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in multichromophoric systems. III. Exact stochastic path integral evaluation
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A numerically exact path integral treatment of the absorption and emission spectra of open quantum
systems is presented that requires only the straightforward solution of a stochastic differential
equation. The approach converges rapidly enabling the calculation of spectra of large excitonic
systems across the complete range of system parameters and for arbitrary bath spectral densities.
With the numerically exact absorption and emission operators, one can also immediately compute
energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism.
Benchmark calculations on the emission spectra of two level systems are presented demonstrating
the efficacy of the stochastic approach. This is followed by calculations of the energy transfer
rates between two weakly coupled dimer systems as a function of temperature and system-bath
coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Pa-
per II) is the only perturbative method capable of generating uniformly reliable energy transfer
rates and emission spectra across a broad range of system parameters. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4908601]

I. INTRODUCTION

The far-field absorption and emission spectra are standard
experimental tools in the characterization of excitonic systems.
The temperature and solvent dependence of these spectra are
often used to extract a wealth of information on, for example,
the microscopic geometry of the constituent chromophores,
the coupling strength between the excitonic system and
its environment, as well as the relative importance of het-
erogeneous broadening mechanisms.1–3 Despite this wide
applicability, at present there are still relatively few theoretical
approaches that are capable of providing uniformly reliable
estimates of the spectra of open quantum systems. Only in the
limiting case that the spectrum arises from a single isolated
electronic transition can the exact absorption and emission
spectra be obtained analytically (up to a numerical integration)
through cumulant expansion techniques.4 However, in the
more common setting, wherein the excitonic complexes are
comprised of multiple coupled chromophores, then one must,
in general, resort to numerical methods. Unfortunately, there is
no numerically exact approach currently available for systems
containing more than a few chromophores that are valid over
a large range of the parameter space. As a result, comparisons
between many interesting experimental systems and their
corresponding microscopic theoretical models are often out of
reach. One of the central aims of this work is to fill this gap.
Here, we present an efficient path integral approach that allows
one to compute the numerically exact absorption and emission
spectra of multi-chromophoric open quantum systems.

a)jianshu@mit.edu

Due to the lack of robust exact methods, one often turns to
perturbative techniques. As detailed in the preceding papers
of this series (henceforth referred to as Papers I5 and II6),
many of the standard approximate approaches are capable of
generating reliable absorption spectra, as only the short time
dynamics of a factorized system-environment initial state
are required. The emission spectrum, however, presents a
much more challenging problem. In this case, the real-time
dynamics evolve from the correlated equilibrium state of
the entire excitonic system and its environment. Unless the
system-bath coupling is very weak, perturbative treatments
often generate qualitatively incorrect emission spectra and
generally become even worse as the temperature is lowered.5,7

One of the major results of the previous papers in this series
was a hybrid perturbative method capable of providing reliable
emission spectrum over a broad range of system parameters.6

The approach is not fully perturbative in that it combines
the knowledge of the numerically exact equilibrium reduced
density matrix, which can be obtained relatively easily through
imaginary time path integral methods,8 with an approximate
cumulant expansion of the remaining real time dynamics. This
initial state correction becomes essential at low temperatures
or strong coupling. The hybrid cumulant expansion (HCE)
thus greatly extends the parameter regimes accessible to
perturbative methods and generally improves the quality of
the results.

In the context of numerically exact treatments of the
emission spectrum, such as the hierarchy equation of motion
(HEOM),9 the problem of a correlated system-bath initial
state is overcome by simply preparing a factorized state
sufficiently far in the past such that the system has reached
equilibrium at time zero. As a result, these approaches

0021-9606/2015/142(9)/094108/9/$30.00 142, 094108-1 © 2015 AIP Publishing LLC
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require an initial lengthy propagation of the reduced density
matrix to equilibrium before the dynamics of the dipole
correlation function can be calculated.10,11 Furthermore, as
these approaches rely on efficient representations of the
influence functional, they are generally restricted to environ-
ments that are not strongly non-Markovian. The main result
of this paper is a stochastic path integral approach that
circumvents many of the restrictions imposed by other
numerically exact methods and, in particular, is applicable
for arbitrary spectral densities and temperatures.

