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We study the Förster resonant energy transfer rate, absorption and emission spectra in multichro-
mophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap
integral of generalized matrices related to the donor’s emission and acceptor’s absorption spectra,
which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We
calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the
analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present
three essential findings: (i) The role of the initial entanglement between the donor and its bath is found
to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained
by the cumulant expansion method are nearly identical to the exact spectra for both localized and
delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii)
For the emission spectra, the cumulant expansion can give reliable results for localized systems, but
fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the
system-bath coupling is large and the thermal energy is small. This paper also provides a simple
golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments
in the subsequent papers. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908599]

I. INTRODUCTION

Background. Excitonic energy transfer (EET)1–5 attracts
extensive interest in many subjects. It is a fundamental problem
in various physical and chemical processes.6–10,12 In general,
the efficiency of the EET can be well quantified by the Förster
resonance energy transfer (FRET) theory1,2,4 under the follow-
ing two conditions: (a) The system can be treated as two parts:
the donor and acceptor, and the coupling between them is
much weaker than the system-bath coupling, i.e., the transfer is
usually incoherent. (b) Both acceptor and donor can be treated
as point dipoles.

However, the FRET theory is problematic in complex
molecular systems such as the light-harvesting complexes
LH1/LH2.9–11 In such systems, the donor and/or acceptor
could have more than one chromophore and cannot be treated
as point dipoles. Moreover, due to the electronic couplings
VD (V A) within the donor(acceptor), the excitations are not
localized, and their coherent dynamics could be quite impor-
tant in the EET process,13–16 which was shown recently in
two-dimensional electronic spectroscopy experiments.17–19 In
systems as the LH2 complex, the energy transfer rate is signifi-
cantly underestimated by the FRET theory.11,20–22,46 Therefore,
the multichromophoric Förster theory (MCFT) was developed
by Sumi and others5,24,25 to describe the coherence within the
complexes.

It should be noted that under some experimental condi-
tions, even the extension from the FRET to MCFT may not
be sufficient since these theories are 2nd-order with respect

a)jianshu@mit.edu

to the donor-acceptor coupling J. Nontrivial quantum effects
such as multi-site quantum coherence and solvent-controlled
transfer can be seen in higher order corrections. We have
recently developed a systematic diagrammatic expansion26 to
include high-order corrections that are able to account for the
difference between FRET and the full quantum dynamics by
including the O(J3) and O(J4) terms.

Similar to its single chromophoric counterpart, the MCFT
is determined by an overlap integral over the trace of general-
ized matrices related to the donor’s emission and acceptor’s
absorption spectra. The spectra are broadened and shifted due
to the coupling to the environment, which is believed to play
a critical role in the EET process of light-harvesting com-
plexes.27 Unlike the case in the FRET theory, where the spectra
can be obtained exactly for an environment with Gaussian
fluctuations,28 the spectra in MC systems are more involved,
especially the emission spectrum. This issue is investigated in
the article and is systematically resolved both analytically and
numerically in subsequent papers.

A. Outline of this paper

Absorption and emission spectra. In the calculation of
the MCFT rate, the absorption spectrum is relatively easier to
obtain since the initial state is factorized. The emission spec-
trum is much more complicated due to the initial system-bath
coupling, which displaces the bath away from its equilibrium.
This displacement will affect the subsequent dynamics, which
motivates the subsequent papers and leads to difficulties in
evaluating the MCFT rate.

0021-9606/2015/142(9)/094106/13/$30.00 142, 094106-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.30.92.51 On: Thu, 02 Apr 2015 01:22:52

http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://dx.doi.org/10.1063/1.4908599
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4908599&domain=pdf&date_stamp=2015-03-03


094106-2 J. Ma and J. Cao J. Chem. Phys. 142, 094106 (2015)

Donor-bath entanglement. The influence of the initial
entanglement, or correlation, between the donor and bath has
been widely noticed but lacks systematic study, partially due to
the difficulties in numerical techniques. This problem does not
exist in the monomer case, where the system is composed of
a single electronic state. In this work, we find that the donor-
bath entanglement plays a crucial role in both the emission
spectrum and MCFT rate. Exact numerical comparisons with
stochastic path integral (SPI) techniques show the failure of the
two different factorization approaches for both localized and
delocalized systems.

Full 2nd-order cumulant expansion (FCE). The primary
goal of this series of papers is to develop analytical and numer-
ical techniques to compute the MCFT rate and spectra. Sim-
ulation methods such as stochastic path integrals29 and hier-
archy equation of motions (HEOM)30–33 can give benchmarks
for relatively small systems due to the limitation of comput-
ing powers. Perturbative methods5,34–44 are efficient for larger
systems but are reliable only in some specific parameter re-
gimes. For example, in the weak system-bath coupling regime,
the EET was generally studied by using Green’s function,5

2nd-order time-convolution (TC2),25 and time-convolution-
less (TCL2) master equations.34,35

In this paper, we demonstrate the difficulties and problems
in computing the MCFT rates and spectra, and focus on
a perturbation approach based on the 2nd-order cumulant
expansion. Here, the cumulant expansion is performed on
the full system-bath coupling Hamiltonian Hsb in both the
real- and imaginary-time domains. Then, the absorption and
emission spectra are expressed in a FCE, which can reduce to
the exact results in the monomer case. As previously shown
in the calculation of vibrational spectra,44,45 factorization of
the FCE leads to further approximations that are easy to
evaluate analytically. In the exciton basis, Hsb will have off-
diagonal terms. If the off-diagonal part Hod

sb
is neglected,

the FCE reduces to the inverse participation ratio (IPR)23,41

approximation, which is essentially a pure dephasing model.
The IPR method can be improved by treating the off-diagonal
elements perturbatively,44,45 and here, we call this method the
off-diagonal cumulant expansion (OCE). In essence, OCE is
the cumulant form of the modified Redfield equation without
the secular and Markovian approximations.34,38,39,44,45 The
advantage of the FCE over the OCE and IPR methods can
be seen in a highly delocalized case, where the omission
or perturbation treatment of the off-diagonal coupling is
unreliable. For the absorption spectrum, the FCE is formally
equivalent to the TCL2, but the TC2 method cannot correctly
reduce to the monomer case. For the emission spectrum,
neither the TCL2 nor the TC2 method can reduce to the
monomer case. The TCL2 method needs the help of a detailed
balance identity to overcome this difficult.35 However, the
FCE is straightforward and can reduce to the monomer case
naturally.

