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ABSTRACT: We theoretically study the distance, chain
length, and temperature dependence of the electronic couplings
as well as the excitonic energy transfer rates between one-
dimensional (1D) chromophore aggregates. In addition to the
well-known geometry dependent factor that leads to the
deviation from Forster’s classic Rp3 scaling on the donor—
acceptor separation, nonmonotonic dependence on aggregate
size and the breakdown of far-field dipole selection rules are
also investigated in detail and compared to prior calculations.
Our analysis provides a simple, unifying framework to bridge
the results of the ground state electronic couplings at low
temperatures and those from the classical rate-summation at
high temperatures. At low temperatures and in the near-field
limit, the exciton transfer integral scales as Rp), in analogy to
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that of electric monopoles. For the case of aligned 1D J-aggregates, we predict a maximal excitonic energy transfer rate at
temperatures on the order of the intra-aggregate coupling strength.

B INTRODUCTION

More than half a century after its development, the theory of
Forster resonance energy transfer (FRET)"' has received
increased attention in the field of condensed matter sciences
owing to technological advances to manipulate molecules on
the nano scale and to decipher the molecular details of
important biological systems. The FRET theory has found wide
applications in the study of conformational dynamics and
excitation energy transfer (EET) of polymers, be it biological
systems like DNA and proteins or artificial ones with promising
physical properties such as conjugated polymers.” The
popularity and success of the FRET theory can be ascribed
to an insightful approximation made by Forster: treating the
Coulomb interaction between the donor—acceptor pair only to
the second order, which can then be expressed in terms of the
respective transition dipole moments. By incorporating the
square of the donor (acceptor) transition dipole into the
expression of the donor emission (acceptor absorption)
spectrum, the FRET rate is conveniently written down as a
combination of experimental measurables, in particular the
overlap between the donor’s emission spectrum and the
acceptor’s absorption spectrum. Furthermore, it gives rise to
the classic Ry} dependence on the donor—acceptor separation
Rp, of the EET rate, which is a manifestation of the dipolar
interaction as well. As a consequence, variations of the
measured FRET rate (in time) imply variations of the
chromophoric donor—acceptor separation to the sixth power.
See some of the recent reviews for more in depth
discussions.>”°
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However, the validity of Forster’s original theory is
questionable in numerous circumstances. Sumi’ was the first
to point out that in multichromophoric (MC) systems, where
the exciton may be delocalized over several chromophores,
considerable contributions to exciton transport arise from
optically dark states. While this situation is typical in the light-
harvesting apparatus of photosynthetic bacteria and green
plants, as well as synthetic molecular systems such as organic
photovoltaic systems and the low-dimensional aggregates
formed by amphiphilic cyanine dyes,® the FRET theory can
critically underestimate the EET rate.”” The essential point is
that in many cases the physical dimension of aggregates is
comparable to or exceeds the separation Rp,. This leads to the
failure of the dipole approximation. Recently, we developed
numerical and analytical methods to systematically evaluate
EET rates in multichromophoric systems. For the current
study, we will adopt physical approximations to establish scaling
laws and refer readers to a series of papers for details of rate
calculations.”

In a recent work by Emelianova et al., the authors considered
the energy diffusion in organic molecular crystals."” Due to the
reduced energetic disorder in these materials, 2D-delocalized
excitons were proposed as primary agents for EET, where the
reduced dimensionality results from the high anisotropy in
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Figure 1. System geometries examined in this study. (a) Energy transfer between two linear aggregates with all the transition dipole moments
parallel to the axis of aggregation. This is referred to as a perfect J-aggregate. (b) Parallel linear aggregates with transition dipole moments
perpendicular to the direction of aggregation and lying in the plane of superaggregate structure. This is referred to as a perfect H-aggregate. In both
cases R is the separation between the aggregates, a is the intra-aggregate spacing between chromophores, and N is the number of chromophores in

each aggregate.

electronic couplings: strong couplings in the ab plane, while
couplings between layers are considerably weaker. They found
a peculiar temperature dependence of the interlayer EET rate,
namely for the J-aggregate configuration the rate is peaked at
intermediate temperatures as opposed to the monotonic
behavior for the H-aggregate case. This can be attributed to
the contribution from the optically forbidden states that are
close to the bottom of the exciton band, which also leads to the
deviation from the R™* scaling of the interlayer coupling
obtained with classical theory.'" The peaking of the EET rate at
an optimal temperature originates from the maximal overlap
between the thermal population distribution of exciton states
and the EET rates among individual donor—acceptor states.'”
This is one of the many aspects of achieving efficient and robust
EET through optimal system—bath interactions,">~"* which are
often found in natural light-harvesting systems and have
profound implications on improving current solar energy
industry.