While an exact calculation of the absorption and emission
spectra is important in its own right, it also provides an
additional benefit. That is, one can immediately compute
energy transfer rates between weakly coupled excitonic
systems using the multi-chromophoric Förster resonant energy
transfer (MCFT) formalism. The MCFT framework is a
generalization of the standard Förster theory to the situation
where the donor or acceptor complex consists of multiple
coupled chromophores12 and has gained recent attention as
this scenario appears to be one of most common motifs
employed in the highly efficient energy transfer networks
found in biological systems. For example, the light harvesting
systems found in both green and purple bacteria are comprised
of independent complexes of strongly coupled chromophores
that form the base units for large-scale energy transfer
networks.14,15

In Sec. II, the details of the MCFT formalism are
presented. There, it becomes apparent that the key quantities
necessary for computing energy transfer rates are generalized
operators related to the absorption spectrum of the acceptor
complex and the emission spectrum of the donor. Then, we
present the path integral treatment of the absorption operator
and demonstrate that it may be efficiently computed as the
solution to a straightforward stochastic differential equation.
This approach is then generalized to the emission spectrum
by taking advantage of the detailed balance condition that
relates the emission operator to its corresponding absorption
operator evolving in a complex time. Following these formal
developments, numerical calculations are presented for model
two level systems that can be reliably benchmarked against
the HEOM approach. The temperature dependence of the
emission spectrum is presented, followed by systematic
calculations of the MCFT rate as a function of the temperature
and system-bath coupling strength. It is observed that the
hybrid cumulant expansion technique developed in Paper II
is the only perturbative approach that provides uniformly
reliable results for the energy transfer rates.6 In a forthcoming
work, the path integral and HCE methods will be used to
provide the first systematic analysis of the energy transfer
rates between two B850 complexes in the light harvesting
system LH2.16

II. MCFT FORMALISM

The MCFT formalism has been expounded in the previous
papers in this series. Here, we provide only the salient details
necessary to keep the presentation self-contained. The total
system is composed of a donor complex consisting of ND
chromophores that are weakly coupled to an acceptor complex

of NA chromophores. The Hamiltonian for the entire donor-
acceptor system is then

H = HD + HA + HDA, (1)

where HD(A) denotes the Hamiltonian operator of the
multi-chromophoric donor (acceptor) complex along with
its associated thermal environment. The excitonic coupling
between the donor and acceptor systems is characterized by
HDA, which, within the local basis of the single-excitation
subspace of the donor and acceptor, is given by

HDA =

ND
n=1

NA
m=1

JDA
nm |Dn⟩ ⟨Am| . (2)

The Hamiltonian of an individual complex is modeled as a
general open quantum system,

Hα = Hα
s + Hα

b + Hα
sb, (3)

where the label α ∈ (D, A) serves to distinguish between the
donor and acceptor systems. The free excitonic Hamiltonian
of each complex is given by

Hα
s =

Nα
m=1

(ϵαm + λαm) |αm⟩ ⟨αm| +
Nα
n,m

tαnm |αn⟩ ⟨αm| , (4)

where ϵm is the excitation energy of the mth chromophore,
tnm denotes the intra-complex electronic couplings, and λm is
the environment-induced reorganization energy. The free bath
Hamiltonian is

Hα
b =

Nα
m=1


k

~ωα
m,kbα†

m,k
bαm,k, (5)

where bα†
m,k

(bα
m,k

)denotes the respective creation (annihilation)
operator of the kth mode of the bath with frequency ωα

m,k
and

coupled to chromophore m on the excitonic complex labeled
by α. The system bath coupling is linear in the bath coordi-
nates, and assumed to modulate only the excitation energies,

Hα
sb =

Nα
m=1

Vα
m


k

gαm,k

(
bα†
m,k
+ bαm,k

)
, (6)

where Vα
m = |αm⟩ ⟨αm| and gα

m,k
denotes the coupling strength.

Assuming that the exciton lifetime is much longer than the
timescale associated with the energy transfer, then relaxation
to the ground state can be safely ignored, and the population
transfer rate between the donor and acceptor systems is given
by the MCFT rate formula

k = 2Re
 ∞

0
dt Tr

�
HDA�⊤ED(t)HDAIA(t) , (7)

which can be easily obtained from the golden rule expression
as shown in Sec. II of Paper I.5 The absorption operator of
the acceptor, IA(t), and emission operator of the donor, ED(t),
appearing in Eq. (7) are formally defined as

IA(t) = Trb


e−

i
~H

At ρAe+
i
~H

A
b t

, (8)

ED(t) = Trb


e+

i
~H

Dt ρDe−
i
~H

D
b t

. (9)

In the case of the absorption operator, the initial density
matrix corresponds to a factorized state of the system
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and bath, ρA = Is ⊗ e−βH
A
b /ZA

b , due to the assumption of a
Franck-Condon transition from the ground state. The steady-
state emission, however, occurs after the total system has
equilibrated within the single excitation manifold. Thus,
the initial state in Eq. (9) corresponds to the equilibrium
state of the entire system and bath, ρD = e−βH

D
/ZD, where

ZD = Tr

e−βH

D
is the partition function of the donor. As

discussed extensively in the previous papers of the series,
the difference in the initial states is the key feature that
distinguishes the absorption from the emission operator,
with the correlated initial condition in Eq. (9) leading to
a substantially more involved calculation.

