efficiency: critical damping due to the tunable effective
strength of the coupling to the bath, and resonance coupling where the vibrational frequency
coincides with the energy gap in the system. The interplay of these two mechanisms
determines parameters responsible for the most efficient transport, and these optimal control
parameters are comparable to those in realistic light-harvesting complexes. Interestingly,
oscillations in the excitonic coherence at resonance are suppressed in comparison to the case
of an off-resonant vibration.

The effect of intramolecular vibrations on energy transport
in large biological assemblies has become increasingly

intriguing, as recent optical experiments have been interpreted
as a sign of the coupling of vibrations to electronic excitations
(excitons) in light-harvesting antennae,1the reaction center of
photosynthetic complexes,2,3 and model dimers.4 These
systems consist of closely spaced chromophore molecules.
Coherent interactions of the transition dipoles of these
molecules lead to elementary excitations that extend over a
number of molecules in the form of Frenkel excitons. The
existence of these states enables quantum mechanical, wave-like
transport through the systems.5−7 The importance of the
interaction of such excitons with their environments is well-
known, and the interplay of coherent coupling between
molecules and noise originating from the environment has
been shown to lead to optimal transport.8,9

To model the influence of the environment, it is often
assumed that its effect is fast compared to the typical time
scales of the system such that the environment can be modeled
as white noise. However, recent optical experiments detect
rapid dynamics of electronic excitations on the time scale of
tens to hundreds femtoseconds in molecular aggregates,10 light-
harvesting systems of bacteria,5,7 plants,11 and conjugated
polymers.6 Then, the environment cannot be considered fast on
this time scale. In particular, in many small organic and
biological molecules, the coupling of excitations to vibrations is
essential.1,12−18 Not much is known about the transport
properties of a system coupled to these underdamped

vibrations. In this paper, we focus on the exciton dynamics
induced by underdamped vibrations, and our method is
applicable to Gaussian colored noise baths. Initial analysis
beyond the white noise limit has included overdamped
vibrations. Recently, it has been realized that underdamped
vibrations or vibronic states with a mixed exciton character can
also lead to long-lived oscillations during the waiting time.19

Much work has been devoted to the explanation of these
oscillations and to the description of exciton coherence.1,18,20

Exciton dynamics in the presence of underdamped vibrations
has recently attracted much attention as a way to explain the
quantum beats observed in two-dimensional optical experi-
ments,5 and resonant vibrations have been proposed to drive
exciton coherences in the system.1,16,18 It is not yet clear,
however, which parameters can optimize transport in a system
coupled to underdamped vibrations. Resonance between an
energy gap of the system and a vibrational mode is a possible
mechanism but not the only one;21 an equally important
mechanism is the critical damping, where the exciton dynamics
undergo a transition from underdamped to overdamped
oscillations.
In this work, we address the effect of an underdamped

vibration on energy transport. If vibrations couple strongly to
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excitons, as suggested by the recent explanations of long-lived
coherences, they are also expected to influence the population
dynamics underlying energy transport. In order to clearly bring
out the essential physics of the interplay between excitonic
coherence and effect of an underdamped vibration, we study a
prototype model: an electronic dimer coupled to a single
underdamped vibration. The transport efficiency in such a
system depends strongly on the coupling to the vibration and is
found to be highly nontrivial.
Model System. The prototype model that describes exciton

delocalization is an electronic dimer, with two molecules
labeled 1 and 2, and extension of this model to larger systems is
straightforward. Each molecule is modeled as a two-level system
with a common ground state and an excited state. The
excitation energy of molecule 1 (2) is denoted ϵ1 (ϵ2), and the
coherent interaction between molecules is denoted as −J. The
full Hamiltonian is given in terms of the creation and
annihilation operators c1̂(2)

† and c1̂(2) by

δ δ̂ = ϵ + ϵ ̂ ̂ + ϵ + ϵ ̂ ̂

− ̂ ̂ + ̂ ̂

† †

† †

H t X t c c X t c c

J c c c c

( ) [ ( ( ))] [ ( ( ))]