The present work concerns a similar scheme with a change in
dimensionality. We look at the EET between close-lying 1D
chromophore aggregates (see the schematics in Figure 1.1
This is in part motivated by the technological advancement of
manufacturing devices containing aligned conjugated poly-
mers'® as well as growing single-crystalline organic thin films."”
In such cases, the EET in the direction perpendicular to the
stronger-coupled dimension becomes a central issue in
controlling the anisotropy of the devices. For example,
anisotropy of exciton transport has been observed in
phthalocyanine and porphyrin derivatives thin films.'® Clear
indication of faster exciton diffusion within 1D columnar
aggregate structures and slower interstack exciton transfer was
characterized through analyzing the fluorescence anisotropy
decay of the systems.'” "' On the other hand, there are several
previous studies on the photophysics of conjugated oligomers/
polymers,”* >* where nonmonotonic dependence on chain
length and deviation from the R™® scaling were observed. It
should be noted that analytical results for this system have been
obtained in the zero-temperature limit,***” which are valid for
conjugated polymers/oligomers since the gaps between exciton
levels are much larger than the thermal energy in these systems.

Here we extend the analysis of Emlianova et al. to the EET in
these 1D systems and obtain closed expressions for the transfer
integrals as functions of the quasi-momenta of the 1D excitons.
We first discuss the classical results obtained with the sum-over-
rates approach. The corresponding quantum results, which
account for the electronic couplings among all states of the
donor and the acceptor aggregates, are presented thereafter.
The proper recovery of the classical expression is presented and
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discussed, as wells as its use to explain prior observations with
emphasis on the scaling relations and temperature dependence
of EET rate.

B CLASSICAL FRET: SUM OVER RATES

Let us first consider the classical FRET rates between linear
aggregates consisting of identical chromophores, whose results
shall serve as references in the following sections. Treating all
the chromophores as two level systems, the coupling
Hamiltonian is written as

Np N,

Hp, = Z ZJmnlm)(nl

m=1 n=1

(1)

where for notational simplicity m (n) always refers to the site
label of the donor (acceptor) aggregate, and lx) (x = m,n)
represents the state where the xth site is in its excited state and
all others being in the ground state. N and N, are the number
of monomers in the donor and the acceptor aggregates,
respectively. The couplings J,,, will be approximated by dipole—
dipole interaction

] = ;Zn'[él _ 3(%'7%)(/’2;‘7%)
" T )

with Ji,, and /i, being the transition dipole moments and r,,,, the
distance between sites m and n of the respective aggregates.
The magnitudes of the dipole moments are set to unity. The
FRET rate between the donor and the acceptor aggregates is
written down as a summation over the individual rates of all
donor—acceptor pairs, regardless of the intra-aggregate
couplings, as follows”

N, N,
2 1 - A 2
ol ] &m
h%ggm (3)

Here S,,, denotes the overlap integral between the lineshapes of
monomer m and n.*® The above expression indicates that no
coherence exists between any two sites, and at high
temperatures the quantum expression discussed in the next
section should reduce to this classical one. In addition, treating
S, as constants, we focus our study essentially on the inter-
aggregate couplings J,,. The latter has the unit of energy
squared, where we have set y’/4ze, to unity and left only the
distance dependence explicit. To get the physical EET rate one
has to return to eq 3 and pick up suitable estimations of the
above-mentioned parameters as in ref 10 Also, the Np' factor
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corresponds to an average over all donor chromophores,
accounting for an equal distribution of the initial excitation.
In this study we will consider a convenient setup of system
geometries, as shown in Figure 1. Two extreme cases are
considered, in (a) the two linear chromophoric aggregates are
aligned in parallel with all the transition dipole moments
pointing along the axis of aggregation, while in (b) the dipoles
are perpendicular to the axis in the plane of paper. We refer to
the former as a perfect J-aggregate and the latter as a perfect H-
aggregate for obvious reasons. For simplicity, we set N, = N, =
N. Discussions on a more general scheme are presented in the
Appendix. In the following, R denotes the separation between
the aggregates. In the continuum limit (R > a, where a is the
intra-aggregate spacing) and taking S,n as constants one can

write
2 2 2
0wk [Man [ K2 )
N Jo 0 (R + a*(x; — x,)")*"?
2 N (R* — 2a°x%)*
== f de(N = %)~ o
N Jo (R* + a’x”)
Lo (Na) 11 N
— —— arctanj| — — 5 5
64 aR® R 64 R*(N*a* + R?)
1 N 3