A. Detailed balance

The absorption and emission spectra obey a well-known
detailed balance condition, and it is readily apparent that
their corresponding operators in Eqs. (8) and (9) must obey a
similar relation. In the frequency domain, the detailed balance
condition for the operators reads

ED(ω) = e~βω

Z
ID(ω), (10)

where Z = ZD/ZD
b . Thus, in principle, knowledge of the

absorption operator allows for a straightforward determination
of the corresponding emission operator. However, in practice,
the thermal prefactor exponentially amplifies any error in
the absorption data leading to an ill-conditioned numerical
problem. As a result, Eq. (10) is generally of little practical
use outside of the very high temperature limit.

An alternative approach can be based on the observation
that in the time domain, the detailed-balance condition takes
the form

ED(t)∗ = 1
Z

ID(t − i~β), (11)

where the asterisk denotes complex conjugation. That is,
through the straightforward substitution, t → t − i~β, the time
evolution of the emission operator of the donor is equivalent
to that of the absorption operator, except that the dynamics
evolves in complex time rather than in purely real time. In
contrast to the frequency-domain detailed balance relation,
the time-domain version in Eq. (11) is free from numerical
instabilities and forms the basis for the developments
presented here. Here, we employ the path integral formalism
to develop an exact and efficient numerical treatment of the
spectral operators rather than pursue perturbative approaches
as were explored in the previous papers of this series. In
Subsection II B, the stochastic path integral representation for
the absorption operator is presented and then generalized to
the case of emission through the rotation from real time to
complex time suggested by Eq. (11).

B. Absorption operator

As can be seen from Eq. (8), the absorption operator
does not require the full time evolution of the reduced density
matrix. The bath evolves both forward and backward in time,
but the system is only propagated forward in time. As a

result, we can still take advantage of the influence functional
formalism from the path integral approach to open quantum
systems,17 but we only need a single path for the system
variables. Thus, the absorption operator can be determined
from the path integral expression

UA(t) =

D[σ]e i

~ S
A
0 [σ]F[σ], (12)

where SA
0 [σ] denotes the action associated with the free system

Hamiltonian of the acceptor, HA
s , and the standard boundary

conditions of the paths have been suppressed for clarity.
The Feynman-Vernon influence functional, F[σ], obtained by
integrating out each of the NA independent baths is given by

F[σ] =
NA
n=1

exp *
,
−1
~

 t

0
dt ′

 t′

0
dt ′′V A

n (σ(t ′))

× V A
n (σ(t ′′))Cn(t ′ − t ′′)+

-
. (13)

All of the microscopic details of the baths that are relevant to
the system dynamics enter through their respective correlation
functions in the influence functional, which take the standard
form

Cn(t) = 1
π

 ∞

0
dω Jn(ω)

× [coth(~βω/2) cos(ωt) − i sin(ωt)] , (14)

with the spectral density function

Jn(ω) = π

2


k

g2
n,k

ωn,k
δ(ω − ωn,k). (15)

One of the great benefits of the path integral formalism is
that it places no restrictions upon the functional form of the
spectral density as opposed to many other approaches to open
quantum systems.

Following our previous developments on the equilibrium
reduced density matrix,8 as well as those of several others
on the full real time dynamics of the density matrix,18,19

the nonlocality present in the influence functional can be
substituted for local interactions with stochastic auxiliary
fields, which can then be efficiently sampled through Monte
Carlo methods. Formally, this is affected by applying a
separate Hubbard-Stratonovich transformation to each of the
NA terms in the influence functional. Then, Eq. (13) can be
exactly rewritten as

F[σ] =
NA
n=1


D[ξn] wn exp

(
− 1

2~

 t

0
dt ′

 t

0
dt ′′ξn(t ′)

×C−1
n (t ′ − t ′′)ξn(t ′′) + i

~

 t

0
dt ′V A

n (σ(t ′))ξn(t ′)
)
,

(16)

where wn represents the normalization constant of the
Gaussian functional integral associated with the nth bath. The
path integral involving the system variables is now completely
local in time and the auxiliary fields can be reinterpreted as
a source of colored noise driving the system dynamics. Thus,
individual samples of the absorption operator can be simply
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and straightforwardly calculated through the solution of a
stochastic differential equation,

d
dt

ρA(t) = − i
~

HA(t)ρA(t), (17)

subject to the initial condition ρA(0) = Is. The stochastic
Hamiltonian is given by

HA(t) = HA
s +


n

ξn(t)V A
n , (18)

and the scalar, complex-valued, Gaussian noise terms obey
the correlations

⟨ξn(t)⟩ = 0,
⟨ξn(t)ξm(t ′)⟩ = δnmCn(t − t ′)/~. (19)

The exact time evolution of the absorption operator is obtained
after averaging the stochastic dynamics over realizations of the
noise, IA(t) = ⟨ρA(t)⟩ξ. Here, we have assumed that each of the
baths is independent of all others. To include correlated baths,
one need only to replace the delta function in Eq. (19) with
the desired spatial correlations. The generation of complex,
Gaussian colored noise is discussed in Appendix A.

