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In the spin-boson model, a continued fraction form is proposed to systematically resum high-order
quantum kinetic expansion (QKE) rate kernels, accounting for the bath relaxation effect beyond
the second-order perturbation. In particular, the analytical expression of the sixth-order QKE rate
kernel is derived for resummation. With higher-order correction terms systematically extracted from
higher-order rate kernels, the resummed quantum kinetic expansion approach in the continued
fraction form extends the Pade approximation and can fully recover the exact quantum dynamics
as the expansion order increases. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913198]

I. INTRODUCTION

In a quantum dynamic process, the interaction between
the system and bath leads to irreversible energy relaxation
and decoherence of the quantum system. The resulting
quantum dissipation can lead to rich quantum phenomena,
e.g., quantum phase transition.1 The spin-boson (Caldeira-
Leggett) model is a simple but fundamental quantum system,
which can be used to interpret the quantum tunneling and
localization in macroscopic systems.2,3 Gate operations in
quantum computation and quantum information are simulated
by quantum dissipative dynamics of multiple spin-boson
models, where each qubit is equivalent to an individual spin.4

In the study of quantum transport, a fundamental question is to
understand the transport process from a donor to an acceptor
in the two-site system.5 In the lowest order, the transfer rate
is estimated using Fermi’s golden rule (FGR), proportional
to the square of the site-site coupling strength. This second-
order transfer rate is expressed as the Forster theory in energy
transfer6 and as the Marcus theory in electron transfer.7

The non-Markovian relaxation of the surrounding bath can
significantly slow down the transfer process compared to the
second-order prediction.8–17 On the other hand, the transfer
rate can be optimized at an intermediate dissipation strength
in a biased two-site system, which can be further related to
the energy transfer optimization in multi-site systems.18–24

Within the single excitation manifold, the two-site system
can be viewed as an extension of the spin-boson model, with
possible variations in the boson bath and the bath spatial
correlation.16,25

As a simple quantum model, the spin-boson model (or
the equivalent two-site system) is a benchmark system for
the study of quantum dynamic methodologies. In addition
to the sophisticated Feynman-Vernon influence functional,26

a straightforward approach of quantum dissipation is to
apply the Nakajima-Zwanzig projection operator.27,28 In the

a)Electronic address: jianlanwu@zju.edu.cn

lowest second order, we obtain various approximate dynamic
equations from different perturbed terms, e.g., the Redfield
equation from the system-bath interaction,29 and the FGR rate
from the site-site coupling. The noninteracting-blip approx-
imation (NIBA) extends the FGR rate to a time-nonlocal
description of the detailed time evolution.3 To improve the
NIBA prediction, the variational polaron method is a modified
second-order perturbation where the perturbed term is self-
consistently determined from equilibrium distribution.30,31

The variational polaron method is more reliable in the unbiased
two-site system with a relatively fast bath. A more systematic
approach beyond the second-order perturbation is to include
higher-order corrections of perturbed terms, as in the quantum
kinetic expansion (QKE) approach.12–17 In our recent paper,16

the higher-order QKE of the site-site coupling is obtained
using an indirect projection operator technique for a general
multi-site system. In the two-site system, all the higher-order
QKE corrections arise from the bath relaxation effect, whereas
in the multi-site system, the higher-order QKE corrections also
include quantum interference effects.

A key theoretical concern in the QKE approach is the
resummation technique of higher-order rate kernels, due to
two essential reasons. The analytical and numerical difficulties
quickly increase as the expansion order increases. More cru-
cially, the QKE rate kernels can converge slowly and become
divergent as the site-site coupling increases. An appropriate
resummation technique can partially include corrections of
all the orders using one or a few higher-order QKE rate
kernels, and avoid the divergence of large site-site couplings.
For the lowest-order correction, two typical resummation
techniques are the Pade approximation12,13 and the Landau-
Zener approximation.32 With a factor of 2 difference, the
Landau-Zener approximation is not reliable in the strong
dissipation limit, compared to the Pade approximation. In a
recent paper,33 a modified resummation approach is proposed
with an optimization according to the equilibrium distribution.
However, any resummation techniques in the lowest order
cannot fully account for the extra knowledge of higher-order

0021-9606/2015/142(8)/084103/9/$30.00 142, 084103-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

18.74.5.180 On: Wed, 08 Apr 2015 21:58:14

http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://dx.doi.org/10.1063/1.4913198
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4913198&domain=pdf&date_stamp=2015-02-24


084103-2 Gong et al. J. Chem. Phys. 142, 084103 (2015)

QKE rate kernels, and its prediction deviates significantly from
the exact quantum dynamics at some point.

Therefore, a more general resummation technique is
required to systematically include corrections from higher-
order rate kernels. In Ref. 34, a generalized Pade approxima-
tion is developed, which is complicated in its mathematical
formulation and practical application. Instead, we will extend
the physical factorization scheme in the Pade approximation
to the higher-order QKE rate kernels and obtain a simple
continued fraction form, which leads to a systematic resummed
quantum kinetic expansion (RQKE) method. In Sec. II, the
derivation of the QKE approach in the two-site system (the
spin-boson model) is briefly reviewed. The time-integrated
QKE rates of the first three orders are numerically computed
in a quantum Debye bath. In Sec. III, the continued fraction
resummation form is developed, and the RQKE rates are
numerically compared with the exact results of both unbiased
and biased systems. In this paper, all the exact quantities
are obtained using the hierarchy equation method.35–38 In
Sec. IV, the RQKE rate kernels are used to predict the detailed
population evolution and are calibrated with the exact result.
In Sec. V, the temperature-dependent equilibrium population
is calculated using the RQKE rates, which is also compared
with the exact stochastic path integral result.39,40 In Sec. VI,
we summarize our studies.