Reliability. We use the FCE method to calculate the
spectra and the MCFT rate for both localized and delocalized
systems. For both systems, the FCE method is quite reliable in
the absorption spectrum, since there is no population dynamics
while the coherence decays rapidly with increasing system-
bath coupling.

For the emission spectrum, the FCE method is also reliable
when the excitons of the donor are localized, since the FCE
is exact for monomers. However, if the donor’s excitons are
delocalized, the perturbation in imaginary-time is unreliable
when the system’s energy gap is larger than the thermal energy.
In this case, the emission spectrum is only reliable if it is
determined by the lower excited states. The MCFT rates are
still close to the exact ones since the rate is determined by the
spectral overlap.

This paper is organized as follows. In Sec. II, we give the
physical model of a multichromophoric system and introduce
the MCFT. The role of the initial entanglement is shown by us-
ing the exact SPI method. In Sec. III, we derive the absorption
and emission spectra by using 2nd-order cumulant expansion
techniques. The spectra formula can be further simplified when
the system has translational symmetry, and can be reduced
to various analytical solutions under further approximations.
Then, we calculate the spectra and MCFT rate for localized and
delocalized systems, and discuss the reliability of the cumulant
expansion method.

B. Outline of the forth-coming papers

The limitation of the FCE method, as well as many other
traditional perturbation methods, lies in the poor approxima-
tion of the emission spectrum in a delocalized system in the
low-temperature and large system-bath coupling regimes. To
overcome this problem, several new methods are developed
in our group and will appear in the subsequent papers of this
series.

(a) For real systems such as the LH2, the energy gaps of the
first excitations are comparable to both the thermal en-
ergy and the system-bath coupling. None of the traditional
perturbation methods can give reliable emission spectra
and MCFT rates. For such systems, the treatment of the
complex-time system-bath correlation will determine the
reliability of the emission spectrum and the MCFT rate.
In Paper II,47 we develop a hybrid cumulant expansion
method, which uses the imaginary-time path integrals to
obtain the numerically exact reduced density matrix of the
donor, from which the displacements of the bath operators
can be extracted precisely. Using this method, we can give
reliable emission spectrum and MCFT rate of the LH2
system.29

(b) Furthermore, to overcome the problems of the HEOM in
calculating large systems and low temperature conditions,
in our Paper III,29 we develop a complex-time stochastic
PI method, which will provide benchmarks for our calcu-
lation. Stochastic PI is not limited to the Drude spectrum
and can be used in relatively large systems because it is a
wave-function-based method.

(c) Finally, we apply the hybrid cumulant expansion method
and the exact stochastic PI to the B850 ring of LH2. The
FRET rate, emission and absorption spectra in this real-
istic system are calculated by considering static disorder,
low-temperature effects, and strong system-bath coupling.
These exact results for B850 are obtained for the first time
and will be reported in Paper IV.48
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(d) If the system-bath coupling is dominant, even when the
donor’s excitons are delocalized, perturbation should be
made on the donor’s off-diagonal coupling V but not the
system-bath coupling. This O(V 2) expansion is developed
in a future publication.46

II. MULTICHROMOPHORIC FRET THEORY

A. Model Hamiltonian

The MCFT describes the resonant energy transfer between
a donor (D) and an acceptor (A) in a multichromophoric sys-
tem, described by the Hamiltonian

H = HD
t + H A

t + Hc, (1)

where Hc is the dipole-dipole coupling between the donor
and acceptor, and HD(A)

t is the total Hamiltonian of the donor
(acceptor) and its bath,

HD
t = HD

s + HD
sb + I

D
s Hb,

H A
t = H A

s + H A
sb + I

A
s Hb.

(2)

A schematic picture of the model system is shown in Fig. 1.
We first explain the donor’s part. The free Hamiltonian of the
donor is

HD
s =

ND
m=1

�
ϵDm + λ

D
m

� |Dm⟩⟨Dm| +
ND
m,n

VD
mn|Dm⟩⟨Dn |, (3)

where ϵDm is the excitation energy of the donor’s mth site,
and λDm is the reorganization energy induced by the interaction
between the bath and the donor’s mth chromophore. VD

mn is
the coupling between sites m and n. In the MCFT, we focus
on the single excitation case and thus, |Dm⟩ represents the
state that the total multichromophoric system is excited only
at the donor’s mth site, while all the other sites (including the
acceptor’s) are in their ground state, i.e.,

|Dm⟩ = |0, . . . 1m, . . . , 0⟩D|0 · · · 0⟩A. (4)

The identity operator IDs is given by

IDs =

ND
m=1

|Dm⟩⟨Dm|. (5)

FIG. 1. Schematic picture of a multi-chromophoric system embedded in a
bath. The molecules in the donor and acceptor are treated as dipoles, and the
coupling between them is J .

In this work, the baths that couple to different chromo-
phores are independent. It is very straightforward to extend the
results by using correlated baths, as shown in Refs. 32 and 49.
The bath is usually modeled by a set of harmonic oscillators,

HD
b =

ND
m=1


k

~ωD
m,kbD†

m,k
bD
m,k, (6)

where ωD
m,k

is the frequency of the kth mode of the bath that
is coupled to the mth site of the donor. The excitation states
couple with the harmonic bath linearly as

HD
sb =

ND
m=1

B̂D
m |Dm⟩⟨Dm|, (7)

where the bath operators are given by

B̂D
m =


k

gD
m,k

(
bD†
m,k
+ bD

m,k

)
. (8)

The relation between the coupling strengths gD
m,k

and the reor-
ganization energy is λDm ≡


k g

2
m,k

/ωm,k.
The acceptor’s Hamiltonians H A

s , H A
b

, and H A
sb

are ob-
tained by replacing the notation D with A in the above discus-
sion.

The dipole-dipole interaction between the donor and
acceptor is given by

Hc =

ND
m=1

NA
n=1

Jmn|Dm⟩⟨An|, (9)

where the couplings Jmn are treated perturbatively in the
MCFT.

