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Quantum-Classical Correspondence in Response Theory
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The correspondence principle between the quantum commutator [A, B] and the classical Poisson
brackets tfi{A, B} is examined in the context of response theory. The classical response function is
obtained as the leading term of the 7 expansion of the phase space representation of the response function
in terms of Weyl-Wigner transformations and is shown to increase without bound at long times as a result
of ignoring divergent higher-order contributions. Systematical inclusion of higher-order contributions
improves the accuracy of the 7 expansion at finite times. Resummation of all the higher-order terms
establishes the classical-quantum correspondence (v + nl|&(t)|v) < a,e"“'|; i />- The time interval of
the validity of the simple classical limit [A(z), B(0)] — th{A(z), B(0)} is estimated for quasiperiodic
dynamics and is shown to be inversely proportional to anharmonicity.
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Applications of multidimensional spectroscopy to large
molecules and condensed phase systems have motivated
the calculation of response functions using classical dy-
namics.[1-7]. Classical evaluation of response functions
usually employs the simple correspondence rule between
the quantum commutator [A B] and the classical Poisson
bracket ti{A, B}. However, the classical response theory
has several problems. Van Kampen cautioned the validity
of the application of classical perturbation theory to the
calculation of a system’s response [8]. Recent numerical
and analytical results demonstrate the divergence of both
linear and nonlinear classical response functions at long
times [2,4,9]. Yet, while the quantum response function is
well defined and can be rigorously calculated, the problems
appear after the classical limit is taken. The key question is
whether the classical limit is taken appropriately. In the
present Letter we follow the derivation of the classical
limit from the phase space representation of quantum
mechanics to show that the simple classical limit of the
response function in terms of Poisson brackets is not valid
at long times. The upper time limit for the quantum-
classical agreement, i.e., the crossover time, is found to
be inversely proportional to system’s anharmonicity.

The nonlinear response P"(¢) to the nth order in the
applied field E(z) is described by

PU(r) = [oodt,,...fmdtlE(t— t)...E(t—1t, —...t,)
0 0
X RM(t,, ..., 1)), )]

with the nth order response function R™ [10]

RM(t,,....t])= <%>n
X([...[a(7,), a(7,-1)] ..., a(7y)] a(0)]),
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where 7, = Y7, t; and the operator &(X(¢), p(r)) stands
for the polarization operator or the dipole operator. The
classical expression for the response function is obtained
by replacing quantum commutators with Poisson brackets
and neglecting the higher-order terms in the Planck con-
stant (7 — 0)

R™(t,....t})=(=1)"

X Aalr,) alr, )} alr)) a(O)h),
3)

where {...} are Poisson brackets. But can we neglect
higher-order terms? To answer this question we examine
the classical expansion of quantum mechanics. We begin
with the Weyl-Wigner-Moyal symbol-calculus approach
[11-13], which introduces Weyl transforms (scalar func-
tions) instead of operators and the Wigner function instead
of the state vector using the rule

symb (A) = a,(p, q)

= /dve(‘/h)p'v<q - %V

The noncommutative Moyal product that corresponds to
noncommutative product of quantum operators follows
directly from the definition of the Weyl transform

. 1
A|q+§v>. )

symb (A B) = a;, * b,

[ ERE)
" p<2[8q6p op

o1

e o

where the arrows indicate the direction of operation of the
derivative. The quantum commutator [A, B] in the phase
space representation then corresponds to Moyal brackets

[oX)
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nfo o a0
{Clh, bh}h = ay * bh - bh * ap = 2th Sin(- |:— -_— — — _:|)bh

dq dp  Ip Iq

<8ah Bbh 8ah th> Lh3
=l — ——— ") —

2| dq op Jp 9q
EREEEEREAS
—ay| ————— | by t+ -, 6)
24 adq dp Jp dq

where the first term is the classical Poisson brackets multiplied by ¢. Hence, an appropriate phase space representation of

the quantum response function takes the form

ROty ... 1)) = (—) [ dpdapy(p, QXL . {an(r,), @4 (Tu Db . (Tl an(O)hy %

h

Equations (7) and (2) are equivalent expressions of quan-
tum response functions.

The evaluation of the classical limit of Eq. (7) can be
illustrated for quasiperiodic systems. We introduce the
semiclassical wave function[14—-20] correspondent to ei-
genvalue E,, = H(J, = nh + Bh):

(@ln) = 2m)N/2eme, ®)

where N is the dimensionality of the system and 3 is the
Maslov index. We use semiclassical wave function (8) to
express the Weyl transform in action-angle basis (J, @),
[14-17]

)= [ dgeme{e - SE|A e %§>

= > alJ,)e*e. ©)
k

The latter is just a Fourier decomposition of the classical
function a(J, @) = Yy ay(J)e*#. Thus, the Weyl symbols
in semiclassical representation (8) are classical functions
with quantized actions J. Angle variables ¢ obey classical
dynamics as required by WKB approximation (8). The
expression (7) thus reads