The stochastic path integral equation for the absorption
operator bears some similarity to the non-Markovian quantum

state diffusion (NMQSD) approach recently proposed to
compute the zero temperature absorption spectrum of
excitonic systems.20 While NMQSD is formally exact, all
practical implementations to date have relied on approxi-
mations. In contrast, the present Eq. (17) is both formally and
numerically exact, although it may prove fruitful to further
explore the connections between the two approaches.

C. Emission operator

Due to the correlated initial state, the calculation of
the emission operator is considerably more involved than
that of the absorption. The propagator in the path integral
representation is17

UD(t,~β) =

D[σ]


D[σ̄]e− i

~ S
D
0 [σ]− 1

~ S
E,D
0 [σ̄]F[σ,σ̄],

(20)

where SE,D
0 denotes the Euclidean action of the donor

system Hamiltonian associated with the initial imaginary
time propagation to the equilibrium state. The influence func-
tional now contains three contributions from the respective
propagations in real time, imaginary time, and the correlations
between the two,

F[σ,σ̄] =
ND
n

exp *
,
−1
~

 t

0
dt ′
 t′

0
dt ′′ V D

n (σ(t ′))V D
n (σ(t ′′))Cn(t ′ − t ′′)+

-

× exp *
,

1
~

 ~β

0
dτ′

 τ′

0
dτ′′ V D

n (σ̄(τ′))V D
n (σ̄(τ′′))Cn(−iτ′ + iτ′′)+

-

× exp
(

i
~

 ~β

0
dτ′

 t

0
dt ′ V D

n (σ̄(τ′))V D
n (σ(t ′))C∗n(t ′ − iτ′)

)
. (21)

The bath correlation function is defined for complex arguments
through the analytic continuation of Eq. (14) as17

Cn(z) = 1
π

 ∞

0
dωJn(ω)cosh (~βω/2 − iωz)

sinh (~βω/2) , (22)

where z = t − iτ and 0 ≤ τ ≤ ~β.
As is readily seen, the path integral expression for

the emission operator is considerably more complicated
than the corresponding result for the absorption operator.
Additionally, the coupling between the real and imaginary time
paths in the influence functional prevents a straightforward
application of the Hubbard-Stratonovich transformation as
was used previously for the absorption operator. Fortunately,
a simplification is possible. The detailed balance relation
in Eq. (11) suggests that the emission operator may be
computed in an identical manner to the absorption through the
introduction of a complex time variable z = t − i~β. Indeed,
with this substitution in the path integral expressions above,
the emission propagator may then be defined in an analogous
fashion to Eq. (12) except along a time-ordered contour in the

complex time plane,17

UD(z) =

D[σ]e− i

~ S
D
0 [σ]F[σ]. (23)

The influence functional similarly simplifies to

F[σ] =
ND
n

exp
*..
,
−1
~

 z

0
dz′


z′>z′′

dz′′ V D
n (σ(z′))

×V D
n (σ(z′′))Cn(z′ − z′′)

)
. (24)

With these results, the Hubbard-Stratonovich transforma-
tions and stochastic Schrödinger equation are then formally
equivalent to those of the absorption operator presented in
Sec. II B. The complex time evolution of samples of the
emission operator obeys the equation

d
dz

ρD(z) = − i
~

HD(z)ρD(z), (25)
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FIG. 1. The integration contours in the complex time plane z = t − iτ used
in the various calculations. Integrating along z = t (green arrow) yields the
absorption operator while the contour z =−iτ (red arrow) results in the
equilibrium reduced matrix. The blue arrows characterize the independent
contours needed to generate the emission operator at times s and s′.

where the integration proceeds from time z = 0 to the complex
time z = t − i~β subject to the initial condition, ρD(0) = Is.
Similarly, the stochastic complex time-dependent Hamiltonian
is given by

HD(z) = HD
s +


n

ξn(z)V D
n , (26)

where the scalar noise components are again of zero mean
and correlation,

⟨ξn(z)⟩ = 0,
⟨ξn(z)ξm(z)⟩ = δnmCn(z − z′)/~. (27)

As with the absorption, the numerically exact emission
operator is obtained after the stochastic average over
the noise variables, ED(t)∗ = ⟨ρD(t − i~β)⟩ξ/⟨Z⟩ξ, where Z
= Tr

�
ρD(−i~β)�.

It should be noted that the stochastic path integral
expression in Eq. (25) represents a generalized form of the
stochastic propagation. It contains two interesting limits that
are represented schematically in Fig. 1. For example, if the
imaginary time component of the propagation is set to zero
such that z = t, then one immediately recovers the absorption
operator obtained above in Eq. (17). Alternatively, if the real
time component of the integration contour is set to zero,
then one recovers the pure imaginary time evolution of the
equilibrium reduced density matrix propagation explored in
our earlier work.8 This leads to the interesting result that the
emission operator at t = 0 is simply the exact equilibrium
reduced density matrix.