II. QUANTUM KINETIC EXPANSION
IN A TWO-SITE SYSTEM

In this section, we briefly review the QKE approach
in Ref. 16. With respect to the single excitation manifold,
the bare Hamiltonian of a multi-site system is given by HS
=


n εn |n⟩ ⟨n| +

n,m Jmn|m⟩ ⟨n|, where |n⟩ represents a
single-excitation quantum state localized at site n, εn is the
excitation energy of site n, and Jmn is the site-site coupling
strength between sites m and n. The bare Hamiltonian of
the surrounding environment is given by HB. The system-
bath interaction HSB is considered to be localized at each site
n, HSB =


n HSB;n |n⟩ ⟨n|, where HSB;n is not necessarily the

linear bath operator. In the site basis representation {|n⟩}, the
total Hamiltonian is written as

Htot =

n

Hn |n⟩ ⟨n| +


nm(n,m)
Jmn|m⟩ ⟨n|, (1)

with Hn = εn + HB + HSB;n. Here, the simplest two-site sys-
tem coupled with a harmonic bath can be mapped to the
standard spin-boson model. The time evolution of the total
density matrix ρtot(t) follows the Liouville equation, ∂t ρtot(t)
= −iLtotρtot(t), with Ltot = [Htot, . . .]. Throughout this paper,
the reduced Planck constant ~ is treated as a unit. Following
the separation of population and coherence components, the
total Liouville superoperator is formally expressed as a block
matrix

Ltot = *
,

LP LPC

LCP LC

+
-
, (2)

where the subscripts P and C denote system population and
coherence, respectively. In the two-site system, the diagonal

part of Ltot is fully dependent on the diagonal Hamiltonian
elements Hn, while the off-diagonal part ofLtot arises from the
site-site coupling J. Subsequently, we define the partial time
propagation superoperators, UP(t) = exp(−iLPt) and UC(t)
= exp(−iLCt), which can be interpreted as Green’s functions
in the Liouville space.

An indirect projection operator approach is applied
in Ref. 16 to derive the closed time evolution equa-
tion of the reduced system population P(t). The initial
condition is required to be a local equilibrium state ρtot(0)
=


n pnρ

eq
B;n|n⟩ ⟨n|, where pn is the initial population of site

n, and ρ
eq
B;n ∝ exp(−βHn) is the local Boltzmann density of

bath. The final time evolution equation of the N × 1 system
population vector P(t) follows a time-nonlocal convolution
form

Ṗ(t) = −
 t

0
dτK (t − τ)P(τ). (3)

The N × N rate kernel matrix K is derived as an expansion
form of the site-site coupling J, given by K = K (2) +K (3)
+ · · · . In the two-site system, all the odd-order terms vanish,
and only the even-order terms remain. Here, we introduce a
local equilibrium population state matrix

ρ
(0)
eq =

*
,

ρ
eq
B;1 0
0 ρ

eq
B;2

+
-
, (4)

and its projection matrix P(0)
eq = ρ

(0)
eq }TrB{, where TrB{· · · } is

the partial trace over bath degrees of freedom. The 2kth 2 × 2
QKE rate kernel matrix is explicitly given by

K (2k)(τ2, τ3, . . . , τ2k)
= −(−1)kTrB{[R(τ2k)δUP(τ2k−1)]
[R(τ2k−2)δUP(τ2k−3)] · · · R(τ2)ρ(0)eq }, (5)

where δUP(t) = UP(t) − P(0)
eq is the pure dissipative propa-

gation superoperator, vanishing in Markovian dynamics, and
R(t) = LPCUC(t)LCP is the population-to-population transi-
tion superoperator. Thus, high-order (k ≥ 2) QKE rate kernels
reflect dynamics of population fluctuation around the local
equilibrium state due to the bath relaxation effect of δUP(t).
Equation (5) is equivalent to the previous expression of Eq.
(15) in Ref. 16, but in a more concise form. The Feynman
diagram technique is applied to visualize these quantum rate
kernels in Fig. 1, which is also simplified in notation compared
to previous diagrams in Ref. 16. In detail, each initial and
final numbered circle represents a local equilibrium popu-
lation state, ρ

eq
B;n |n⟩ ⟨n|, at the corresponding site n(= 1, 2).

Each intermediate dashed circle represents the dissipative
propagation [δUP(t)]n of a system-bath entangled population
state, ρP;n(t) = [ρtot(t)]nn. Unlike the notation in Ref. 16, each
arrowed line represents a population-to-population transition
[R(t)]mn, as a density flow from population to coherence and
back to population, [R(t)]mn = |Jmn|2[UC;mn(t) +UC;nm(t)].

The formal expression of K (2k)(τ2, τ3, . . . , τ2k) in Eq. (5)
is derived for an arbitrary environment, beyond the spin-boson
model. Next, we assume that the bath is harmonic and HSB
follows a bilinear form. With the creation (a+i ) and annihilation
(ai) operators for the ith harmonic oscillator, the bath-coupled

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

18.74.5.180 On: Wed, 08 Apr 2015 21:58:14



084103-3 Gong et al. J. Chem. Phys. 142, 084103 (2015)

FIG. 1. The Feynman diagrams of the second- (a), fourth- (b), and sixth-order
(c) quantum rate kernels in the two-site system (the spin-boson model). The
explicit interpretation of each symbol is provided in text.