( )
1 1 1 1 1 2 2 2 2 2

1 2 2 1 (1)

where the system is on-site coupled to the baths. The
coordinates of the environment Xn comprise all degrees of
freedom not included in the tight-binding Hamiltonian, and, in
particular, vibrations. In principle, these Xn’s are operators that
must be described by the rules of quantum mechanics. Their
correlation function ⟨Xn(t)Xn(0)⟩ is a complex quantity, with its
real and imaginary parts balanced by the fluctuation−
dissipation theorem. However, in the spirit of stochastic
modeling, we first assume that Xn(t) is a real function of
time. The energy fluctuations δϵ are then random variables that
follow a specific correlation function. This approximation is
valid when the temperature is large compared with the
bandwidth of the system. In our numerical simulations, we
will consider a dimer with the same site energies ϵ1 = ϵ2
(homodimer) as well as a dimer with different site energies
(heterodimer), where the offset in site energies is Δ = ϵ1 − ϵ2.
Furthermore, we will use the excitonic coupling J as the energy
unit. At the end of our paper, we will show that the essential
physics obtained from our model with classical fluctuations is
retained when the environment is modeled quantum
mechanically.
Although this model is standard, most studies assume that

the fluctuating excitation energies are either stationary random
variables,22 or white noise that can be modeled in the Markov
approximation.8,23 Here, we consider general Gaussian colored
noise with the correlation function

δ δ= ⟨ ϵ ϵ ⟩L t t( ) ( ) (0)n n (2)

We assume that the fluctuations in the site energies are
uncorrelated and the correlation functions are identical for
every site, although these assumptions can easily be relaxed.
The correlation function for damped vibrations is given by

τ
ω=

Γ τ−| |L t t e( ) cos( ) t0 /
(3)

The parameters Γ0/τ and ω describe the amplitude of
fluctuations and the frequency of vibration. The parameter τ
models the memory time scale of the bath, which is equal to the
inverse damping rate of the vibration. For ω = 0, the correlation
function in eq 3 describes overdamped vibrations and can be
derived from a Langevin equation driven by white noise.24,25 In

this case, 1/τ is known as the Debye frequency. The presence
of memory (i.e., τ > 0) can increase the coherence in the
system26 and hence the exciton diffusion efficiency. Here, we
focus on the effect of nonzero ω to describe underdamped
vibrations.
We are interested in the exciton dynamics with one

excitation present. In eq 1 the system Hamiltonian and
system−-bath interaction do not commute. Hence, there is no
analytical solution for the dynamics beyond the white noise
limit. The two-state dynamics is therefore found numerically by
solving the time-dependent Schrödinger equation. The
calculation is repeated for many realizations of the random
noise and the density matrix is averaged over all the realizations.
All simulations in this paper were averaged over 104 noise
trajectories. To do this, we first generate trajectories of random
processes {δϵn(ti)} for the nth site, with discrete time series {ti}.
It is practically obtained by applying a linear transformation
δ δηϵ = ∑t t( ) ( )n i k ik n k , where {δηn(tk)} are sequences of
white noise, with correlation ⟨δηn(tk)δηn(tl)⟩ = δk,l. Moreover,
the transformation matrix is constrained by the correlation
function L(t), and is computed by Cholesky decomposition of
the covariance matrix,27 specified as =L t( ) ( )ij

T
ij. Hence,

the noise correlation function is recovered as ⟨δϵn(ti)δϵn(tj)⟩ =
δη δη∑ ⟨ ⟩ = ∑ =t t L t( ) ( ) ( ) ( )l k ik jl n k n l k ik

T
kj ij, . Popula-

tions and coherences at each time step are found by storing
the components of the density matrix ρnm(t) = ⟨ψn(t)ψm*(t)⟩.
Critical Damping. Let us first briefly consider the white noise

case. The correlation function is then given by L(t) = Γδ(t),
where the dephasing rate Γ quantifies the strength of the noise.
In this case, the average over the noise can be performed
analytically and leads to the Haken−Strobl−Reineker model of
exciton transport. The equation of motion for the reduced
density matrix is found to be (d/dt)ρ̂(t) = −i[ĤS,ρ̂(t)] +
L̂d[ρ̂(t)], with ⟨n|L̂d[ρ̂(t)]|m⟩ = −Γ(1 − δnm)⟨n|ρ̂(t)|m⟩ in the
site basis,28 where ĤS is the system Hamiltonian without
coupling to the bath, and |n⟩ is the site state. The behavior of
the system can be tuned by varying Γ. For small Γ (Γ < Γcritical),
the population dynamics exhibit oscillations, such that
irreversible transfer of population from one site to the other
is slow. We will refer to this situation as the underdamped
regime. For large Γ, the transfer is incoherent (overdamped
regime) and slows down with increasing Γ. In between, the
critical value of Γ optimizes the transfer (critical damping),
which has been postulated as optimal energy transfer in light-
harvesting systems. Although an optimal value of Γ exists, there
is a broad plateau of values close to the maximum that lead to
near-optimum transport.9 The coherent oscillations disappear
at the critical value of Γ = 4J based on the eigenvalues of the
Liouville operator, which is analytically found in the
homodimer. These eigenvalues are 0, −Γ and (1/2)(−Γ ±
(Γ2 − 16J2)1/2). Critical damping corresponds to the crossover
from purely real to complex eigenvalues, which occurs when the
latter two eigenvalues become equal at Γ = 4J. In the case of the
heterodimer, though not shown here, it is numerically found
that for Δ > 2J, the critical value is best understood by the
energy gap of the system, Γcritical ≈ (Δ2 + 4J2)1/2 ≈ Δ.
For colored noise with a more general correlation function, a