D. Computational considerations

There are several points with regards to the stochastic
formulation that should be emphasized. First, a generalized
stochastic approach to compute the real time dynamics
of the entire reduced density matrix has recently been
explored.18,19,21 In that case, the presence of complex noise
generally leads to very slow convergence of the stochastic
average as the length of the simulation increases. The approach
presented here, and, in particular, Eq. (17), represents a
simplified version of those works and thus directly inherits

their numerical difficulties. However, the redeeming feature
of the present approach is that the decay time of the
absorption and emission correlation functions is much shorter
than the corresponding relaxation time of the pure real
time dynamics. As a result, brute force convergence of the
stochastic path integral is generally possible with a reasonable
number of Monte Carlo samples (105 − 106), although the low
temperature regime can be more demanding.

Second, there is a subtle difficulty that should be discussed
with regards to the calculation of the emission spectrum. As
seen from Fig. 1, the propagations to times s − i~β and
s′ − i~β evolve along different contours in the complex time
plane. The bath correlation functions evaluated along these
two contours are different, and thus the emission operators
E(s) and E(s′) require completely independent calculations.
In principle, this should increase the cost of computing the
emission spectrum by a factor of the number of time steps
with respect to that of the absorption. However, this is not the
case since the presence of the imaginary time component in
the propagation greatly improves the convergence properties
of the Monte Carlo calculation.21,22 While the computational
cost of the emission spectrum is more expensive, it is not
prohibitive.

Finally, the inclusion of static disorder in the absorption
operator calculation is trivial, but less so for that of the
emission operator. In the former case, the averages over
the noise and disorder commute, and thus the two may
be computed simultaneously. That is, the disorder-averaged
absorption spectrum should incur practically no additional
computational cost over that of the bare absorption spectrum.
However, the presence of the partition function in the
denominator of the emission operator demands that the
average over the disorder must be computed independently of
the average over the noise. As a result, the disorder-averaged
emission spectrum, although straightforward, may be quite
costly from a computational perspective.

III. NUMERICAL RESULTS

Although the path integral formalism is valid for any
spectral density, below we will focus on the standard Drude-
Lorentz form so that benchmark results from the HEOM
formalism can be obtained. In a forthcoming work, we will
examine the influence of the spectral density on the spectra
and energy transfer rates of the light harvesting system LH2.16

The Drude spectrum is defined by

J(ω) = 2λ
ωγ

ω2 + γ2 , (28)

where γ is the cutoff frequency and the reorganization energy
λ is defined such that

λ =
1
π

 ∞

0
dω

J(ω)
ω

. (29)

As is commonly assumed, we take the spectral densities
for each of the independent baths to be equivalent and,
unless otherwise specified, fix the reorganization energy at λ
= 200 cm−1 and the cutoff frequency to γ = 53 cm−1 (10 ps−1).
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A. Emission spectra

Before presenting the MCFT rates, we will first focus on
the far-field spectra. The absorption and emission spectra
can be computed by combining the knowledge of the
corresponding operators defined above in Eqs. (8) and (9)
with the respective transition dipole moment vectors of the
chromophores (µ⃗) by

IA
i (ω) =

 ∞

−∞
dt e+iωt


n,m

�
ε⃗i · µ⃗A

m

� �
ε⃗i · µ⃗A

n

�
IA
mn(t), (30)

ED
i (ω) =

 ∞

−∞
dt e−iωt


n,m

�
ε⃗i · µ⃗D

m

� �
ε⃗i · µ⃗D

n

�
ED
mn(t), (31)

where ε⃗i is a unit vector characterizing the polarization of the
incident radiation field that projects onto the dipole moment
vector of each chromophore. As noted above, the path integral
evaluation of the emission spectrum contains the absorption
spectrum as a limiting case, and hence we will focus only on
the former here.

As a preliminary benchmark calculation to prove the
efficacy of the path integral approach, Fig. 2 displays the
stochastic path integral results for the emission spectrum in
the unbiased two level system that was explored in Papers I
and II. The system Hamiltonian Hs = Vσx with V = 200 cm−1

leads to highly delocalized exciton states and thus serves
as an interesting test case to assess the validity of the
MCFT formalism as well as that of approximate perturbative
approaches. For simplicity, the dipole moment operators have
been chosen to be equivalent for each site and in each direction
such that µ⃗m = 1 in Eqs. (30) and (31). Because of this
choice, the spectra are determined from the simple sum of
all of the elements of the emission operator (cf. Eq. (31)).
In Fig. 2, the path integral results at 200 and 300 K are
compared with the corresponding results from the standard
HEOM approach shown with increasing number of Matsubara
terms. The HEOM results are seen to eventually converge to
the path integral results, although even for this relatively
simple two level system, the hierarchy results are difficult to
converge and require both a large number of hierarchy tiers
as well as several Matsubara terms. At the lowest temperature