Hamiltonian at local site n reads

Hn = εn +

i

ωia+i ai +

i

ωixni

�
a+i + ai

�
, (6)

where the coefficient xni denotes the system-bath coupling
strength reduced by the frequency ωi of the ith harmonic
oscillator. The QKE rate kernels in Eq. (5) are transformed into
the time correlation functions of the displacement operator, Gn

= exp
�

i xni(a+i − ai)�, which can be obtained by the cumu-
lant expansion. If the bath coupling is identical at each system
site, the explicit expression of the second-order rate kernel
reads

K (2)
mn(,m)(τ2) = −2|Jmn|2Re exp{−[iε̃mnτ2 + smng(τ2)]}, (7)

where ε̃nm = ε̃n − ε̃m is the modified site excitation energy
detuning with ε̃n = εn −


iωix2

ni, and the coefficient smn

arises from the site-site “spatial” correlation. For the standard
spin-boson model, a perfectly negative correlation leads to
smn(,m) = 4, while for the regular energy transfer system, a
δ-spatial correlation leads to smn(,m) = 2. Thus, the two-site
system under the δ-spatial correlation is equivalent to the spin-
boson model with a doubled dissipation strength (reorganiza-
tion energy). The time correlation function of the displacement
operator excluding the spatial dependence is

g(t) =
 ∞

0
dω[J(ω)/ω2][(1 − cosωt) coth(βω/2) + i sinωt],

(8)

where J(ω) = 
iω

2
i x2

iδ(ω − ωi) is the bath spectral density.
Equation (7) is the same as the rate kernel in the NIBA
approach,3 and its time integration recovers the FGR rate.
In Ref. 16, the fourth-order QKE rate kernel is derived for
a general multi-site system. The simplified expression of
K (4)(τ2, τ3, τ4) for the two-site system with the δ-spatial corre-
lation is provided in the Appendix. Furthermore, we extend to
the sixth-order QKE rate kernel, and the explicit expression of
16 terms is also shown in the Appendix.

Before investigating the resummation technique in Sec. III,
we numerically calculate the quantum rate kernels of the first
three orders. Both unbiased and biased two-site systems are
considered with ε12 = 0 and 100 cm−1. To be compared with

the calculation of the hierarchy equation,35–38 a quantum bath
with the Debye spectral density is applied, given by

J(ω) = Θ(ω)
(

2λ
π

)
ωωD

ω2 + ω2
D

, (9)

where Θ(ω) is the Heaviside step function of ω, λ is the reor-
ganization energy, and ωD is the Debye frequency. To reduce
the numerical cost of the hierarchy equation, we introduce the
high-temperature approximation, leading to

g(t) ≈ 2λ
βωD


|t | − 1 − e−ωD |t |

ωD


+ iSign(t)λ1 − e−ωD |t |

ωD
, (10)

where Sign(t) is the sign function of t. In our calculation,
the Debye frequency is ω−1

D = 100 fs, and the temperature
is T = 300 K. We focus on the time-integration of rate ker-
nels, K (2k) =

 ∞
0 dτ2 · · ·

 ∞
0 dτ2kK (2k)(τ2, . . . , τ2k), which can

be viewed as the time-integrated effective rate matrix, espe-
cially for over-damped dynamics. Since the 2kth rate kernel
is proportional to the 2kth power of the site-site coupling J,
we normalize effective rates to remove the J-dependence. The
normalization is over the maximum valueK (2k)

max for the biased
system and over the value of the minimum reorganization
energy (λ = 1 cm−1) for the unbiased system. Due to the heavy
computational duty in a multi-time integration, the Monte
Carlo simulation of 1012 samples is applied to the calculation of
K (6) for convergence. Figure 2 presents the numerical results
of the forward transfer rate expansions k (2k)

A←D
from the donor

site 1 to the acceptor site 2, which will be used for the resum-
mation technique in Sec. III. We find that k (2k)

A←D
monotonically

decreases with the reorganization energy λ in the unbiased
system, whereas k (2k)

A←D
is maximized in an intermediate value

of λ in the biased system.

III. RESUMMATION OF QKE RATE KERNELS
IN A CONTINUED FRACTION FORM

In Sec. II, we present the explicit expansion forms of rate
kernels in the two-site system (the spin-boson model) using the
QKE approach. For a small site-site coupling strength, the full
quantum kinetic rate kernel can be obtained straightforwardly
as the sum of K (2k) up to a converged expansion order. For
a large site-site coupling strength which is no longer a small
perturbation term, this simple summation cannot be applied
sinceK (2k) diverges as the expansion order increases. Instead,
a resummation technique is required for a converged result,
with one or more high-order corrections of K (2k) (k ≥ 2).
For the leading-order QKE correctionK (4), various resumma-
tion methods, e.g., the Pade approximation12 and the Landau-
Zener approximation,32 have been well discussed previously.
Although these approximations can significantly improve the
second-order prediction of the NIBA approach,12–17 a system-
atic resummation approach is still required to include higher-
order corrections and recover the exact quantum dynamics.

We revisit the Pade approximation in Ref. 12 to show its
physical interpretation, which will used for a generalized re-
summation technique. As mentioned in Sec. II, the pure dissi-
pation of population, δUP(t), vanishes in Markovian dynamics.
For a fast relaxing bath with a weak non-Markovian feature, or
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FIG. 2. The normalized time-
integrated forward transfer rate expan-
sions of the first three orders (a) in
the unbiased system with ε12= 0
and (b) in the biased system with
ε12= 100 cm−1. The Debye frequency
of the coupled bath is ω−1

D = 100 fs,
and the temperature is T = 300 K.
The normalization is realized by (a)
k
(2k )
A←D

(λ)/k (2k )
A←D

(λ= 1 cm−1) and (b)

k
(2k )
A←D

(λ)/k (2k )
A←D;max. In each figure,

the dotted black line is the second-order
result k

(2)
A←D

, the dashed blue line is

the fourth-order result k (4)
A←D

, and the
solid red lines is the sixth-order result
k
(6)
A←D

.