similar phenomenon is expected. In the Markovian limit, when
the bath time scale is much faster than the system dynamics, the
effect of the bath can be understood with an effective damping
rate Γeff = ∫ 0

∞dtL(t). Thus, a crossover from the underdamped
to the overdamped regime is expected when the integral of the

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/jz502701u
J. Phys. Chem. Lett. 2015, 6, 627−632

628

http://dx.doi.org/10.1021/jz502701u


correlation function increases. This can be achieved by
increasing the strength of the fluctuations, given by L(0), by
changing the effective memory time of the bath, or by changing
the shape of the correlation function. Although the argument of
effective model for the damping does not always hold outside
the Markovian limit, it provides qualitative insight.
We now turn to the colored noise describing the effect of

underdamped vibrations on the system, as defined in eq 3. The
effective damping rate in this case is given by

ω τ
Γ =

Γ
+1eff

0
2 2 (4)

which decreases with increasing ω for fixed Γ0 and τ. Thus, we
expect that an overdamped dynamics for low vibrational
frequency will change to an underdamped behavior for large ω.
This effect is shown in Figure 1, which summarizes the
simulation results in a homodimer (Δ = 0). Figure 1a−c shows
a single realization of the noise for different values of the
vibrational frequency ω. The noise leads to fluctuations in the
transition energy ϵ, which is plotted relative to the amplitude of
the noise σ2 = Γ0/τ. In all panels, the correlation time of the
noise is τ = 1/J. Evidently, the colored noise caused by an
underdamped vibration leads to oscillations in the transition
energy, with a characteristic frequency given by ω. The noise
sequences are generated from the correlation functions shown
in Figure 1d−f, which are typical for an overdamped vibration
(Figure 1d) and underdamped vibrations (Figure 1e,f). The
bottom three panels (Figure 1g−i) show the population P = ρ11
and the real part of the coherence C = Re[ρ12] as a function of
time, starting from an initial state where only molecule 1 is
populated. Although the amplitude of the fluctuations σ2 = Γ0/τ
is the same in all panels, the effective damping strength Γeff in
eq 4 is reduced with increasing ω, leading to coherent
oscillations in the population. The proper damping strength by

tuning vibration frequency may optimize the transfer efficiency.
Hence, coherent behaviors of the system emerges even in the
presence of strong noise, and optimal transfer will occur for a
critical vibrational frequency ωcritical.
Resonant Transfer. The crossover from overdamped to

underdamped system dynamics is the first effect that optimizes
transfer in the dimer system. Now we consider the second
mechanism. We expect the transfer efficiency to increase when
the environmental vibration is resonant with the energy gap in
the system. Thus, for our dimer, resonant transfer will occur
near the vibrational frequency ωres = (Δ2 + 4J2)1/2, and can
drive transfer between the two sites in the system. This effect
can be understood as the driving of system dynamics by an
external field, here provided by the vibration, in analogy to
optical driving with a laser. This mechanism has been put
forward as a way to regenerate coherence in the system,18 and
as quantum resonance.29 Here, we show that it also enhances
population transfer through classical resonance. Thus, there are
two mechanisms that control optimal transfer in the system:
critical damping controlled by Γeff, which can lead to a
crossover from overdamped to underdamped system dynamics,
and resonant transfer defined by ωres, which matches the
excitonic gap.
The transfer rate between the two monomers can be

understood from Förster theory as follows. The corresponding
Förster rate in the presence of classical colored noise is given
by30,31