of T = 100 K shown in Fig. 2, the standard hierarchy
calculations cannot be converged with respect to the number
of Matsubara terms, and the sHEOM approach must be used
to generate the numerically exact results.23,24 Note that at each
temperature, the hierarchy results and present path integral
results are in precise agreement. However, compared with
the hierarchy calculations, the stochastic approach developed
here is more straightforward both in terms of implementation
and convergence. Additionally, since the stochastic formalism
is a Monte Carlo method, it is trivially parallelized and
free from the memory demands that plague other density
matrix approaches such as the HEOM or QUAPI. In the case
that further improvements to the computational efficiency of
the emission path integral are necessary, a very useful and
accurate approximation can be employed which is discussed
in Appendix B.

As is readily seen, the spectra in Fig. 2(a) are comprised of
two peaks centered around the eigenstates of the total system
Hamiltonian. While the intensity of the peak at positive
frequencies is nearly independent of temperature, that of the
low energy peak steadily decreases and vanishes at the lowest
temperature shown of T = 100 K. This is in stark contrast
to the behavior expected from an isolated two level system
where the emission spectrum can be computed analytically as

E(ω) =
2

i=1

Pi

(
1 +

V
ϵ i

)
δ(ω − ϵ i), (32)

with the eigenstate energies, ϵ1,2 = ±
√

V 2 + ∆2, V is the
electronic coupling, ∆ is the bias, and the eigenstate
population, Pi = e−βϵi/Z . As seen from Eq. (32), the spectra
are composed of two peaks centered at the eigenfrequencies of
the system with intensities that are weighted by the respective
Boltzmann populations of the two states. At low temperature,
the population localizes in the ground state, and the spectrum
shifts to the red. In Fig. 2, the opposite occurs and a blue shift
is clearly seen with decreasing temperature. This behavior is
a result of the strong system bath coupling. To demonstrate
this effect more clearly, Fig. 2(b) displays the reorganization
energy dependence of the emission spectra at the lowest

FIG. 2. (a) The emission spectrum at T = 100, 200, and 300 K in a model two level system comparing the present stochastic path integral calculations with the
corresponding HEOM results with 0 (red) and 2 (blue) Matsubara terms. The number of hierarchy tiers required for convergence in each case is 12. The bath is
defined by the reorganization energy λ= 200 cm−1 and cutoff frequency γ = 53 cm−1. For clarity, the results at T = 200 and 300 K are vertically offset by 0.0075
and 0.015, respectively. At T = 100 K, we cannot converge the standard HEOM and only the stochastic HEOM (green) formalism can produce reliable results.
(b) The reorganization energy dependence of the emission spectrum at T = 100 K. The remaining parameters are the same as in (a).
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temperature shown in Fig. 2(a) of T = 100 K. Only at very
weak coupling, does the spectra resemble that expected for the
isolated system from Eq. (32), with the emission dominated
by the low energy eigenstate of the system. However, as the
coupling increases in Fig. 2(b), the weighting of the two peaks
is redistributed towards the higher lying eigenstate resulting
in a steady shift to the blue. As discussed in Papers I and II,
the equilibrium state of the total system and bath cannot be
written in a factorized form as in Eq. (32), particularly when
the temperature is low and the system-bath coupling large, as is
the case here. This is the key feature that is responsible for the
drastic failure of standard perturbative approximations to the
emission spectra as well as the counterintuitive temperature
dependence seen in Fig. 2(a).

B. MCFT rates

We next consider the multi-chromophoric energy transfer,
where both the donor and acceptor complexes are comprised
of the symmetric two level system analyzed in Fig. 2. That
is, each complex is described by the system Hamiltonian,
Hs = Vσx, and the donor-acceptor couplings (Eq. (2)) are set
to the constant value, JDA

nm = 10 cm−1. This weak coupling
ensures that the perturbative MCFT formalism is valid and
is also characteristic of many natural systems.5 The energy
transfer rates computed as a function of the system-bath
coupling strength are displayed in Fig. 3(a). Although not
shown, the rates from the HEOM formalism are in precise
agreement with the present path integral results in the region
where the former can be converged (up to λ = 600 cm−1).
As the transfer occurs between two symmetric systems, the
transfer rates are monotonically decreasing functions of the
system-bath coupling strength as would be expected from a
simple analysis based on the standard Förster theory.