+ JE— —
32 RZ(N2a2 + RZ)Z 8 (N2a2 + R2)3

4)

While the above result is complicated, it reduces to simple
classical results in the two opposite limits as follows:

27r 1
%E’ R < Na
a
k(@ x N
v R > Na
R ()

Upon inspection of the above results, a few rationalizations
are drawn. First of all, in the far-field limit where the separation
is much larger than the length of the aggregates, the well-known
R™® dependence is recovered, while in the opposite, near-field
limit the rate scales as R™°, reflecting the one-dimensional
geometry. Second, the factor of N in the far-field result comes
from the number of acceptors, whereas there is no N
dependence in the near-field limit. This results from the fact
that we are essentially looking at the dipolar interaction
(squared) between a monomer and a one-dimensional chain of
dipoles, which is really a result of classical electrostatics.

Similarly, one finds the results for perfect H-aggregates as

1237 1
ﬂ—s, R < Na
k(H) 0( 128(1 R
¢ 4N
) R > Na
R (6)

These results serve as our guideline for the quantum
calculation of the EET rates, which in the high temperature
limit should reduce to the former.

B QUANTUM FRET: SUM OVER DIPOLES

The starting point of our investigation of the EET rates
between chromophoric aggregates is the multichromophoric
FRET rate in the secular approximation,
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which is obtained by approximating the donor emission and the
acceptor absorption spectra being diagonal in the exciton basis.”
C;/ is the wave function amplitude of exciton state y on site m.
]/w and §,, refer to the electronic coupling and the line shape
overlap matrix elements in the exciton basis, respectively. p,, is
the probability density distribution of the donor. We adopt the
convention where Roman letters represent dummy indices in
the site basis while Greek letters are reserved for those in the
exciton basis.

At high temperatures, the line shape overlap S,, can be
treated as unity. In other words, the homogeneous line width is
broader than the exciton bandwidth. Thus, by expanding the
absolute square in eq 7, one can show that the MC-FRET
expression reduces to the classical FRET expression as follows.

Z Z Z C’"p Cﬂ )(Z C /*)]mn]m’n’

mm'=1 n,n'=1 p=1

ZD ZA pmmféﬂﬂ/]mn]m/n/

mym'=1 n,n'=1

k

Q

Q

= TrplJl* = k¢
©)
We now analyze the actual quantum expression in more
detail. For long linear chromophoric chains intended in this
study, neglecting disorder, the exciton states are given by the
Bloch states lu) = (1/\/N)2m exp (27ipm/N)Im). This is true
as long as the intra-aggregate Hamiltonians Hp and H,
commute with the translational symmetry of the system. In
this basis the coupling matrix is diagonal ], = 8,J,.
regardless of the type of aggregates (J- or H-). In the following
we will focus on the calculation of ], for both perfect J- and H-
aggregates. In the continuum limit, this is equivalent to the
evaluation of the integrals

N 2522 )
]G) = 2 f dx(N — x) Iz Zzazxs/z cos( ﬂ'ux)
#e N Jo (R* + a’x?) N
(10)
and
2.2 2
](H) = 2 fN dx(N — x) ax” — 2R cos( zij)
Hp N Jo (RZ + a2x2)5/2 N

(11)
J, With g = 0. For the case of u = 0, the integrals can be
carried out straightforwardly.

2
- R< Na
U (1 1 ]_ Na’R
=0 2l T 23
R 2 2 2
Na R*+ Na I R> Na
(12)

which has been obtained previously.”**” Here we will iterate its
significance and physical interpretation, in conjunction with our
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Figure 3. Schematic illustrations of effective interaction between the exciton ground states of different geometries. (a) Effective interactions between
linear aggregates. (b) Effective interactions between a single chromophore and a linear aggregate.

u # 0 results discussed below, for a comprehensive under-
standing (see Figure 2). The R dependence is drawn in part a,
with the near- and the far-field limits indicated in dashed and
dotted lines, respectively. While the far-field result R > Na
indeed corresponds to the classical R scaling in eq S, the near-
field limit is particularly interesting. The R™' scaling can be
rationalized as the destructive interference between contribu-
tions from adjacent monomers,">'* leaving only the couplings
between monopoles at the both ends. This is valid in the
regime where Na > R > g, and is shown schematically in
Figure 3a. Through the successive cancellation of contributions
from adjacent, opposite charges, we are left with the
interactions among the ones at the very tails of the chains,
which obey the R™' dependence of monopolar field.