RE”)(tn,.-.,t1)=<%>ngfd¢p(Jk,<p)

X {{ . ~{a(7—n)’ a(Tnfl )}h’ cee CY(’T])};,, a(o)}h
(10)

which differs from the classical expression (3) in the use of
the Moyal bracket
nro 9 a 9
{a, b}h = 2ta Sin<§ |:£ a_J - a_J %:|>b (11)
The classical limit of the Moyal bracket {. .., ...}, fol-
lows directly from Eq. (6) by omitting the higher-order
terms in the Planck constant and preserving only the first
(Poisson-bracket) term: limy_of...,...}, = a{...,.. }.
Yet, this simple limit is not valid for response theory.
The higher-order terms in the expansion (6) can be omitted
only if the prefactor of 7" is finite. However, this is not the
case in response theory. The expression for the response
function contains commutators of the same operator &(r)

szaluated at different times [ &(), @(0)]. The expansion (6)
of the Moyal bracket {a(z), @(0)}; thus leads to the nth
order stability matrix M = ﬁ in each 7" term.
For the classical motion, stability matrices diverge as O(¢")
for integrable systems and exponentially for chaotic ones.
Every /" term in the series of {a/(z), a(0)}; in Eq. (6) carries
a time-divergent factor which becomes infinitely large as
t — oo, implying that at sufficiently long times a small A"
will be compensated by large ¢". Thus, time divergence of
the classical response function arises from the simple limit
in the form (3) neglecting terms which can be larger than
the leading term at long times. Strictly speaking, taking the
usual classical limit #— O we interchange the limits
lim,_,, and lim;_,, which are noncommuting. The non-
commutativity of the limits £ — oo and 7 — 0 was pointed
out by Berry in [21]. The response function (7) is well
defined for any moment of time, but the exchange of the
two limits and the subsequent elimination of higher-order
terms of Moyal bracket expansion (6) lead to the well-
known problem of time divergence [1,3,4,8,9]. It is worth
noting that we do not meet the same difficulties with the
limit {a, b};, — th{a, b} (and thus with the correspondence
principle [A, B] < th{a, b}) in equilibrium applications
where the commutators are evaluated at the same moment
of time. Without the presence of stability matrices, the
elimination of the higher-order terms in 7 is justified.

Our main argument is that response functions can be
systematically evaluated with classical observables by cal-
culating higher-order terms of Moyal expansion (6). Re-
summation of the infinite terms in the Moyal bracket ex-
pansion converges to a semiclassical result which has one-
to-one correspondence to the quantum response function.

We demonstrate the above argument by first establishing
the convergence of series for {a(t,), b(¢;)};, in Eq. (10) for
regular systems. Fourier decompositions of a(f) and b(r)
reduce expression (11) to

{a(ty), b(t)}, = Z{e(hm/z)(a/“)(ane““P(’Z))}

n,m

X {e*(hn/Q)(a/aJ)(bm emep(tl))}

— Z{e_(hm/z)(a/a”(ane”“P(’z))}
n,m

X {em/200/3D)(j, pumeli))) (12)
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where ¢(f) = ot + ¢y with ® = JE/d]J. Considering the
quantum matrix element {v|[a(z,), b(t,)]|v)

(vllae), b(e)lv)y = > (vlan)lv + n)v + nlb(t))Iv)

= (Vlb(t)Iv + n)v + nla(s)Iv),
(13)

it follows from Eq. (12) that its classical correspondence
takes the form

fz{a(fz) b(fl)}h(z )N 0:Z(afneﬂnwz|J=J,,+(hn/2))

X (bpe™ " | =y, +(tn/2)
- Z(Clne DOL| 1y +(in/2)
n

(b_ne™ ™" =y, +(n/2):
(14)

which does not lead to a time divergence [in the last step
we have used the property of the translational operator
exp(A5)f(J) = f(J + A)]. As a result, the semiclassical
response function Eq. (10) maps to the quantum response
function (2) through the Heisenberg’s correspondence
principle [22,23] between the quantum matrix element
and classical Fourier component: (v + n|&(f)|v) <
a, e |; 1./ We recently used phase space quantization
to arrive at the same quantum-classical correspondence
and generalized the correspondence principle to nonlinear
response functions [3,24]. Surprisingly, the semiclassical
expression (10) or equivalently Eq. (14) still leads to exact
quantum results for several exactly solvable systems in-
cluding the harmonic oscillator and Morse oscillator dis-
cussed later [3,24].