B. Golden-rule formulation of the MCFT rate

To formulate the MCFT rate k, we should understand
the time scales in the energy transfer process. The MCFT
describes the incoherent transfer of excitations from a donor
to an acceptor. This transfer happens after the donor is excited
to its single excitation manifold. In general, the donor’s initial
excitations will relax to an equilibrium state with its bath on
a time scale that is much shorter than the excitation transfer
time 1/k. Therefore, the initial condition of the MCFT process
can be considered as an equilibrium state of the donor and its
bath. On the other hand, the lifetime of the first excitations are
usually much longer than the excitation transfer time, and thus
the ground state is not involved in the MCFT.

Based on the above conditions, the MCFT rate can be
derived straightforwardly from Fermi’s golden rule,5

k = 2π

µν

PD
ν
���⟨ΨD

ν |Hc |ΦA
µ⟩���

2
δ
(
ED
ν − EA

µ

)
, (10)

where |ΨD
ν ⟩ (|ΦA

µ⟩) and ED
ν (EA

µ ) are the eigenstates and eigen-
energies of HD

t (H A
t ), which include the degrees of freedom of

both the system and bath. PD
ν is obtained from

ρD = ρDe ρ
A
b =


ν

PD
ν |ΨD

ν ⟩⟨ΨD
ν |, (11)
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where

ρDe =
e−βH

D

tre−βHD
, ρA

b =
e−βH

A
b

tre−βH
A
b

, (12)

and β−1 = kBT , with kB the Boltzmann’s constant and T the
temperature.

Starting from Eq. (10), the MCFT rate can be derived as

k =

m,n


m′n′

JmnJm′n′
 ∞

−∞
dt trb

�
eiH

D
t t ρDe ρ

A
b

× |Dm′⟩⟨An′|e−iH A
t t |An⟩⟨Dm|	, (13)

and since the degrees of freedom of the acceptor and donor can
be treated separately,

k =

m,n


m′n′

JmnJm′n′
 ∞

−∞
dt

× trbA

ρA
b eiH

A
b
t⟨An′|e−iH At |An⟩



× trbD

⟨Dm|eiHDt ρDe |Dm′⟩e−iHD

b
t

. (14)

Now, we can define two matrices

IA (t) = trb
(
e−iH

At ρA
b eiH

A
b
t
)
, (15)

ED (t) = trb
(
eiH

Dt ρDe e−iH
D
b

t
)
, (16)

and the MCFT rate can be expressed as

k =
 ∞

−∞
dt tr

�
JTED (t) JIA (t)� , (17)

where

J =


Jmn|Dm⟩⟨An |. (18)

It is important to notice that the density matrix appearing in
IA (t) is the thermal equilibrium state of the acceptor’s bath.
The donor is assumed to be in its excited equilibrium state ρDe .
This non-factorized initial state brings technical difficulties in
the calculation of the emission spectrum, especially when the
system-bath coupling is strong. The primary goal of this series
of papers is to develop analytical and numerical techniques to
compute the donor-bath correlations.

The absorption and emission matrices are given by

IA (ω) =
 ∞

−∞
dt eiωtIA (t) ,

ED (ω) =
 ∞

−∞
dt e−iωtED (t) ,

(19)

which satisfy the normalization conditions trIA(t = 0) = N and
trED(t = 0) = 1. Thus, the MCFT rate can also be written as5,25

k =
1

2π

 ∞

−∞
dω tr

�
JTED (ω) JIA (ω)� . (20)

From the above formula, the rate k is determined by the donor-
acceptor coupling J, and the overlap integral of the acceptor’s
absorption matrix IA

nn′ (ω), and the donor’s emission matrix
ED
m′m (ω). The influences of the system-bath coupling on the

transfer rate are reflected by the spectra in their widths and
positions, which are determined by the relaxation dynamics

and reorganization energies, respectively. Therefore, the main
problem here is to calculate the spectra. The spectra (19) in
the MCFT rate do not depend on the system’s local dipoles.
Actually, the commonly studied far-field spectra IAf (ω) and
ED

f (ω) can be obtained as

IAf (ω) =

m,n

�
ϵ̂ · µ⃗A

m

� �
ϵ̂ · µ⃗A

n

�
IAmn (ω) ,

ED
f (ω) =


m,n

�
ϵ̂ · µ⃗Dm

� �
ϵ̂ · µ⃗Dn

�
ED
mn (ω) ,

(21)

where ϵ̂ is the polarization of the light and µ⃗i denote the local
dipole operators.

In this work, for the sake of simplicity, the donor-acceptor
coupling is assumed to be constant, Jmn = J. Therefore, the
MCFT rate formula (20) can be simplified as

k =
J2

2π~2

 ∞

−∞
dωED (ω) IA (ω) , (22)

where

ED (ω) =

m,n

ED
mn (ω) ,

IA (ω) =

m,n

IAmn (ω) .
(23)

We should emphasize that the exact rate formula should refer
to Eq. (20).

III. EFFECTS OF DONOR-BATH ENTANGLEMENT

In the MCFT, the donor is first excited to its single-
excitation subspace, which relaxes to equilibrium with its bath
in a time scale that is negligibly small as compared with the
EET time. Therefore, the initial state is an equilibrium state of
the donor and its bath, as shown in Eq. (16). In this case, the
donor and its bath are usually correlated or entangled due to
their interaction, which is characterized by the reorganization
energy λ.

When λ is smaller than the system’s energy scale, or the
bath correlation time is negligibly small (e.g., in the high-
temperature limit), the Born approximation is employed and
a master equation is obtained. However, when the system-
bath interaction is larger than the other energy scales, the
Born approximation is invalid, and the composite system-bath
state cannot be factorized during the entire MCFT process. To
our knowledge, only a few methods can treat the system-bath
correlation exactly. Here, we first use the HEOM method to
show the crucial role of the donor-bath entanglement. The 2nd-
order correction of the initial state is studied in Sec. IV C.