Another interesting point worth noting is the N dependence
of the above expressions in eq 12, as shown in Figure 2b. It is
evident that in the far-field limit the coupling is simply
proportional to N. However, the inverse proportionality in the
near-field limit can be understood from the argument of the
effective monopole interactions made in the previous para-
graph, in combination with the fact that the monopole charges
scale inversely proportional to the square root of N, owing to
the amplitude of the wave function on each site. The opposite
dependence on N in the two limits implies an optimal
coherence length which can be obtained from maximizing eq
12:

1 R R
N, = +—\/§ Zx1272=
2 a (13)

where one obtains maximal coupling. We acknowledge that this
result was adopted from eq 33 of ref 23 included here for the

Q

completeness of our discussion. This is also a manifestation of
the quantum interference among different donor—acceptor
pairs, since classically one expects a linear dependence on
system size regardless of the ratio between Na and R. This
agrees with the results of Brédas et al,>> who quantitatively
studied the R and N dependence of the exciton coupling
between close-lying polyacetylene molecules in a similar
scheme, in line with the earlier work of Spano and co-
workers.”®

Rossky et al, using semiempirical Pariser—Parr—Pople
Hamiltonian on the level of single configuration interaction,
have calculated the EET rate between tetraphenylporphyrin
and oligoﬂuorene.24 In this case, the system resembles a
monomer interacting with a linear chain of chromophores.
They showed that the R dependence of the rate becomes
weaker as R reduces, and reaches R™2 at the nearest distances
allowed by steric hindrance. With minor modification of our
result, it can be shown that the coupling 7/4(]:) o of the totally
symmetric exciton state with the monomer at distance R equals
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The Journal of Physical Chemistry B

(a) 10

—
o
|
N}

Coupling J,(LL)

O Exact Sum

O Numerical Integral
— 1 Ko()/N?
- - -y~ /\/RN?

1077 '
10° 10
Quasi-momentum g

102

f . ..u““ ‘ ‘
10~* 10° 10 10?
Temperature (Jy—n/kpB)

0
102

Figure 4. (a) Dependence of the inter-aggregate coupling on the exciton state label y (quasi-momentum). Here only the case for J-aggregates ,9”) is
shown. The results from the exact summation of eq 8 (blue circles), the numerical integration of eq 10 (green squares), and the analytical
expressions eq 16 (red line) and 18 (cyan dashed line). The maximum happens at yi,, &% 3Na/4zR. We have taken N = 200 and R = Sa. Only half of
the first Brillouin zone is plotted since J,,, is symmetric with respect to y = 0. (b) The temperature dependence of the overall transfer rates calculated
through Boltzmann averaging over all states. Open markers refer to those of the perfect J-aggregates, and filled ones denote the perfect H-aggregates.
The rates are normalized to their values at infinite temperature, where all states contribute equally. The temperature is in units of the nearest-
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~ \/§N3/2qu,
N
£3, R > Na
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which indeed shows no dependence on R in the near-field limit
and an R™! one in the small-intermediate R regime. This can
also be understood through a similar argument of destructive
quantum interference, as shown in Figure 3b. Here the
monomer feels an effective, nearly uniform field created by
the opposite charges at the ends of the chain. As such, one
obtains the independence on R when R < Na. Similar to the
case of parallel 1D chains as discussed earlier, there is also a
nonmonotonic N dependence, and an optimal chain length is
given by
2R

max —

R
~ 0.89—
Sa a

(15)

We note that there is a recent experimental study considering
an artificial system comprises chromophoric molecules
intercalated onto linear DNA scaffold, which is covalently
bonded to a porphyrin acceptor anchored on lipid vesicles.””
The authors found enhanced absorption of the whole complex
comparing to the direct excitation of the porphyrin due to the
antenna effect. Our analysis above can be applied directly to
this system, that given the monomer-chain separation one can
determine an optimal chain length that maximizes the EET
rate.