alternatively in the strong dissipation regime where the system
transport is slow but Markovian, an approximate time separa-
tion can be expected in the high-order QKE rate kernels. For
the leading-order correctionK (4)(τ2, τ3, τ4), this approximation
is realized mathematically by inserting a reduced population
projection PP before the action of δUP(τ3).12 In the reduced
population subspace, PP is explicitly written as

PP = *
,

ρ
eq
B }TrB{ 0

0 ρ
eq
B }TrB{

+
-
, (11)

where ρ
eq
B ∝ exp(−βHB) is the bare bath equilibrium distribu-

tion. Equation (11) results in two identities, PPP(0)
eq = PP and

P(0)
eq PP = P(0)

eq . As a result, the fourth-order QKE rate kernel is
factorized into

K (4)(τ2, τ3, τ4) ≈ Ξ(2)(τ3, τ4)K (2)(τ2), (12)

with Ξ(2)(τ3, τ4) = −TrB{R(τ4)δUP(τ3)PP}. The matrix factor-
ization can be applied to all the higher-order corrections, giving

K (2k)(τ2, . . . τ2k)
≈ Ξ(2)(τ2k−1, τ2k) · · ·Ξ(2)(τ3, τ4)K (2)(τ2). (13)

Figure 3 presents the Feynman diagrams of K (4)(τ2, τ3, τ4)
and K (6)(τ2, . . . τ6) after the matrix factorization. We intro-
duce the Laplace z-transform, F̃ (2k)(z) =  ∞

0 dτ2 · · ·
 ∞

0 dτ2k
e−iz(τ2+· · ·+τ2k)F (2k)(τ2, . . . τ2k) for an arbitrary multi-time
function F (2k)(τ2, . . . τ2k). In the Laplace z-space, Eq. (13)
is transformed into K̃ (2k)(z) ≈ [Ξ̃(2)(z)]k−1K̃ (2)(z), and the
resummation using the correction term Ξ̃(2)(z) becomes12

K̃ (4)
resum(z) =


I − Ξ̃(2)(z)−1

K̃ (2)(z), (14)

where I is an identity matrix. By expanding Eq. (14) in the
2 × 2 matrix form, we recover the regular Pade approximation
for both forward (k̃ (4)

resum;A←D
(z)) and backward (k̃ (4)

resum;D← A
(z))

transfer rate kernels.
Next, we can extend to higher-order corrections with a

generalized factorization technique. Following the definition
of Ξ(2)(τ3, τ4) to higher-orders, we introduce another expansion
series

Ξ
(2k)(τ3, . . . , τ2k)
= (−1)kTrB{[R(τ2k)δUP(τ2k−1)] · · · [R(τ4)δUP(τ3)]PP}.

(15)

For the sixth-order QKE rate kernel, a more accurate matrix
factorization is changed to K (6)(τ2, . . . , τ6) ≈ Ξ(4)(τ3, . . . , τ6)
K (2)(τ2). Similar to the cumulant expansion, the “real” fourth-
order correction Ξ(4) needs to exclude the contribution of Ξ(2),

δΞ(4)(τ3, . . . , τ6)
= Ξ(4)(τ3, . . . , τ6) − Ξ(2)(τ5, τ6)Ξ(2)(τ3, τ4). (16)

All the other higher-order QKE rate kernels are subsequently
factorized using Ξ(2) and δΞ(4). For conciseness, we introduce
the difference of δΞ(4) relative to Ξ(2), which is determined in
the Laplace z-space as

δΞ̃(4)(z) = ∆̃4(z)Ξ̃(2)(z). (17)

Here, expansion index 4 is assigned as a subscript since ∆̃4(z) is
in the same J-expansion order as ∆̃2(z) = Ξ̃(2)(z). The approxi-
mate full quantum rate kernel resummed from ∆̃2(z) and ∆̃4(z)
is derived in a continued fraction form

K̃ (6)
resum(z) =


I −

�
I − ∆̃4(z)�−1

∆̃2(z)
−1
K̃ (2)(z). (18)

The above factorization scheme can be straightforwardly to
an arbitrary expansion order, which determines the general
correction term, δΞ̃(2k)(z) = ∆̃2k−2(z) · · · ∆̃2(z), and gives rise
to the general matrix continued fraction form.

FIG. 3. The Feynman diagrams of the fourth- (a) and sixth-order (b) quantum
rate kernels in the two-site system (the spin-boson model) under the Pade ap-
proximation. The matrix factorization is realized by inserting vertical dashed
lines. The other symbols are the same as those in Fig. 1.
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FIG. 4. The RQKE forward transfer
rate from the continued fraction form
compared with its exact value from the
hierarchy equation in the unbiased sys-
tem with (a) J = 40 cm−1, and (b) J
= 100 cm−1. In each figure, the black
dotted line is the second-order Forster
rate, the blue dashed line is the lowest
fourth-order RQKE rate (the Pade ap-
proximation), the red solid line is the
next sixth-order RQKE rate, and the
green circles are the exact result. The
parameters of ωD and T are the same
as in Fig. 2.

The separation of higher-order QKE rate kernels de-
picted in Fig. 3 requires modifications when the non-
Markovian dynamics is not weak. The dynamic coupl-
ing between Ξ(2k−2)(τ3, . . . , τ2k) and K (2)(τ2) needs to be
include, beyond the matrix factorization, K (2k)(τ2, . . . , τ2k)
≈ Ξ(2k−2)(τ3, . . . , τ2k)K (2)(τ2). However, this difficulty can be
circumvented using the scalar continued fraction form for
each element of the rate kernel. Mathematically, a regular
one-variable analytical function can be re-expressed in the
continued fraction form, by matching its Taylor expansion
series. Thus, we propose the scalar continued fraction resum-
mation form for the forward rate kernel

k̃ (2k)
resum;A←D

(z) = 1

1 + δ̃2;A←D(z)
...