In this work, both the donor and acceptor consist of two
chromophores, respectively. Since the entanglement is deter-
mined by the properties of the system, we consider two limiting
cases. In Case I, the system is localized, and its Hamiltonian is
(in the unit of cm−1)

HD1
s =

*
,

250 20
20 150

+
-
, H A1

s =
*
,

100 20
20 0

+
-
, (24)

where the ratio of the excitation energy difference∆ = E2 − E1
to the inter-chromophore coupling V is∆/V = 5. In Case II, the
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system is delocalized (∆/V = 0.2),

HD2
s =

*
,

200 100
100 180

+
-
, H A2

s =
*
,

100 100
100 80

+
-
. (25)

The influence of the bath on the system dynamics is determined
by the system-bath coupling spectrum; here, we choose the
Drude spectrum

J (ω) = 2λωγ
ω2 + γ2 , (26)

where λ is the reorganization energy and γ is the cutoff fre-
quency of the bath. For the sake of simplicity, the reorganiza-
tion energies are the same for each site. The donor-acceptor
coupling is Jmn = J = 10 cm−1.

To study the effects of the initial entanglement, we
consider three different treatments of the initial state:

(i) The initial state is obtained exactly by using the HOEM.
In this case, the system and bath first evolved to equi-
librium. Then, the system and bath evolve according to
Eq. (16). The emission spectrum obtained in this case is
exact.33

(ii) The initial state is factorized, but the system’s reduced
density matrix is exact,

ρ (0) = ρDexρ
D
b , (27)

where ρDex is the exact reduced density matrix of the donor,
and ρD

b
= exp

�
−βHD

b

�
/ZD

b
is the equilibrium state of the

bath. In this case, we use the HEOM method to obtain the
exact reduced density matrix, then all the auxiliary fields
are reset to zero. Thus, the correlation between system
and bath is turned off. Alternatively, we can obtain the
reduced density matrix directly using the imaginary-time
path integral method.50

(iii) The initial state is also factorized as

ρ (0) = ρDeqρ
D
b ; (28)

however, ρDeq = exp
�
−βHD

s

�
/ZD

s is the thermal equilib-
rium state of donor. This is also the initial state commonly
used in master equation methods.

The comparison of the emission spectra ED (ω) for
different initial states is shown in Fig. 2. Because the reorga-
nization energy λ = 100 cm−1 is comparable to the excitation
energies, the separable approximation is not reliable. For the
localized system (Case I), the spectra obtained by the separable
approximations are shifted with respect to the exact result
due to the neglect of reorganization effects. The delocalized
system (Case II) is more interesting, where the double-peak
structure seen in the exact result disappears in the approximate
spectra. The entanglement effect in the delocalized case is
more noticeable than in the localized one. Only in the limiting
case where the system is fully localized, i.e., the intermolecular
coupling V = 0 and thus the chromophores are independent,
there is no entanglement between the donor and its bath. In
this case, the initial state can be written as

ρ (0) = ρDeq ρ̃
D
b , (29)

where ρ̃D
b

is the equilibrium state of the displaced bath.

FIG. 2. Comparison of the emission spectra for different initial states in
localized (Case I) and delocalized (Case II) systems. The reorganization
energy λ= 100 cm−1, the cutoff frequency γ = 10 ps−1, and the temperature
T = 300 K.

The effects of initial entanglement on the MCFT rate is
shown in Fig. 3. For both the localized and delocalized cases,
the factorized initial state approximation breaks down rapidly
with the increase of the system-bath coupling. It is interesting
to note that, in the delocalized case (lower panel), the MCFT
rates obtained from ρDexρ

D
b

and ρDeqρ
D
b

differ dramatically for
very large λ, which reflects the deviation of ρDex and ρDeq. As
the entanglement plays such a notable role, we should treat the
initial state in a more accurate way, such as through the cu-
mulant expansion method used below and the hybrid cumulant
expansion method developed in Paper II.

IV. SECOND-ORDER CUMULANT EXPANSION

In this section, we derive the FCE formulas of the absorp-
tion and emission spectra. The absorption and emission spectra
were studied by various methods, such as the standard TC225

and TCL2.35 The TC2 method is time-nonlocal and does not
recover the simple case of monomers. As shown here and in
several previous calculations, the TC2 approximation25 fails
to reproduce the detailed structures of line-shapes and can
lead unphysical peaks in the spectrum. The TCL2 method is
time-local and recovers the exact solution for the absorption
spectrum of monomers. In this framework, the TCL2 approx-
imation of the emission spectrum has an inhomogeneous term
that describes the unfactorized initial state, but it cannot give
the exact results in the monomer limit for emission. A detailed
balance identity should be used to overcome this difficulty.35

For the absorption spectrum, the FCE method shown below is
the same as the TCL2 method. For the emission spectrum, the
cumulant expansion method can reduce to the monomer case,
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FIG. 3. Comparison of the MCFT rate as a function of the reorganization
energy λ from 1 cm−1 to 1000 cm1 for different initial states. All the other
parameters are the same as in Fig. 2.

and can easily give the equivalent results as shown in Ref. 35,
but without the help of the additional detailed balance identity.

A. Absorption spectrum: Full 2nd-order
cumulant expansion

Below, we derive the absorption spectrum via 2nd-order
cumulant expansion. It is convenient to diagonalize the
acceptor’s Hamiltonian H A

s at first,

H A
s =

NA
µ=1

ϵ Aµ |µ⟩⟨µ|, (30)

where ϵ Aµ is the eigenenergy (containing λ),

|µ⟩ =
NA
i=1

cµ
i |Ae

i ⟩ (31)

is the energy eigenstate (the exciton), and cµ
i = ⟨µ|Ae

i ⟩. How-
ever, in the energy representation the system-bath coupling has
off-diagonal terms,

H A
sb =

NA
µ,ν=1

B̃A
µν |µ⟩⟨ν |, (32)

where

B̃A
µν =

NA
n=1

X µν
n B̂A

n (33)

and the coefficient X µν
n = cµ

ncν∗n . Below, we perform a cumu-
lant expansion with respect to H A

sb
. In Refs. 44 and 45, the

cumulant expansion was carried out with respect to the off-
diagonal terms of the Hamiltonian H A

sb
(32), which could yield

unreliable results in highly delocalized cases.