Jy, with g # 0. To obtain closed expressions for J,, in
general, additional assumptions need to be made. Explicitly, we
drop the —x in the parentheses and extend the upper limit of
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integration to infinity in eqs 10 and 11. In doing so we
essentially assume the long chain limit, and the following
expressions can be obtained:

0, ST
& K,(f7
]ﬂﬂ N2a3 O(/’t) (16)
and
22
O - -
]ﬂﬂ ~ N2a3 [I<O(Iu> + I<2(ﬂ):| (17)

where K, is the modified Bessel function of the second kind
and ji = 27lulR/Na. These are the main results of the current
study. Taking the long chain limit of eq 12, one obtains
vanishing ]”Ui o» which agrees with the above expression and can
be attributed to the fact that K, diverges logarithmically at the
origin. However, K,(z) with a > 0 diverges as z™% thus ]”(E)O has
a finite value. On the other hand, in the R > Na limit, the
above expressions reduce to a delta function at y = 0, which is
the correct far-field selection rule. This correctness arises from
the fact that the seemingly contradicting application of the long
chain limit and then the R > Na limit does not spoil the u
dependence qualitatively. Thus, the strength of the selection
rule is easily seen as a function of R with eq 16.

For a more intuitive physical picture, we make use of the
asymptotic form of the Bessel function K,(Z) ~ (7/2z)"?
exp(—z) and obtain

3/2
] 4x? (M) o~ 2mIR/Na

W JeR\N (1s)

which indicates a polynomial y dependence with exponential
cutoff, with the maximal value occurs at p,,, = 3Na/4zR. It is
worth noting that since we retain only the zeroth order term in
the asymptotic expansion, eq 18 works for both the perfect J-
and H-aggregates. However the K, term in the H-aggregates
case decagfs much faster than K,. Consequently, the true peak
value of ]MI;I) occurs at 4 < N, i.e., the major contribution to the
EET rate comes from the y = 0 state, which is the highest lying
state for H-aggregates.
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The feature of a maximal coupling at a finite quasi-
momentum g = .. is especially prominent when the inter-
aggregate separation R is comparable to the intra-aggregate
spacing a (see Figure 4a for illustration). Here we present the
results from the exact sum of ]f},}, the numerical integration of
eq 10, and its continuum approximated expressions eq 16 and
18. The approximations invoked in obtaining the closed
expressions are validated by the close match of these results.
We note that in the limit of 4 — N/2, the above-mentioned
results trifurcate due to the difference between the exact
summation and numerical integration, and the error originating
from dropping the —x term in eq 10. This is similar to the 2D
case investigated by Emelianova et al,'® which leads to the
possibility of tuning the exciton hopping rate as a function of
temperature, given a particular system geometry.

Along the same line, we also present here the temperature
dependence of the total transfer rates at several different
separations R as shown in Figure 4b. The eigenenergies of the
aggregates are obtained by assuming all intra-aggregate
interactions to be dipolar. Here we neglect the contribution
from the spectral overlap between the donor and the acceptor,
and compute the EET rate purely on the basis of Boltzmann
averaging over all states. Regardless of R, the EET rate between
perfect H-aggregates is always a monotonically increasing
function of temperature, as the only contributing states are at
the top of the exciton band. On the other hand, the perfect J-
aggregate case shows more interesting behavior. The rate shows
a peak value at around T, = J,_./kg for R > a cases. This is
attributed to the interplay between the thermal population of
the exciton band (see ref 30 for details) and the functional form
of ],9,2 At low temperatures, none of the contributing states is
occupied and the EET is suppressed. The rate rises at moderate
temperatures and reaches the peak value when there is
significant overlap between the Boltzmann distribution and
]9,3, and then decays at higher temperatures due to the
population spread to higher-lying noncontributing states.

We note that very similar nonmonotonic behavior has been
observed previously through the model study on the HJ-
aggregates by Spano et al.*' They found peaked radiative decay
rates of stacked conjugated polymer dimers at temperatures
where kT ® Jiwor (Jmeer denotes the interpolymer excitonic
coupling). We remark that not only the EET rates but also
other spectroscopic properties of this interesting system setup
show rich physics. This has implications on how we can design
and control the energy migration pathways in low dimensional
systems such as dye aggregates and thin films.'>'>"*7>!