1+δ̃2k−2;A←D(z)

k̃ (2)
A←D

(z), (19)

where the correction terms are matching the QKE forward rate
kernels k̃ (2 j)

A←D
(z) term by term, given by

δ̃2;A←D(z) = −k̃ (4)
A←D

(z)/k̃ (2)
A←D

(z), (20)

δ̃4;A←D(z) = −δ̃2;A←D(z) − k̃ (6)
A←D

(z)/k̃ (4)
A←D

(z), (21)
...

As a result, the resummed forward rate kernel recovers
its QKE, k̃ (2k)

resum;A←D
(z) = k̃ (2)

A←D
(z) + k̃ (4)

A←D
(z) + · · · , as k

increases. The same approach is applied to resum the backward
rate kernel k̃ (2k)

resum;D← A
(z). Equations (19)–(21) provide the

basic construction of the RQKE method. To be consistent, the
expansion order of the RQKE is defined by the power of the
site-site coupling strength in the highest-order QKE rate kernel
considered. Compared to the generalized Pade approximation
in Ref. 34, the continued fraction can also be expanded
into a rational polynomial form, while the correction terms
in the RQKE method are more straightforwardly obtained
without an additional basis expansion. In addition, as the
resummation order 2k increases, all the lower-order correction
terms δ̃2 j(<k−1)(z) are not affected, which makes the continued
fraction form a more systematic approach.

To verify the reliability of the continued fraction form, we
use the results of the first three order effective rate expansions
in Sec. II to obtain the RQKE rates k (2k)

resum = k̃ (2k)
resum(z = 0),

which are compared with the exact full quantum rates kexact
from the hierarchy equation. In Ref. 16, kexact is calculated
under a system-bath factorized initial condition, different from
the presumption of the local equilibrium population state in the
QKE approach. The accurate value of kexact is re-calculated,
following the rigorous expression in Ref. 41. With the same
equilibrium population, the results of kexact under these two
initial conditions are proportional to each other.41 The re-
sults of k (2), k (4)

resum, k (6)
resum, and kexact for the forward trans-

port process form the donor site 1 to the acceptor site 2 are
plotted in Figs. 4 and 5. For the unbiased system (ε12 = 0),
two site-site coupling strengths, J = 40 and 100 cm−1 are
considered; for the biased system (ε12 = 100 cm−1), two site-
site coupling strengths, J = 20 and 100 cm−1 are considered.

FIG. 5. The RQKE forward transfer
rate from the continued fraction form
compared with its exact value from the
hierarchy equation in the biased system,
ε12= 100 cm−1, with (a) J = 20 cm−1,
and (b) J = 100 cm−1. In each figure,
the black dotted line is the second-order
Forster rate, the blue dashed line is
the lowest fourth-order RQKE rate (the
Pade approximation), the red solid line
is the next sixth-order RQKE rate, and
the green circles are the exact result.
The parameters of ωD and T are the
same as in Fig. 2.
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For the two small site-site coupling strengths, J = 40 cm−1

and ε12 = 0 in Fig. 4(a), and J = 20 cm−1 and ε12 = 100 cm−1

in Fig. 5(a), the QKE rate kernels converge with the expan-
sion order. The lowest fourth-order RQKE rate k (4)

resum;A←D

improves the second-order FGR rate and predicts kexact;A←D

accurately in the whole range of the reorganization energies,
1 cm−1 ≤ λ ≤ 1000 cm−1. For the large coupling strength of
J = 100 cm−1 in Figs. 4(b) and 5(b), the QKE rate kernels
diverge with the expansion order. In the unbiased system,
k (4)

resum;A←D
improves k (2)

A←D
mainly in the large-λ regime. In the

biased system, k (4)
resum;A←D

largely improves k (2)
A←D

, except for
a small deviation in the intermediate-λ regime. In Fig. 5(b) of
Ref. 16, the difference between k (4)

resum;A←D
and kexact;A←D in

the large-λ regime is due to an inconsistent initial condition
in the hierarchy equation. For both cases, the next sixth-order
RQKE rate k (6)

resum;A←D
agrees perfectly with kexact;A←D in the

whole λ regime. Our numerical calculations demonstrate that
the RQKE rate from the continued fraction form can systemat-
ically approach to the exact value, and the number of necessary
correction terms gradually increases with the site-site coupling
strength.

IV. TIME-CONVOLUTED QUANTUM KINETICS

The continued fraction form of the bath relaxation effect
is verified by the convergence of the resummed effective rate
toward the exact value. In this section, we will further demon-
strate the accuracy of the continued fraction in predicting the
detailed time evolution of site population.

All the high-order QKE rate kernels can be derived explic-
itly, using the cumulant expansion for the multi-time correla-
tion function of the displacement operator. The time evolution
of reduced site population P(t) is subsequently solved by the
convoluted equation in the time t-space, or equivalently by the
matrix inversion in the Laplace z-space. The computational

cost of both methods is often very high. For the quantum Debye
bath, we re-express the QKE rate kernels in a matrix formalism
following the construction of the hierarchy equation. In the dy-
namic space of the system reduced density matrix and auxiliary
fields, the general 2kth QKE rate kernel in the Laplace z-space
is derived in Ref. 41 as

K̃
(2k)(z) = −PP[R̃(z)δŨ (0)(z)]k−1

R̃(z)P(0)
eq , (22)

with R̃(z) =W (1)δŨ (0)(z)W (1). Here, each matrix on the
right hand side of Eq. (22) is obtained using the hierarchy
equation and can be mapped to a superoperator in Sec. II.
Specifically, the mapping of two projection matrices is PP