∫κ =
∞

Δ −J te2 Re[ d ]i t g t2

0

( )
(5)

where the line shape function is given by g(t) = (1/
2)∫ 0

tdt1∫ 0
tdt2L(t1 − t2). For the correlation function given in

eq 3, the line-shape function is evaluated as

Figure 1. Panels a−c show realizations of the noise for ω = 0.0, 5.0, 10.0J, respectively. Panels d−f show the chosen correlation function as well as
the correlation function calculated from the generated noise. The two lines overlap in all three cases. Panels g−i show (solid line) the population and
(dashed line) the coherence in a homodimer. Parameters are σ = 3.0J and τ = 1.0/J. Time is in units of 1/J.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/jz502701u
J. Phys. Chem. Lett. 2015, 6, 627−632

629

http://dx.doi.org/10.1021/jz502701u
http://pubs.acs.org/action/showImage?doi=10.1021/jz502701u&iName=master.img-001.jpg&w=351&h=260


τ τ ω τ
τ ω ω τ

ω ω
τ

ω

=
Γ
+

+ + −

× − −τ τ− −

⎧⎨⎩
⎫⎬⎭

g t
t

t t

( )
(1/ )

(1/ ) ( 1/ )

(1 e cos )
2

e sint t

0
2 2 2

2 2 2 2

/ /

(6)

Hence, the transfer rate R, of which the inverse is defined as

∫ κ
= − =−

∞
⎜ ⎟
⎛
⎝

⎞
⎠R t P td

1
2

( )
1

2
1

0 (7)

is readily evaluated, where P(t) is the transferred population at
time t. The result for the model dimer is shown in Figure 2,
where we indeed observe two peaks in the transfer rate as a
function of vibrational frequency.

We now show how these two effects appear in numerical
simulations, which can be applied to treat noise strengths
outside the Förster regime. From the transfer rate at eq 7, the
overdamped behavior is observed in low frequency regime. By
increasing ω, there exists a crossover from overdamped to
underdamped behavior, leading to optimal transfer for the
critical value of ωcritical. Thus, the prediction of eq 4 of a
decrease of the effective noise strength with increasing ω holds.
However, the numerical solution of the vibrational frequency
that leads to critical damping is different from the simple
estimate, based on the white noise result Γcritical = (Δ2 + 4J2)1/2.
We attribute the difference to non-Markovian effects.
Surprisingly, the peak in the population transfer is rather
sharp, as opposed to the broad peak observed for white noise
(see refs 32 and 9). If we keep increasing ω, a resonance of the
exciton system with the vibration appears at ω ≈ 8J. Thus, the
two maxima in the transfer efficiency as a function of ω
correspond to the crossover from overdamped to underdamped
dynamics, and to the exciton−vibration resonance. Moreover,
the strong increase of the transfer rate in the presence of a
resonant vibration is found when the system is underdamped.
In the overdamped case, it is confirmed there is almost no
effect. If ω is increased even further, the system dynamics
becomes more coherent, and the efficiency decreases

dramatically. In addition to the results presented here, we
have performed simulations with the hierarchical equations of
motion method for a Brownian oscillator spectral density,
which models a quantized vibration (see refs 34 and 35 in
Supporting Information). As shown in Figure 4 and explained
in more detail in the Supporting Information, we again observe
the two maxima in the transport as a function of vibrational
frequency.

Suppressed Coherence at Resonance. Here, we also consider the
quantum coherence between the two monomers in the site
basis. We see long-lived coherent oscillations as a result of the
coupling to the vibration. This is a vibrational effect different
from the absence of sustained oscillations at ω = 0. At
resonance (i.e., ωres = 8J), the coherence is damped faster than
off-resonance. A similar faster decay is observed at ωcritical = 4J,
and both effects can be explained by more rapid population
transfer. Thus, to observe long-lived coherence resulting from
coupling to vibrations, one should probe away from the
vibrational resonance (see Figure 3).
The two mechanisms have different effects on the coherence

of the dimer system. The critical damping is the boundary
between weak and strong damping, and therefore cannot be
described with either a weak or strong coupling master
equation alone. For example, the standard Markovian version
of the Redfield equation fails to predict the optimal energy
transfer,8 whereas a non-Markovian version, i.e., the generalized

Figure 2. Transfer rate from site 1 to site 2 as a function of vibrational
frequency. Fixed parameters are Δ = 8J, Γ0 = 12J, and τ = 3/J. The two
maxima in the transfer efficiency as a function of ω correspond to the
crossover from overdamped to underdamped dynamics (ω ≈ 4J) and
the exciton-vibrational resonance (ω ≈ 8J), respectively.

Figure 3. Population (left panel) and coherence (right panel) in the
site basis as a function of time for different vibrational frequencies.
Coherences were offset by −0.4 (ω = 0), −0.2 (ω = 4J), 0 (ω = 6J),
+0.2 (ω = 8J) and +0.4 (ω = 9J). The other parameters are identical to
those in Figure 2.