Lastly, in the high temperature limit where all states in the
exciton band are equally populated, the average EET rate
should recover the classical FRET result. This is demonstrated
as follows:

2
1 2 8x2u®  (2zlulR
_ZUU)'Z ~ _/ du 77"2”3 0( Tl )
N S N Jo N%a Na
_2m 1
1284 R® (19)

which coincides with the result in eq 5, as predicted by eq 9.
The same argument applies to the perfect H-aggregates case as
well.
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Bl CONCLUSION

In summary, we have studied systematically the EET rates
between two parallel one-dimensional chromophore aggregates.
Assuming the electronic couplings between individual pairs of
chromophores to be dipolar, we first looked at the results
predicted by the classical Forster theory which assumes
independent hopping events among donor/acceptor pairs.
However, when there is significant intra-aggregate coupling and
at lower temperatures, the delocalized nature of Frenkel
excitons gives rise to novel phenomena which deviates from
the classical result. In this case, one inevitably needs to take into
account the delocalized quantum nature of excitons. The
recovery of the classical expression from the quantum one in
the high temperature limit was verified and discussed. We have
derived analytical expressions for the EET rates which we have
used to explain the results of several preceding investigations in
the literature. The results for perfect J-aggregates, where all
dipoles lie in parallel to the axis of aggregation, are particularly
pertinent to the photophysics of conjugated polymers. The
breakdown of the far-field selection rule when the separation is
comparable to or even smaller than the exciton size can be
easily seen with the analytical expressions. Moreover, a
nonmonotonic temperature dependence of EET rates with a
maximum at moderate temperature regime is predicted, where
the thermal energy is on the order of the intra-aggregate
couplings. Accordingly, our results can be applied to the design
principle of artificial light-harvesting devices where directional
EET is preferred. Depending on situations, the geometric
arrangement of molecules or temperature can be tuned to
either enhance or suppress the EET along the direction of
interest.

B APPENDIX

Perfect H-Aggregates: Another Possibility

In the main text we have explained only one of the two possible
relative orientations for perfect H-aggregates. Explicitly, the
configuration with all dipoles lying within the plane of the pair
of the chains was chosen. There is another possibility with all
dipoles pointing outward (or inward) of this plane. In other
words, the second case is obtained by rotating the dipoles
ninety degrees with respect to the axes of aggregation (see

(@) "AAARAN (b) x(//////
0

NARARARNARAN

Figure 5. Additional system geometries considered in the Appendix.
(a) A pair of perfect H-aggregates with their dipole orientations turned
perpendicular to the plane of the aggregates. (b) General 1D linear
aggregates with slanted dipole orientations, making an angle € with the
axis of aggregation.

ATITTTTT

Figure Sa). The dipolar interaction between such two perfect
H-aggregates has a particularly simple form:

(ﬂ' ﬂ')_ 1
2" 2 r

mn

AN

(20)

where the arguments in the expression ](H)(gbl,d)z) represent
the azimuthal angles of the two aggregates, so that the case
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discussed in the main text is denoted as J(0,0). In the Bloch
basis the coupling becomes

mfr =
]”"(z’ 2) (21)

In the high temperature limit, the even averaging over all states
of the above result reduces to the classical value of 37/8aR>.

We note that the cross term J™(0,7/2) vanishes. As a
consequence, the electronic coulping between perfect H-
aggregates with arbitrary configuration (¢b;,¢b,) can be written
as

J®(,, ¢,) = cos ,cos p,]*(0, 0)
+ sin ¢ sin t},’)Z](H)(z z)

o Aalul

=65 — K (i
;u/NazR I(M)

2" 2 (22)
This works in both site and Bloch basis, except that there is an
additional diagonal selection rule in the latter.

Slanted Dipoles

Generically speaking, the dipoles constituting realistic aggre-
gates make an angle @ with the aggregation axis as shown in
Figure Sb. Then both the components of perfect J-aggregates
and H-aggregates contribute to the couplings and, conse-
quently, the EET rate. In addition to the above “diagonal
terms”, the cross term J™ between a J- and an H-configuration
also becomes non-negligible as 6 is neither close to zero nor
ninety degrees. It takes the following form,

o) _ ,aR(m —n)
]mn =-3 S
o (23)
or in the Bloch basis,
(M) 87[2i 2
= =4, K, (i
]lﬂ/ Uy Nzayu l(ﬂ) (24)

which is purely imaginary.

Noting that the above mentioned ]<H)(ﬂ'/2,ﬂ'/2) does not
contribute to the mix term, the most general form of the
coupling between 1D aggregates can be expressed as

1O, by, #,) = cos” O]V + sin> G/ (p,, ¢,)

+ sin 6 cos 6](M)(cos ¢, + cos ) (25)
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