⇔ PP and P(0)
eq ⇔ P

(0)
eq . The two interaction Liouville super-

operators are combined together and mapped to a perturbed
transition rate matrix, {iLPC, iLCP} ⇔W (1). The two unper-
turbed time propagation superoperators are also combined
together and mapped to an unperturbed pure dissipative matrix,
{δŨP(z), ŨC(z)} ⇔ δŨ

(0)(z).
For over-damped quantum dynamics in the two-site sys-

tem, the time evolution of site population is close to a single
exponential decaying function (Markovian behavior), which
can be described by the time-integrated effective rate. To illus-
trate the relevant non-Markovian behavior, we focus on small
and intermediate reorganization energies with under-damped
dynamics. In our two-site system, we choose two typical reor-
ganization energies, λ = 4 and 12 cm−1, for each system condi-
tion (ε12 and J) in Figs. 4 and 5. The exact time evolution
of site population, Pexact;1(t), is solved by the hierarchy equa-
tion using the local equilibrium population state initially at
the donor site 1. Next, we re-calculate the site population
P̃exact;1(z) in the Laplace z-space and obtain a new estimation
of the time evolution, P′exact;1(t) = LT−1[P̃exact;1(z)], using the
inverse Laplace transform, LT−1[· · ·]. The two time evolution
predictions, Pexact;1(t) and P′exact;1(t), are found to be identical,
confirming the reliability of the numerical inverse Laplace
transform. In our model system, Eq. (22) is also numerically

FIG. 6. The time evolution of the donor
population in the unbiased system with
ε12= 0. The same quantum Debye bath
in Fig. 2 is applied. The conditions of
the four figures are (a) J = 20 cm−1

and λ= 4 cm−1, (b) J = 20 cm−1 and
λ= 12 cm−1, (c) J = 100 cm−1 and λ
= 4 cm−1, and (d) J = 100 cm−1 and
λ= 12 cm−1. In each figure, the dashed
line is from the exact dynamics, and the
dashed-dotted line is from the lowest-
order resumed kernel K̃ (4)

resum(z). In the
top two figures, the dotted lines are
from the second-order kernel K̃ (2)(z).
In the bottom two figures, the solid lines
from higher-order resumed rate kernels
fully recover the results of the exact
dynamics using Eq. (23) and coincide
with the dashed lines.
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solved using the hierarchy equation approach.41 The estimation
of the site population from the 2kth order RQKE rate kernel is
written as

P(2k)
resum;1(t) = LT−1



z + k̃ (2k)
resum;A←D

(z)
z[z + k̃ (2k)

resum;A←D
(z) + k̃ (2k)

resum;D← A
(z)]


.

(23)

We apply the same two-site system with the same quantum
Debye bath with ω−1

D = 100 fs and T = 300 K in Secs. II and
III. The comparison between P(2)

1 (t), P(2k)
resum;1(t) and Pexact;1(t)

is organized in Figs. 6 and 7, where P(2)
1 (t) is the second-order

NIBA prediction. In the unbiased system (ε = 0) with the small
site-site coupling (J = 40 cm−1), P(2)

1 (t) is close to the exact
time evolution Pexact;1(t) with a small deviation. The lowest
fourth-order RQKE rate kernel, K̃ (4)

resum(z), further improves
P(2)

1 (t) and provides almost identical results of Pexact;1(t) for
the two reorganization energies. As the site-site coupling is
increased to J = 100 cm−1, P(4)

resum;1(t) improved from the NIBA
prediction also deviates from the exact result Pexact;1(t). We
find that P(2k)

resum;1(t) gradually approaches to Pexact;1(t) as the
J-expansion order 2k increases in the continued fraction form.
As shown in Figs. 6(c) and 6(d), P(8)

resum;1(t) and P(6)
resum;1(t)

from the eighth- and sixth-order RQKE rate kernels fully
recover Pexact;1(t) for λ = 4 and 12 cm−1, respectively. In the
biased system (ε = 100 cm−1) with the small site-site coupl-
ing (J = 20 cm−1), P(2)

1 (t) clearly deviates from Pexact;1(t),
while P(4)

resum;1(t) from the Pade approximation becomes almost
identical to Pexact;1(t) for the two values of λ. Although the
time-integrated rate k (4)

resum is very close to the exact value
kexact in the small-λ regime, the prediction of P(4)

resum;1(t) is no
longer reliable for the strong site-site coupling (J = 100 cm−1).
Similarly, we extend the continued fraction form to higher
orders, and P(10)

resum;1(t) from the tenth-order RQKE rate kernel
fully recovers Pexact;1(t) for λ = 4 and 12 cm−1. Thus, the exact
quantum dynamics can be fully predicted by the RQKE rate

kernels in the continued fraction form. The convergence order
of the continued fraction for the detailed time evolution in gen-
eral increases as the reorganization energy decreases. Since the
equilibrium population in the unbiased system is unchanged
with the system and bath parameters, the convergence order is
usually smaller than that in the biased system.

V. TEMPERATURE DEPENDENCE OF THE QUANTUM
EQUILIBRIUM POPULATION

In this section, we will further demonstrate the accuracy
of the continued fraction in predicting the temperature depen-
dence of quantum equilibrium population.