Also included in Fig. 3(a) is a comparison of the exact
energy transfer rates with many of the commonly used
perturbative methods. The TC2 is the standard second order,
time-convolution master equation previously explored.13 As
it is based upon the approximation of weak system-bath
coupling, its validity is rather limited and is generally
inapplicable to many interesting physical systems, such as

light-harvesting complexes, where the system-environment
couplings cannot be considered as small. The full cumulant
expansion (FCE) explored in Paper I and Ref. 7 provides
reliable results over a much larger region of the parameter
space as compared with the TC2, although it too begins
to break down at very large system-bath couplings and
eventually produces unphysical negative rates. The failure
of both the TC2 and the FCE lies in their inaccurate
treatment of the correlated initial state. Clearly, a perturbative
expansion around a factorized initial state is qualitatively
incorrect at large-system bath coupling. In order to overcome
this difficulty, Paper II explored an expansion around the
numerically exact equilibrium reduced density matrix, which
can be straightforwardly obtained through imaginary time path
integral techniques.8 As seen in Fig. 3(a), this HCE technique
provides a uniformly reliable approximation to the energy
transfer rate, even at very strong system bath couplings.

Fig. 3(b) displays the temperature dependence of the
MCFT rates. Qualitatively, the results follow the predictions
of Marcus theory displaying a maximum as a function of
temperature. However, the Marcus rate formula predicts a
maximum at 2λ/kB ≈ 600 K which is considerably lower
than that observed from the exact calculations. Additionally,
Marcus theory predicts that the energy transfer rate should
vanish as the temperature decreases to zero. This is clearly not
borne out in the exact results as the MCFT rates decrease to a
finite value at low temperature due to non-vanishing quantum
fluctuations. As with the system-bath coupling dependence,
the approximate perturbative results are also included. It is
seen that below room temperature, the accuracy of the FCE
quickly degrades and eventually produces negative energy
transfer rates. The results from the TC2 method are outside
the scale of the graph at all temperatures, which is not entirely
unexpected as the system-bath coupling strength here is of
comparable magnitude to all the other system parameters.
However, the hybrid method provides reliable results across
the entire parameter range and also captures the plateau
in the rates at low temperature. In a forthcoming work, it
is demonstrated that the HCE is capable of capturing the
temperature and system-bath coupling dependence of the
energy transfer rates between two LH2 complexes while

FIG. 3. (a) Energy transfer rates between two symmetric two level systems as a function of the reorganization energy. The cutoff frequency is γ = 53 cm−1 and
the temperature is T = 300 K. The black dots, green lines, red triangles, and blue squares denote the results from the present stochastic path integral approach,
the TC2 master equation,13 the FCE,5,7 and the HCE,6 respectively. (b) The energy transfer rates as a function of the temperature. The reorganization energy is
λ= 200 cm−1 and the cutoff frequency is γ = 53 cm−1. The results from the TC2 approach lie outside the scale of the graph for all temperatures shown.
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the failure of the TC2 and FCE is even more dramatic than
seen here.16

IV. CONCLUSIONS

A stochastic path integral approach to compute the energy
transfer rates between weakly coupled multi-chromophoric
complexes has been presented. As a consequence of the
MCFT formalism, one also has immediate access to the exact
steady-state far-field absorption and emission spectra of the
respective donor and acceptor complexes. The calculations
of the absorption and emission operators require only the
straightforward numerical solution of a stochastic differential
equation, and the only difficulty lies in the convergence of the
Monte Carlo average. As opposed to many other numerically
exact approaches, the method developed here is amenable to
any form of the spectral density and can readily treat the low
temperature and strong coupling regimes. To our knowledge,
the present path integral approach is the only method currently
available that can accommodate such a broad range of system
parameters in relatively large excitonic systems.

The numerical results presented here provide a systematic
analysis of the role of the temperature and system-bath
coupling strength on the emission spectra and energy transfer
rates in model multi-chromophoric systems. As seen in
Fig. 3, the exact MCFT rates serve as a stringent benchmark
for approximate analytic methods. Whereas the standard
perturbative approaches often yield qualitatively incorrect
results, the HCE technique developed in Paper II6 can provide
uniformly reliable results for the energy transfer rates across
a large range of the physically accessible parameter space.

Note added in proof. Computer codes for stochastic
simulations of absorption spectra, emission spectra, and

Forster rates are available for download at http://web.mit.
edu/jianshucaogroup/resources.html.
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APPENDIX A: NOISE SAMPLING

Sampling the complex noise required for the absorption
and emission operators is not completely trivial. The main
difficulty is that the bath correlation function must be
reproduced by ⟨ξ(t)ξ(t ′)⟩ rather than the Hermitian form
⟨ξ∗(t)ξ(t ′)⟩. To proceed, the correlation function can be split
into its real and imaginary components,

C(t) = Cr(t) + iCi(t), (A1)
and the influence functional rewritten as

F[σ] = exp

− 1

2~

 t

0
dt ′

 t

0
dt ′′V (σ(t ′))V (σ(t ′′))