The 2nd-order cumulant expansion of H A
sb

of Eq. (15)
gives

IA (t) ≃ e−iH
A
s te−K(t), (34)

where the time-dependent matrix

K (t) =
 t

0
dt2

 t2

0
dt1trb

�
H A

sb (t2) H A
sb (t1) ρA

b

�

=

NA
µ,ν=1

|µ⟩⟨ν |
NA
α=1

NA
n=1

X µα
n Xαν

n

×
 t

0
dt2

 t2

0
dt1eiωµαt2−iωναt1CB

n (t2− t1) , (35)

where ωi j ≡ ϵ i − ϵ j and

H A
sb (t) ≡ ei(H A

s +H
A
b )tH A

sbe−i(H A
s +H

A
b )t . (36)

The time-correlation function of the bath CB
n (t2 − t1) ≡ trb�

BA
n (t2) BA

n (t1) ρA
b

�
is time translational invariant. In a general

case if we have a complex time θ = s − iτ, the correlation
function can be expressed as

CB
n (θ) =

 ∞

0

dω
π

Jn (ω)
cosh

�
ω
� 1

2 β − iθ
��

sinh
� 1

2ωβ
� , (37)

where Jn (ω) is the spectral density of bath coupled to the nth
site. In this paper, we choose Drude spectrum (26) and assume
the reorganization energies are the same for different baths, i.e.,
J (ω) = Jn (ω).

The calculation of the absorption spectra IA (ω) for local-
ized (24) and delocalized (25) systems is shown in Figs. 4 and
6, respectively. We know that if the system is fully localized,
i.e., VD(A)

i j = 0, the cumulant expansion method is exact. Since
the Hamiltonian (24) does not deviate from the fully localized
case very much, the cumulant expansion method can give very
precise results, as shown in Fig. 4. The cumulant expansion
results for the delocalized system are also in good agreement
with the exact spectra obtained by the stochastic PI method,
even for a very large reorganization energy λ = 500 cm−1.

B. Absorption spectrum: Further reduction of the FCE
method to other analytical solutions

To evaluate Eq. (34), we need to diagonalize the matrix
K (t). In practice, we can avoid the diagonalization by making
further approximations, such as the IPR. In a previous study of
vibrational spectra,45 we arrived at similar expressions and by
factoring the contribution from the diagonal and off-diagonal
parts of the interaction Hamiltonian

H A
sb = H A,d

sb
+ H A,od

sb
, (38)

in the exciton bases, where H A,d
sb

and H A,od
sb

are the diagonal
and off-diagonal parts.

1. IPR approximation: Pure dephasing model

If we neglect H A,od
sb

and perform cumulant expansion
on the diagonal part H A,d

sb
only, we will arrive at the IPR

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.30.92.51 On: Thu, 02 Apr 2015 01:22:52



094106-7 J. Ma and J. Cao J. Chem. Phys. 142, 094106 (2015)

FIG. 4. Absorption and emission spectra of the localized system [Case I
defined in (24)]. Results are obtained by using the FCE and stochastic PI
methods. The bath parameters are the same as in Fig. 2. Even for a very
large reorganization energy λ= 500 cm−1, the FCE results are in very good
agreement with the exact one.

method,11,23 and the absorption spectrum is calculated as

IAIPR (t) ≃

µ

|µ⟩⟨µ| exp

−iϵ Aµt − K I PR

µµ (t) , (39)

where

K I PR
µµ (t) =

NA
n=1

�
X µµ
n

�2
 t

0
dt2

 t2

0
dt1CB (t2− t1) . (40)

We should note that K I PR
µµ (t) is not the diagonal part of K (t) in

Eq. (35), as the latter incorporates the contributions from both
diagonal and off-diagonal parts of the interaction Hamiltonian.
Essentially, the IPR approximation is a pure dephasing model,
which accounts only for the diagonal fluctuations. It is reliable
only for the localized case, in which the off-diagonal terms of
the system-bath coupling are small.

2. OCE approximation: Modified Redfield approach

Further improvement can be made by including the contri-
bution from H A,od

sb
. Actually, the diagonal part of K (t) can be

written as

Kµµ (t) = K I PR
µµ (t) +


α,µ

Rµααµ (t) , (41)

where the Redfield tensor

Rµααµ (t) =

α,µ

NA
n=1

�
X µα
n

�2

×
 t

0
dt2

 t2

0
dt1eiωµα(t2−t1)C (t2 − t1) (42)

FIG. 5. Absorption spectra obtained via the stochastic PI, FCE, OCE, and
IPR methods. The OCE and IPR methods fail to give reliable results in the
delocalized case.

describes the transition from state α to µ, which is induced by
the off-diagonal part of the acceptor-bath interaction Hamil-
tonian H A,od

sb
. Therefore, the absorption spectrum can also be

given as

IAOCE (t) ≃

µ

|µ⟩⟨µ| exp

− iϵ Aµt − K I PR

µµ (t)

−

α,µ

Rµααµ(t)

, (43)

which is the OCE approach. In essence, the OCE approach is
equivalent to the cumulant version of the modified Redfield
equation, as both approaches treat the diagonal part of the
system-bath coupling exactly and the off-diagonal part pertur-
batively.34,38,39,44,45

The FCE, OCE, and IPR are compared in Fig. 5. For local-
ized systems, all of the approximations give reliable results.
However, for the delocalized case, since the off-diagonal terms
of HD(A)

sb
are not negligible, only the FCE can give accurate

absorption spectra.

3. Markovian and secular approximations

In condensed phase spectroscopy, the diagonal part of
the system-bath coupling leads to pure dephasing and the
off-diagonal part leads to population relaxation. If we adopt
the Markovian and secular approximations, the FCE or OCE
expression reduces to the standard result,

IA (t) ≃

µ

|µ⟩⟨µ| exp

− iϵ Aµt − Γdepµµ t −


α,µ

Γ
rel
µα t


, (44)
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where Γdep and Γrel are the dephasing and population relax-
ation rates, respectively. We obtain these Markovian rates by
taking the long time limit of the Redfield tensers: Rµµµµ(t)
≡ Γdepµµ t and Rµααµ(t) ≡ Γrelµα t. Since pure dephasing is usually
fast and dominant, we can retain the full treatment of pure de-
phasing and apply the Markov-secular treatment to population
relaxation. Then, the absorption spectrum is also given as

IA (t) ≃

µ

|µ⟩⟨µ| exp

−iϵ Aµt − K I PR

µµ (t) −

α,µ

Γ
rel
µα t


, (45)

which can achieve accuracy comparable to OCE and efficiency
comparable to IPR.