In the original matrix continued fraction form, the expan-
sion Ξ̃(2k)(z) from the factorization scheme on the high-order
QKE rate kernels leads to the same correction terms for both
forward and backward transfer rate kernels, i.e., δ̃2k ;A←D(z)
= δ̃2k ;D← A(z). The ratio of the two time-integrated RQKE
rates, k (2k)

resum;A←D
/k (2k)

resum;D← A
, is unchanged as the resummation

order increases. The equilibrium population is always the same
as the classical Boltzmann distribution of the FGR prediction,
Peq;n ∝ exp(−βεn), which is only valid at high temperatures.
In our modified scalar continued fraction form, the correction
terms of the forward and backward rate kernels are determined
independently, which allows δ̃2k ;A←D(z) , δ̃2k ;D← A(z). Con-
sequently, the equilibrium population predicted by the RQKE
rate can deviate from the classical Boltzmann distribution and
approach to the exact quantum Boltzmann distribution, Peq;n
∝ [TrB{exp(−βHtot)}]nn.39,40

As a verification, we extend our previous study at a high
temperature T = 300 K to lower temperatures. Since the equi-
librium population is always one half in the unbiased system,
we only consider the biased system, ε12 = 100 cm−1, with J
= 100 cm−1 and λ = 100 cm−1. The 2kth order prediction of
the donor equilibrium population P(2k)

eq;resum;1 is obtained using

FIG. 7. The time evolution of the donor
population in the biased system with
ε12= 100 cm−1. The same quantum De-
bye bath in Fig. 2 is applied. The
conditions of the four figures are (a)
J = 20 cm−1 and λ= 4 cm−1, (b) J
= 20 cm−1 and λ= 12 cm−1, (c) J
= 100 cm−1 and λ= 4 cm−1, and (d)
J = 100 cm−1 and λ= 12 cm−1. In each
figure, the dashed line is from the exact
dynamics, and the dashed-dotted line
is from the lowest-order resumed ker-
nel K̃ (4)

resum(z). In the top two figures,
the dotted lines are from the second-
order kernel K̃ (2)(z). In the bottom
two figures, the solid lines from higher-
order RQKE rate kernels fully recover
the results of the exact dynamics using
Eq. (23) and coincide with the dashed
lines.
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FIG. 8. The equilibrium donor population versus the temperature. The solid
line with up-triangle symbols is the result of Fermi’s golden rule rate. The
solid line with diamond symbols is the result of the lowest fourth-order RQKE
rates using the Pade approximation. The circle symbols represent the result
of the next sixth-order RQKE rates. The solid line without symbols is the
exact result from the hierarchy equation. The parameters are ε12= 100 cm−1,
J = 100 cm−1, λ= 100 cm−1, and ω−1

D = 100 fs.

the time-integrated RQKE rates

P(2k)
eq;resum;1 =

k (2k)
resum;D← A

k (2k)
resum;A←D

+ k (2k)
resum;D← A

. (24)

The full expression of the time correlation function g(t) is
applied in the calculation of the QKE rate kernels, without
the high-temperature approximation. Similarly, 1012 Monte
Carlo samples are simulated for an accurate estimation of
k (6)

resum. The hierarchy equation with the Matsubara frequency
summation is used to obtain the exact equilibrium population,
which is numerically the same as the result of the stochas-
tic path integral.39,40 Our numerical calculation shows that
each correction term δ2 j(<k−1) is different for the forward and
backward rates, and the deviation increases as temperature
decreases. As shown in Fig. 8, the RQKE rates systematically
improves the prediction of P(2k)

eq;resum;1 from the second-order
FGR result to the exact result. With specific parameters in our
calculation, the sixth-order RQKE rates provide an excellent
prediction of the exact result over the whole temperature range
(100 K ≤ T ≤ 300 K). With more correction terms included,
we expect that the scalar continued fraction resummation can
be straightforwardly extended to lower temperatures.

VI. SUMMARY

In this paper, we extend our previous study of the QKE
approach in the two-site system (the spin-boson model). The
factorization scheme for the high-order QKE rate kernels in the
weak non-Markovian dynamics leads to the matrix continued
fraction form for the resummation technique of QKE rate ker-
nels. To be valid in an arbitrary condition, we further introduce
the scalar continued fraction form for forward and backward
rate kernels separately, where the correction terms are obtained
by matching the higher-order QKE rate kernels. Consequently,

a systematic RQKE method is constructed, and the expan-
sion order of the RQKE method is consistent with the high-
est order of the QKE rate kernel. To the lowest fourth-order,
the continued fraction form recovers the Pade approxima-
tion, while the higher-order RQKE correction terms represent
the additional bath relaxation effects. As shown by numerical
calculations in this paper, the prediction of the RQKE method
systematically improves with the expansion order and can fully
reproduce the exact quantum dynamics calculated from the
hierarchy equation. With specific parameters considered in this
paper, the time-integrated RQKE rate at the sixth order can
be almost identical to the exact result for both unbiased and
biased systems, with both weak and strong site-site coupl-
ing strengths. More importantly, the detailed time evolution
can be exactly predicted as well, as higher-order correction
terms are gradually included. The temperature dependence of
the equilibrium population is also verified, as the classical
Boltzmann distribution of the second-order FGR prediction is
improved toward the exact quantum Boltzmann distribution.
The convergence order generally increases with the increase
of the site-site coupling strength, the decrease of the reorgani-
zation energy, and the decrease of temperature.