× [Cr(t ′ − t ′′) + iCi(|t ′ − t ′′|)]

. (A2)

Hubbard-Stratonovich transformations are then applied to
each term separately, leading to

F[σ] =

D[ζ] wζ exp


− 1

2~

 t

0
dt ′

 t

0
dt ′′ζ(t ′)C−1

r (t ′ − t ′′)ζ(t ′′) + i
~

 t

0
dt ′V (σ(t ′))ζ(t ′)



×

D[ν] wν exp


− 1

2~

 t

0
dt ′

 t

0
dt ′′ν(t ′)C−1

i (|t ′ − t ′′|)ν(t ′′) + 1 − i
√

2~

 t

0
dt ′V (σ(t ′))ν(t ′)


, (A3)

where wζ and wν denote the respective normalization
constants. Thus, the noise characteristics are

⟨ζ(t)⟩ = 0, ⟨ν(t)⟩ = 0,
⟨ζ(t)ζ(t ′)⟩ = Cr(t − t ′), ⟨ν(t)ν(t ′)⟩ = Ci(|t − t ′|), (A4)

and the autocorrelation function of the combined process,
ξ(t) = ζ(t) + √iν(t), is readily seen to reproduce the desired
bath correlation function, C(t).

Numerically sampling the real noise governed by the
correlation, Cr(t), is straightforward since this kernel is
strictly positive semi-definite. Sampling such noise has been
discussed in detail in our previous works.8,23 One simply
filters white noise with a kernel computed from the Cholesky
decomposition of the Toeplitz matrix constructed from Cr(t).

Sampling the noise for the imaginary part of the
correlation function is less straightforward. The kernel, Ci(t),
is not positive definite since Ci(0) = 0, so that the Cholesky
decomposition approach is not applicable. To cope with
this, we have employed the approach suggested in Refs. 21
and 25. First, an eigen decomposition of the correlation
matrix, Ci,nm = Ci(|tn − tm|), is performed, and the diagonal
eigenvalue matrix is sorted into a non-negative (Λ+) matrix
and the remainder (Λ−), which are both of the same dimension
as Ci, such that

Ci = U
�
Λ+ + Λ−

�
UT . (A5)

The positive components are sampled in the usual fashion by
filtering the appropriate kernel with white noise, while the
negative components are sampled by taking the absolute value
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of the negative eigenvalues followed by a rotation with the
complex unit. The desired noise sequence is then given by

ν⃗ = UT
�
Λ+

�1/2
+ i |Λ−|1/2


Ω⃗, (A6)

where Ω⃗ represents a realization of independent white noise
terms. Using the properties of white noise, it is readily seen that
the autocorrelation of ν(t) faithfully reproduces the desired
imaginary part of the bath correlation function.

APPENDIX B: APPROXIMATE EMISSION

A very accurate approximation to the emission operator
can be made by simply ignoring the imaginary part of the
bath correlation function in Eq. (22). This simplification
generally reduces the number of Monte Carlo samples
required to converge the stochastic path integral by at
least an order of magnitude. For the purely real-time
dynamics of the absorption operator, ignoring Ci(t) leads
to an extended Haken-Strobl model which rarely provides
satisfactory results. However, for the emission operator, the
real-time and imaginary-time dynamics are intertwined so that
the analysis is more subtle. In this case, there are still non-
unitary contributions to the dynamics even if the Hamiltonian
is purely real due to the complex-time evolution. To better
understand this seemingly drastic approximation, it is useful
to analyze the complex-time bath correlation function. It is
readily seen that the bath correlation function evaluated along
the imaginary time axis to z = −i~β is a purely real quantity for
any spectral density. This case corresponds to the equilibrium

FIG. 4. The exact two-level system emission spectra reproduced from Fig. 2
(solid black) compared with the approximate emission spectra (dashed red)
computed by ignoring the imaginary part of the bath correlation function. The
parameters are identical to those in Fig. 2.

reduced density matrix which is a purely real quantity if
the Hamiltonian is real. Thus for small real times, during
which time the emission operator has often substantially
decayed, the imaginary part of the correlation function is also
negligibly small. This approximation is particularly accurate
in the high temperature limit where the increasingly broad
emission spectra are a result of the increasingly rapid decay
of the emission operator. In summary, in the short-time limit,
ignoring Ci(z) is a reasonable approximation. In Fig. 4, the
exact results for the emission spectrum of the two level system
are reproduced from Fig. 2 along with the corresponding
results from the approximation scheme discussed here where
the imaginary part of the complex-time bath correlation
function has been set to zero. Only at the lowest temperature
of T = 100 K are there any significant differences between the
exact and approximate emission spectra. In fact, comparison
with Fig. 2 indicates that even at T = 300 K, the approximate
emission spectrum is more accurate than the HEOM results
computed without including Matsubara terms.
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