Figure 4. Transferred population from site 1 to site 2 (a) as a function
of vibrational frequency after a time 20/J and (b) as a function of time
for frequencies (from bottom to top) ω = 6J, 4J, 9J, 8J. The dynamics
were calculated with a quantized vibration. Fixed parameters are Δ =
8J, λ = 0.2J, γ = 2J/3, and β = 0.1/J. The two maxima found in Figure 2
are reproduced in this calculation.
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Bloch-Redfield equation, correctly predicts the transfer time
and efficiency in the Fenna−Matthews−Olson complex
(FMO) over the entire parameter space.9 In comparison,
resonant transfer occurs at a weaker coupling strength, and thus
the standard Bloch equation is applicable. Then, in the resonant
transfer regime, the Bloch equation predicts T2 = 2T1, where T2
and T1 are the dephasing and population relaxation rate
constants, respectively. This simple relationship explains the
rapid decay of excitonic coherence for resonant transfer.
Combined Ef fect and Relevant Photosynthetic Systems. We now

show that the combination of the two optimization mechanisms
leads to optimal transfer. Figure 5 shows the population in the

heterodimer for exponentially correlated noise (ω = 0) in the
underdamped regime (black solid line) and close to critical
damping regime (black dashed line), respectively. In compar-
ison, we also show the dynamics in the presence of a resonant
vibration (red solid line). Finally, we plot the system population
in the presence of both an underdamped and an overdamped
vibration (red dashed line) by selecting the optimal parameters,
with the combined correlation function

τ
ω

τ
=

Γ
+

Γτ τ−| | −| |L t t e e( ) cos( ) t t
2

0 / 0,2

2

/ 2

(8)

We observe that the latest case, in which a resonant vibration is
present and the system is tuned close to critical damping, gives
more efficient transfer, compared to other cases. Because the
estimate of the effective damping in eq 4 does not
quantitatively predict the crossover from overdamped to
underdamped dynamics in the system, only numerical
simulation can predict the parameters that may lead to
maximum transfer efficiency. The combination of the two
mechanisms identified in this paper, resulting in a resonant
frequency ωres and a critical frequency ωcritical, leads to optimal
transfer.
Recent experiments have detected oscillations of coherences

in the heterodimer, which were attributed to both electronic
coherence and vibrational states. Many vibrational modes with
frequencies close to the electronic energy gap were identified.
Therefore, vibrational resonance effects are expected to play a
central role in the population dynamics in these systems. A
recent theoretical study considers an effective dimer model for

the FMO complex.18 The heterodimer has an energy offset of
Δ = 2.43J. The spectral density considered consists of a broad-
band with a reorganization energy of λ2 = 0.65J and a vibration
with a frequency of ω = 3.36J and reorganization energy of λ =
0.74J. Because in the high temperature limit Γ0/τ = 2λ/β, we
find that Γ0/τ = 1.5J2 and Γ0,2/τ2 = 1.3J2 at a temperature of 77
K. At this temperature, the parameters are close to the optimal
values used in our Figure 5, suggesting that our simulations are
directly relevant to real systems. Further experiments that
detect site populations are needed to show the optimal transfer
efficiency explained in the present paper.
We have studied energy transfer in an exciton system

coupled to an underdamped vibration. The essential feature of
the underdamped vibration can be obtained by considering
intramolecular interaction. Two mechanisms determine optimal
transfer parameters. First, there is a crossover from overdamped
to underdamped system dynamics, governed by the effective
strength of the noise. Because the strength of the noise depends
on both the vibrational frequency as well as its damping
constant, the behavior of the system changes with the
frequency. Furthermore, a crossover from underdamped to
overdamped dynamics can be tuned by changing the damping
constant. This shows that experimentally controllable param-
eters, such as the choice of solvent, can modify the transport
efficiency, and even change the character of the population
transport qualitatively. Second, a vibration resonant with the
excitonic gap can drive population transfer. We found that
resonance can strongly increase transport if the system
dynamics is underdamped, even in the presence of strong
noise. Optimal transfer is achieved when these two mechanisms
coincide. Coupling to a vibration also leads to long-lived
oscillations in the coherence, which have the longest lifetime for
a vibration that is slightly off-resonance. Our analysis can
trivially be applied to larger systems and to arbitrary correlation
functions, including correlated fluctuations.9,33 Our results
contribute to the heated debate on the effect of a vibrational
resonance on energy transport.
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