C. Emission spectrum

Here, we will derive the emission spectrum in the exciton
basis. As discussed in Sec. III, the system-bath entanglement
is crucial in the calculation of the emission spectrum, and
here, we treat the expand the density matrix ρDe in Eq. (16)
to 2nd-order in the system-bath coupling. We first consider
the partition function ZD

e = tr
(
e−βH

D
)
, which is given in the

cumulant expansion by

ZD
e ≃ ZD

b trD

e−βH

D
s eKI I (β) , (46)

where the matrix

KI I (β) =
 β

0
dτ2

 τ2

0
dτ1trb

�
HD

sb(−iτ2) HD
sb(−iτ1) ρDb

�

=

µνα


n

X µα
n Xαν

n |µ⟩⟨ν |

×
 β

0
dτ′eωµντ

′
 τ′

0
dτ eωνατCB (−iτ) , (47)

and the imaginary time bath correlation function CB (−iτ) is
given by Eq. (37). After similar algebra used in Sec. IV B, we
obtain

ED (t) ≃ e−(β+it)HD
s e−KRR(t, β)+iKRI (t, β)+KI I (β)

trD

e−βHD

s eKI I (β) , (48)

where

KRR (t, β) =
 t

0
ds2

 s2

0
ds1trb

�
HD

sb(s2 − i β)
×HD

sb(s1 − i β) ρDb
�

=

µνα


n

X µα
n Xαν

n |µ⟩⟨ν |eβωµν

×
 t

0
ds′ eiωµνs

′
 s′

0
ds eiωναs CB (s) (49)

and

KRI (t, β) =
 t

0
ds

 β

0
dτtrb

�
HD

sb(s − i β) HD
sb(−iτ) ρDb

�

=

µνα


n

X µα
n Xαν

n |µ⟩⟨ν |eβωµα

×
 t

0
ds

 β

0
dτeiωµαs−ωνατCB(−s − iτ) . (50)

We note that matrices KRR (t, β) and KRI (t, β) depend both
on time and temperature, which reflect that the dynamics is

FIG. 6. Absorption and emission spectra of the delocalized system (25). We
compare the results of the FCE and the stochastic PI methods. The bath
parameters are the same as in Fig. 2.

affected by the initial system-bath correlation. The explicit
forms of the above matrices for the Drude spectrum are given
in the Appendix.

The comparisons of the emission spectra ED (ω) for local-
ized [Case I (24)] and delocalized [Case II (25)] systems are
shown in Figs. 4 and 6, respectively. For a localized system,
the donor and its bath is weakly entangled, thus the cumulant
expansion method performs very well, as shown in Fig. 4. For
a delocalized system, the donor and its bath could be strongly
entangled. The emission spectra deviate from the exact one
when the system-bath coupling becomes so strong that the
initial state is far from a factorized state. Actually, perturbative
methods are unreliable in this parameter regime. The reli-
ability of the cumulant expansion method will be discussed in
Sec. IV E.

D. Systems with translational symmetry

To calculate the emission and absorption spectra, we need
to diagonalize all the K matrices at every time step according to
Eqs. (34) and (48). This could be time consuming if the system
is large. Fortunately, it can be proved that the matrices K are
diagonal when a system has translational symmetry and the
reorganization energies are also equal.

All the K matrices have the factor
n

X µα
n Xαν

n =

n

⟨µ|n⟩ |⟨n|α⟩|2 ⟨n|ν⟩. (51)

If the system has translational symmetry, then

|⟨n|α⟩|2 = |⟨n + k |α⟩|2 = const. (52)
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and 
n

X µα
n Xαν

n = |⟨n|α⟩|2 δµν. (53)

Therefore, all the off-diagonal terms are zero and the matrix
becomes diagonal.

Usually, real systems do not have perfect translational
symmetries but have some defects or static disorders. In such
cases, the system can be described by H0, which has perfect
translational symmetry, plus δV , which breaks this symmetry.
If δV can be treated as a perturbation, it is easy to show that
the off-diagonal terms of K are of order O

�
δV 4� and can be

omitted safely.

E. Reliability of the cumulant expansion
for the emission spectrum

The emission spectra shown in Fig. 6 indicate that the
cumulant expansion can be problematic when the donor is
highly delocalized. However, the cumulant expansion of the
absorption spectra is still quite reliable in this case. The most
significant difference between the emission and absorption
spectra lies in the initial states. For the absorption spectrum,
the initial state is factorized and the bath is Gaussian. This
Gaussian property is captured quite well by the 2nd-order
cumulant expansion. For the emission spectrum, the initial
state is entangled and the deviation of the donor’s bath from
a Gaussian bath is determined by the reorganization energy,
which can be viewed as a displacement to the bath. Below,
we will analyze the condition that the cumulant expansion is
unreliable for the emission spectrum.

According to the Hamiltonian (7), the bath operator cou-
ples with the donor’s site operator independently. Therefore,
when the donor is highly localized, each bath operator is
approximately displaced by the scalar reorganization energy.
After this displacement, the bath is still Gaussian and the
cumulant expansion is safe. However, if the donor is highly
delocalized, the displacement is no longer a scalar quantity,
and the bath is not Gaussian. This problem becomes serious
when the donor’s energy gap is larger than the thermal energy,
i.e.,

�
βHD

s

�
> 1. In this case, the cumulant expansion of the

imaginary-time part is unreliable. We should note that this is
the case in LH2, even when T = 300 K.

Below, we give a concrete example to illustrate this prob-
lem. We consider a fully delocalized donor,

HD
s =

*
,

0 V
V 0

+
-
. (54)

For this system, as we just showed in Sec. IV D the matrices
KI I , KRR and KRI are diagonal in the energy representation.

The matrix KRR is obtained from the 2nd-order cumulant
expansion of the real-time part. It depends on both the time
and the temperature. According to Eqs. (49) and (53), since
the donor’s Hamiltonian (54) here has translational symmetry,
KRR is diagonal, and it does not depend on the temperature.
This term should be reliable since we obtain very accurate
absorption spectra in this case as shown in Figs. 4 and 6. KI I

comes from the 2nd-order correction of the equilibrium state
and is unreliable for the low-temperature case.