The numerical calculations of this paper are focused on
the bilinear system-bath interaction in the harmonic bath with
a quantum Debye spectral density. The formal expression of
the QKE rate kernel in Eq. (5) is however invariant of the
bath structure, whether Gaussian or non-Gaussian, so that the
RQKE method can be applied to a general bath, combined
with other numerical methods. The mathematical strategy of
applying the continued fraction form is not limited to the two-
site system, and its application to more complicated systems
will be demonstrated in our forthcoming papers. The RQKE
method provides a systematically converged approach of quan-
tum dynamics, and its continued fraction form can inspire
possibilities of other higher-order resummation techniques,
such as the extension of the Landau-Zener approximation and
modifications originally for the lowest order correction.
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APPENDIX: FOURTH- AND SIXTH-ORDER QUANTUM
RATE KERNELS IN THE TWO-SITE SYSTEM

In this appendix, we summarize the expressions of the
fourth- and sixth-order QKE rate kernels in the two-site system
with a δ-spatial correlation. Notice that such a two-site system
coupled with the harmonic bath is equivalent to the standard
spin-boson model with a doubled reorganization energy. The
fourth-order QKE rate kernel for a general multi-site system
is derived in Ref. 16, and we simplify this expression with the
consideration of the two-site system. The forward transfer rate
kernel from the donor site 1 to the acceptor site 2 is written
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explicitly as

K (4)
21 (τ2, τ3, τ4)/2|J |4
= Re{eiε̃12τ

−
4−2G+4 (e2F−4 − 1) + eiε̃12τ

−
4−2G−4 (e2F+4 − 1)

+ eiε̃12τ
+
4−2G+4 (e−2F+4 − 1) + eiε̃12τ

+
4−2G−4 (e−2F−4 − 1)},

(A1)

with τ±4 = τ2 ± τ4, G±4 = g(τ2) + g(±τ4), and F±4 = g(±τ3)
− g(τ2 + τ3) − g(±(τ3 + τ4)) + g(τ2 + τ3 + τ4).

The sixth-order quantum rate kernel after expanding each
term is given by

K (6)(τ2, . . . , τ6) = TrB{R(τ6)UP(τ5)R(τ4)UP(τ3)R(τ2)P(0)
eq }

−K (2)(τ6)K (2)(τ4)K (2)(τ2)
+K (2)(τ6)K (2)(τ4, τ3, τ2)
+K (4)(τ6, τ5, τ4)K (2)(τ2). (A2)

For conciseness, we only present one off-diagonal element of

Y = TrB{R(τ6)UP(τ5)R(τ4)UP(τ3)R(τ2)P(0)
eq }

−K (2)(τ6)K (2)(τ4)K (2)(τ2), (A3)

and all the other terms can be found from the second- and
fourth-order QKE rate kernels. For the quantum transport pro-
cess from the donor site 1 to the acceptor site 2, the correspond-
ing term Y21 is explicitly given by

Y21/(−2|J |6)
= Re


ei ϵ̃12τ

++
6 −2G++6 (e−F+;+

6A − 1)
+ ei ϵ̃12τ

−+
6 −2G++6 (e−F+;−

6D − 1)
+ ei ϵ̃12τ

+−
6 −2G++6 (e−F−;−

6A − 1) + ei ϵ̃12τ
−−
6 −2G++6 (e−F−;+

6D − 1)
+ ei ϵ̃12τ

+−
6 −2G−−6 (e−F−;+

6B − 1) + ei ϵ̃12τ
−−
6 −2G−−6 (e−F−;−

6C − 1)
+ ei ϵ̃12τ

++
6 −2G−−6 (e−F+;−

6B − 1) + ei ϵ̃12τ
−+
6 −2G−−6 (e−F+;+

6C − 1)
+ ei ϵ̃12τ

+−
6 −2G+−6 (e−F−;+

6A − 1) + ei ϵ̃12τ
−−
6 −2G+−6 (e−F−;−

6D − 1)
+ ei ϵ̃12τ

++
6 −2G+−6 (e−F+;−

6A − 1) + ei ϵ̃12τ
−+
6 −2G+−6 (e−F+;+

6D − 1)
+ ei ϵ̃12τ

++
6 −2G−+6 (e−F+;+

6B − 1) + ei ϵ̃12τ
−+
6 −2G−+6 (e−F+;−

6C − 1)
+ ei ϵ̃12τ

+−
6 −2G−+6 (e−F−;−

6B − 1)
+ ei ϵ̃12τ

−−
6 −2G−+6 (e−F−;+

6C − 1)

. (A4)

Here, we introduce the abbreviated notations, τ±±6 = τ2 ± τ4
± τ6, and G±±6 = g(τ2) + g(±τ4) + g(±τ6), where the left and
right ± superscript symbols are associated with τ4 and τ6,
respectively. Additional abbreviated notations, τi j = τi + τj,
τi jk = τi + τj + τk, · · · (i, j, k = 2,3, . . . ,6), are introduced to
express the functions of F6 as

F±;±
6A = 2g(τ3) ± 2g(±τ5) − 2g(τ23) − 2g(τ34)

∓ 2g(τ45) ∓ 2g(±τ56) + 2g(τ234)
± 2g(τ345) ± 2g(τ456) ∓ 2g(τ2345)
∓ 2g(τ3456) ± 2g(τ23456), (A5a)

F±;±
6B = 2g(−τ3) ± 2g(±τ5) − 2g(τ23) − 2g(−τ34)

∓ 2g(−τ45) ∓ 2g(±τ56) + 2g(τ234)
± 2g(−τ345) ± 2g(−τ456) ∓ 2g(τ2345)
∓ 2g(−τ3456) ± 2g(τ23456), (A5b)

F±;±
6C = −2g(τ3) ∓ 2g(±τ5) + 2g(τ23) + 2g(τ34)

± 2g(−τ45) ± 2g(±τ56) − 2g(τ234)
± 2g(τ345) ∓ 2g(−τ456) ∓ 2g(τ2345)
∓ 2g(τ3456) ± 2g(τ23456), (A5c)

F±;±
6D = −2g(−τ3) ∓ 2g(±τ5) + 2g(τ23) + 2g(−τ34)

± 2g(τ45) ± 2g(±τ56) − 2g(τ234)
± 2g(−τ345) ∓ 2g(τ456) ∓ 2g(τ2345)
∓ 2g(−τ3456) ± 2g(τ23456), (A5d)

where the left ± superscript symbol is associated with opera-
tions between g functions, and the right± superscript symbol is
associated with the sign of the time variable inside g functions.
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