Let us estimate crossover time when the quantum me-
chanical effects in the # expansion of Moyal brackets
{a(?), @(0)};, start to play a significant role. For a 1D
system the first two terms of the Moyal bracket expansion
(11) are

{a(t), a(O)} =« h(

Lh3 alt )<

da(?) 9a(0)  da(t) da(0)
0l o aep )

90 9 9\
20 I N 0+

5)

With Fourier decomposition of a(r) the derivatives
da(r)/dJ in the above expression result in time-divergent

terms tmwa e"@ttieo - At long times, the first term

(Poisson-bracket term) in (15) is of the order of the diver-
8a(l) |

gent derivative |5 tl et 32 |; the second is of the

h1ghest divergent derivative |2 a‘;ﬁ” | ~
Plam (22)3], where |ar,| is the largest spectral compo-

nent. Obviously the second term becomes significant when

order of its
(aa)

it is of the same magnitude as the first term 71£| oy, |? 4% =
13 83| e [7(42)%, giving the crossover time

—_—

1~

7l (16)

i

For the harmonic systems dw/dJ = 0 the crossover
time (16) is infinite, implying that the response functions
of harmonic systems can be successfully calculated using
the single Poisson-brackets term. Equation (16) justifies
the known equivalence of quantum and classical response
functions for harmonic systems. However, any anharmo-
nicity dw/dJ # 0 leads to the finite value of the crossover
time #* (16), and the crossover time decreases with anhar-
monicity [25]. Beyond the critical time, ¢ > ¢*, one should
expect the failure of the correspondence principle
[a(?), a(0)] « th{a(t), @(0)} and thus the need to include
higher-order terms in the expansion of the Moyal product.

We illustrate the above arguments with the linear
response function of constant-energy Morse oscillator
with the Hamiltonian H = —% dd—; + D(1 — e779)2. In
Ref. [3], we introduced the one-photon polarization opera-
tor & = (b + b™) with its classical analog [3] a(J, ¢) =

2,/4X‘(J/1h22);(1/h) cos(p), where ¢ = (1— 2’;;J)wot + @,

= /2Do?/u, and y, = ho/\/SDw. The quantum lin-

ear response function for a given energy state E,, is then

RO(r) = (%)<u|[a(z), a(0)]lv)

|
~

2
= m[v + 1= x,(v+1)]
. 2
X Sln{[l - 2Xe(l) + 1)](1)0t} - m
X [v — x,v?*]sin{(1 — 2y, v)wyt}. 17

The semiclassical expression (10)—(14) gives exactly the
same result, when the quantization condition J, = k(v +
1/2) was used. The simple classical limit in Eq. (3) yields

R0 =~ [tat.a0) Q=0 1 1ag,
2
=m[1_/\’e(zv+1)]
x sinf[1 — y,(2v + 1)@@—%
X[1=(1—Qu+1)yx,)]Isin{[1— x,Qu+1)]wyt},

(18)

which diverges linearly in time. The dependence of the
semiclassical result (10) on the number of terms in the
Moyal bracket expansion is shown on Fig. 1 for the one-
dimensional Morse oscillator with parameters w, = 35,
X = 0.005, 7 = 1, and linear polarization operator.
The agreement between quantum (2) and classical (3)
linear response functions indeed starts to fail after time
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FIG. 1. Linear response functions of constant-energy Morse
oscillator. The solid lines represent quantum results from Eq. (2)
and the dashed lines represent semiclassical result from Eq. (10)
for the case of: (a) single Poisson-bracket term in the expansion
of Moyal bracket; (b) two lowest order terms of the expansion (%
term and %3 term); (c) three lowest order terms (%, 13, #° terms);
(d) four lowest terms (&, i3, 1>, 7 terms).

r=1/(nl22]) = 1/(2x.wo) = 20 [Fig. 1(a)]. As we sys-
tematically include higher-order terms of Moyal bracket
expansion the agreement with the quantum result extends
to longer times. The account of all terms of Moyal bracket
expansion gives the exact quantum result.

Let us estimate the crossover time 7* for real systems,
liquids CS,, and Xe. The curvature of Morse potential
Vy(r) = (e(e?1=7/7) — 1)2 — €) coincides well with
Lennard-Jones potential V,, = 4e((¢/r)'? — (£/r)%) for
o = 6 with r, = /2¢ [26]. For CS, molecule with u =
76 a.u. and mean Lennard-Jones radius ¢ =~ 3.5 A we have
=12y, 0y = w(y2€)?/ho> =5 ps. For Xe, u=
131 a.u. and & = 3.91 fA, thus 7* = 10 ps. Both times are
on the same order of the time scales of the reported experi-
ments and MD simulations [5,7]. However, MD simula-
tions of real systems do not observe the divergence of the
response functions. It was demonstrated in [27] that the
response functions for irregular dynamics may converge.
Research is being continued to find the quantum-classical
correspondence for chaotic and dissipative systems. Yet,
the crossover time ¢* derived in this Letter remains a good
estimation for the time interval of the validity of the
classical approximation to the exact quantum results in
response theory.

We have shown that the problem of the time divergence
of the classical response function stems from the inter-
change of noncommuting limits # — 0 and ¢ — oo, which
results in the elimination of the higher-order terms of the

Weyl transform of quantum commutator [A(7), B(0)]. The
proposed semiclassical expression (10) removes the clas-
sical divergence. The accuracy of classical dynamics can
be systematically improved by incorporating higher-order
corrections beyond the crossover time.
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