The matrix KRI comes from the first-order correction
of the real-time part and the first-order correction of the
imaginary-time (temperature) part. It is diagonal when we use
the Hamiltonian (54), and the diagonal elements are

KRI
µµ ≃ i

2λ
β

e−γt
ND
α=1

eiωµα(t−iβ)

λ2 + ω2
µα

, (55)

where the Drude spectrum (26) and the high-temperature limit
cot βγ

2 ≃
2
βγ

are used (see the Appendix). From the above
expression, we see that all the excited states |α⟩ will contribute
to the matrix element KRI

µµ.
The summation of α in Eq. (55) can be divided into two

parts: (i) µ > α, and thus exp
�
βωµα

�
> 1. (ii) µ ≤ α, and thus

exp
�
βωµα

�
≤ 1. If |µ⟩ is a low-lying excited state, we have

exp
�
βωµα

�
≤ 1 for most α, and KRI

µµ will not become a very
large value. On the opposite side, if |µ⟩ is a highly-excited
state, ωµα could be a very large positive value and exp

�
βωµα

�

≫ 1. In this case, the matrix element KRI
µµ could result in an

unreliable dynamics of ED
µµ (t).

Consider the Hamiltonian (54), we can obtain

KRI
11 ≃ i

2λe−γt

β
*
,

1
λ2 +

e−2iV t

λ2 + ω2
µα

e−2βV+
-
,

KRI
22 ≃ i

2λe−γt

β
*
,

1
λ2 +

e2iV t

λ2 + ω2
µα

e2βV+
-
,

(56)

where KRI
22 contains a term that diverges as exp (2βV ). In

the energy representation, since all the matrices KI I , KRR,
and KRI are diagonal, the emission spectrum matrix ED (ω)
=


µ ED

µµ (ω) |µ⟩⟨µ| is also diagonal. In Fig. 7, we show the
deviation of the emission spectra ED

µµ (ω) obtained by the cu-
mulant expansion and the SPI for different off-diagonal coupl-
ing V strengths. The upper two panels show the emission spec-
trum of the lower level µ = 1, for which the spectrum obtained
by the cumulant expansion method is very reliable for different
off-diagonal coupling strengths. However, from the lower
panels of Fig. 7, the spectrum ED

22 (ω) obtained from the cu-
mulant expansion deviates from the exact one with the increase
of V .

Therefore, if the emission spectrum is dominated by the
excited states that are below the thermal energy, the cumulant
expansion method is still reliable. This is the case when we
calculate some far-field emission spectra, where the system’s
dipole operators will select the lowest excited state.

F. MCFT rate

After the study of spectra, we can calculate the MCFT
rate. In Fig. 8, we compare the multichromophoric FRET rate
obtained via different methods. The exact results are obtained
by the stochastic PI. In this paper, the cumulant expansion is
performed with respect to λ. We can also do perturbation with
respect to the inter-site coupling V of Eq. (3). This approach46

has a precision of O
�
V 2�, as shown in Fig. 8. For a local-

ized system, V is a good perturbative parameter, while for
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FIG. 7. Comparison of the emission
matrix elements obtained by the exact
stochastic PI and the FCE methods. The
reorganization energy is λ= 200 cm−1.

a delocalized system, this method can give reliable results
only for λ ≫ V . The rate given by the TC2 method is quali-
tatively tolerant. It is not stable for very large reorganization
energy.

Although the emission spectra may not be accurate
for delocalized systems, the rate obtained by our cumulant
expansion method is still in good agreement with the exact
one, since the MCFT rate is proportional to the overlap integral
between emission and absorption spectra. If the reorganization
energy λ is very large, the height of the spectra is small and
the overlap of the spectra is negligible. However, the rate is
still problematic for larger real systems, such as LH2, which
has motived us to develop the hybrid cumulant expansion and
the stochastic path integrals.

FIG. 8. Comparison of the MCFT rates obtained by the stochastic PI, FCE,
TC225 and O

�
V 2� quantum master equation (QME) methods as a function of

the reorganization energy λ for the localized (24) and delocalized (25) cases.
The bath parameters are the same as in Fig. 2.

V. CONCLUSIONS

In this paper, we study the MCFT rate and the spectra,
using a full 2nd-order cumulant expansion, which treats the
system-bath interaction Hamiltonian perturbatively, and can
reduce to the exact FRET rate for monomers.

(i) For the emission spectrum, the initial state is an equi-
librium state of the donor and its bath. Both the donor
and the bath deviate from their Boltzmann distributions.
Moreover, this equilibrium state cannot be written in a
factorized form, and the entanglement between the donor
and its bath will affect the subsequent real-time dynamics.
The failure of the factorization shows the crucial role of
the donor-bath entanglement in both the emission spec-
trum and the MCFT rate.

(ii) The full cumulant expansion method is applied to both
localized and delocalized systems. The absorption spectra
obtained by the FCE method are in very good agreement
with the exact results for both localized and delocalized
cases. Further approximations of the full cumulant expan-
sion can give the inverse participation ratio and the off-
diagonal cumulant expansion methods, which overlook
the importance of the off-diagonal system-bath coupling
and fail to give reliable absorption spectra when the sys-
tem is delocalized. An alternative solution for absorption
spectra was reported during the course of this work.51

(iii) The calculation of the emission spectrum is more compli-
cated due to the initial donor-bath entanglement, which
depends on the donor-bath interaction and the degree of
delocalization. For localized systems, the entanglement
is weak, and the full cumulant expansion method per-
forms well. For delocalized systems, the full cumulant
expansion method can still give reliable results for low-
lying excited states, while the method becomes unreliable
for the highly-excited states in the strong system-bath
coupling regime. This problem is solved in our Paper II
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by combining the cumulant expansion with numerically
exact imaginary-time path integrals into a hybrid cumu-
lant expansion.

(iv) In contrast with the emission spectra, the MCFT rate is
more robust since it is proportional to the integral overlap
between the emission and absorption spectra. The devia-
tions in the spectra are reduced in the transfer rate. More-
over, if the reorganization energy λ is large, the height of
the emission spectra is very low and the overlap of the
spectra is small. Thus, although the emission spectrum
obtained by cumulant expansion may not be reliable in the
strong system-bath coupling regime, we can still obtain a
reasonable transfer rate. We should note that this analysis
is valid for small systems but not for large systems such
as LH2. To solve this problem, we developed two new
methods: the hybrid cumulant expansion in Paper II and
the stochastic path integral in Paper III.

(v) The full cumulant expansion method cannot give reli-
able emission spectra for delocalized systems when the
reorganization energy is large and the thermal energy
is small. We develop several new methods to overcome
this problem. When the reorganization energy λ is domi-
nant, perturbation can be carried out in the system’s
off-diagonal coupling V up to 2nd-order.46 For more
complicated systems such as LH2 (see Paper IV), tradi-
tional perturbation methods fail to give reliable emission

spectra and MCFT rates since the energy gap of the first
excitations, the thermal energy, and the reorganization
energy are comparable. In our recently developed hybrid
cumulant expansion method, we use the imaginary-time
path integrals to obtain the exact reduced density matrix
of the donor, from which the displacements of the bath
operators can be extracted more precisely. This hybrid
method can give much more reliable emission spectrum
and MCFT rates for systems like LH2. Furthermore, to
overcome the problems of the HEOM method in calcu-
lating large system and low-temperature conditions, we
implement a stochastic path integral method,29 which
gives us the benchmark.

Note added in proof. Computer codes for stochastic sim-
ulations of absorption spectra, emission spectra, and Forster
rates are available for download at http://web.mit.edu/
jianshucaogroup/resources.html.
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APPENDIX: BATH CORRELATION FUNCTION AND LINESHAPE MATRICES
1. Bath correlation function

The general form of the bath correlation function can be derived as

CB(t−iτ) =
 ∞

0

dω
π

J (ω) cosh
�
ω
� 1

2 β − i (t − iτ)��

sinh
� 1

2ωβ
�

=
4λ
β

1
2

e−γ |t | + γ
∞
k=1

cos (νkτ) �γe−γ |t |−νke−νk |t |
�

γ2 − ν2
k

−isgn (t) γ
∞
k=1

sin (νkτ) �νke−γ |t |−νke−νk |t |
�

γ2 − ν2
k


, (A1)

where J (ω) is the Drude spectrum, νk = 2πk/β is the Matsubara frequency, and sgn (x) is the sign function.

2. Lineshape matrix K(t )
The matrix K (t) in Eq. (35) is given by

K (t) =
 t

0
dt2

 t2

0
dt1trb

�
H A

sb (t2) H A
sb (t1) ρA

b

�

=

NA
µ,ν=1

|µ⟩⟨ν |
NA
α=1

NA
n=1

X µα
n Xαν

n

 t

0
dt2

 t2

0
dt1eiωµαt2−iωναt1CB (t2− t1) , (A2)

where the bath correlation function is

CB (t2 − t1) = λγ

cot

(
γ β

2

)
− i


e−γ |t2−t1| +

4λγ
β

∞
n=1

νne−νn |t2−t1|

ν2
n − γ2 .

In the high-temperature limit, we can neglect all the Matsubara terms, and thus,

CB (t2 − t1) = λγ

cot

(
γ β

2

)
− i


e−γ |t2−t1|. (A3)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.30.92.51 On: Thu, 02 Apr 2015 01:22:52

http://web.mit.edu/jianshucaogroup/resources.html
http://web.mit.edu/jianshucaogroup/resources.html


094106-12 J. Ma and J. Cao J. Chem. Phys. 142, 094106 (2015)

In this case, the matrix elements can be derived as

Kµν (t) =

α


n

X µα
n Xαν

n

 t

0
dt2

 t2

0
dt1eiωµαt2−iωναt1C (t2 − t1)

=

α


n

X µα
n Xαν

n λnγ


cot

(
γ β

2

)
− i


Fµαν (t) ,

where

Fµαν (t) = e−γt+iωµαt − 1�
γ − iωµα

� (γ − iωνα) +
eiωµνt − 1

iωµν (γ − iωνα) . (A4)

If µ = ν, we have

Fµµµ =
e−γt − 1

γ2 +
t
γ
. (A5)

3. Lineshape matrix KII(β)
The matrix KI I (β) in Eq. (47) is

KI I (β) =
 β

0
dτ2

 τ2

0
dτ1trb

�
HD

sb(−iτ2) HD
sb(−iτ1) ρDb

�

=

µνα


n

X µα
n Xαν

n |µ⟩⟨ν |
 β

0
dτ′eωµντ

′
 τ′

0
dτ eωνατCB (−iτ) ,

where the imaginary-time correlation function is

CB (−iτ) = 2λ
β
+

4
β

∞
k=1

λγ

γ + νk
cos (νkτ) . (A6)

Substituting the above result into KI I , we can solve the integral

 τ′

0
dτ eωνατCB (−iτ) = 2λ

β
Fνα, (A7)

where

Fνν = τ′ + 2γ
∞
k=1

1
γ + νk

sin (νkτ′)
νk

,

Fνα =
eωνατ

′ − 1
ωνα

+ 2γ
∞
k=1

eωνατ
′ [νk sin (νkτ′) + ωνα cos (νkτ′)] − ωνα

(γ + νk) �ν2
k
+ ω2

να

� .

(A8)

4. Lineshape matrix KRR(t, β)
The matrix KRR (t, β) in Eq. (49) is

KRR (t, β) =
 t

0
ds2

 s2

0
ds1trb

�
HD

sb(s2−i β) HD
sb(s1−i β) ρDb

�

=

µνα


n

X µα
n Xαν

n |µ⟩⟨ν |eβωµν

 t

0
ds2 eiωµνs2

 s2

0
ds1 eiωναs1 CB (s1) ,

where

CB (s) ≃ λγ

cot

(
γ β

2

)
− i


e−γs. (A9)
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5. Lineshape matrix KRI(t, β)
The matrix KRI (t, β) in Eq. (50) is

KRI (t, β) =
 t

0
ds

 β

0
dτtrb

�
HD

sb(s−i β) HD
sb(−iτ) ρDb

�

=

µνα


n

X µα
n Xαν

n |µ⟩⟨ν |eβωµα

 t

0
ds

 β

0
dτeiωµαs−ωνατCB(−s−iτ) ,

where

CB(−s−iτ) = 4λ
β


1
2

e−γs + γ
∞
k=1

cos (νkτ) (γe−γs − νke−νks)
γ2 − ν2

k

+ iγ
∞
k=1

sin (νkτ) (νke−γs − νke−νks)
γ2 − ν2

k


. (A10)
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