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We propose a theory of low temperature thermal transport in nanowires in a regime in which competition
between a phonon and flexural modes governs the relaxation processes. Starting with the standard kinetic equa-
tions for two different types of quasiparticles, we derive a general expression for the coefficient of thermal con-
ductivity. The underlying physics of thermal conductance is completely determined by the corresponding relax-
ation times, which can be calculated directly for any dispersion of quasiparticles, depending on the size of a
system. We show that, if the considered relaxation mechanism is dominant, then at small wire diameters the
temperature dependence of thermal conductivity experiences a crossover from T1/2 to T 3-dependence. Quanti-
tative analysis shows reasonable agreement with resent experimental results. © 2005 Pleiades Publishing, Inc.

PACS numbers: 63.20.Kr, 63.22.+m, 65.40.–b
Low-dimension materials have attracted consider-
able attention in recent years, particularly in view of
their potential applications in electronic devices [1, 2].
Many theoretical and experimental studies of nanow-
ires and nanotubes are centered on the properties of
electronic transport. However, it is now realized that the
thermal properties of nanomaterials are also important
for applications [3–5]. It is of special interest to
increase thermal conductance in micro- and nanode-
vices [1, 6, 7]. In this paper, we study thermal transport
in nonmetallic systems, in which heat is transported by
thermal excitations only. In addition to the practical
importance of such studies, thermal transport in nanow-
ires is interesting from the fundamental point of view.
Recent theoretical [8] and experimental [9] findings
proved the existence of a quantum of thermal conduc-
tance in ballistic regime, which is similar to a quantum
of electronic conductance. The state of experimental
and theoretical understanding of thermal transport in
nanoscale systems is comprehensively discussed in
review [10]. Recently, D. Li et al. [11] reported an
accurate measurement of lattice thermal conductivity in
silicon nanowires for a wide range of temperatures and
wire diameters. They demonstrated a significant influ-
ence of the system size not only on the magnitude of the
thermal conductivity coefficient, but also on its temper-
ature dependence. It is well known that, for large
enough diameters of the wire and diffusive phonon–
boundary scattering, the thermal conductivity coeffi-
cient at low temperatures is proportional to T3. But for
small values of the wire diameters, experiment [11]
shows a clear crossover from cubic to near linear
dependence on the temperature. In the present paper,
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we consider one particular relaxation mechanism that
can explain the observed crossover.

Recently, Mingo [12] carried out an accurate numer-
ical study of the thermal conductance of silicon nanow-
ires to explain the decrease of the thermal conductivity
coefficient with wire diameter observed in the experi-
ment. He assumed that all the effects can be explained
by the reconstruction of the phonon dispersion, where
realistic phonon modes obtained from MD simulations
were applied to general expression of the thermal con-
ductivity coefficient. His numerical analysis shows
excellent quantitative agreement with experiment [11]
for large enough diameters at high temperatures. As the
system size becomes smaller, the approach fails to
describe a sharp decrease of thermal conductance as
well as qualitative change of its temperature depen-
dence. This is likely because Matheissen’s rule has
been used for evaluation of the phonon lifetime, which
has rather restricted range of applicability (see, e.g.,
[13] and references therein).

As was noted in [14], a decrease of the temperature
increases the characteristic phonon wavelength and
reduces the scattering probability at the boundary sur-
face. This leads to a modification of the phonon spec-
trum. For ideal wires, this is represented by a set of
branches with energies proportional to a one-dimen-
sional (1D) momentum directed along the wire. Thus,
the standard theory of thermal conductance in dielec-
trics and semiconductors has to be modified to account
for low dimensionality effects as well as phonon spec-
trum modification at low temperatures. Thus, to under-
stand thoroughly the physical processes occurring
inside the nanowires with decreasing sizes, we need an
analytical theory to account for different mechanisms
© 2005 Pleiades Publishing, Inc.
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explicitly, such as dispersion reconstruction and
restricted geometry.

To approach the problem, we consider sufficiently
low temperatures in which the quasiparticle states of
“acoustic” branches are thermally populated (e  0
when p  0). The corresponding acoustic branches
have the following dispersion relations [14, 15]:

(1)

where ei stands for the energy of a quasiparticle, pi is
the corresponding momentum, a is the wire diameter,
and u1 and u2 are the characteristic velocities. The first
expression in Eq. (1) is the phonon dispersion, and the
second expression is the dispersion of the flexural
mode. The nature of flexural modes comes from the fact
they are analogous to the bending modes of classical
elasticity theory or to the antisymmetric Lamb waves of
a free plate [16]. The appearance of such a mode is just
a direct consequence of restricted geometry, and under
some conditions it can be considered as the only size
effect in thermal transport properties. Strictly speaking,
there are two modes for each type of dispersion, but we
do not account for them separately since their contribu-
tions are qualitatively the same. Consequently, we need
to solve the kinetic problem for a two-component gas of
quasiparticles. It is well known [13, 17–20] that using a
simple Callaway formula to estimate the thermal con-
ductivity coefficient in two-component systems some-
times leads to serious confusions. Simple summation of
the relaxation rates, as is done in the majority of theo-
retical works, is questionable under many physical con-
ditions. The dependence of the kinetic coefficients on
different relaxation times is much more complicated in
reality. An accurate method for calculation of the diffu-
sion coefficient in a two-component gas of quasiparti-
cles was proposed in [20]. Here, we extend this formal-
ism to the thermal conductance problem. To start with,
we consider a system of two types of quasiparticles.
Their kinetics is described by equations for correspond-
ing distribution functions fi:

(2)

where Cij(fi, fj) is the collision integral of thermal exci-
tations and Ci3(fi) is the collision integral describing the
scattering processes between quasiparticles and scatter-
ers; v i = ∂ei/∂pi is the group velocity of the correspond-
ing thermal excitation. The main purpose of our theory
is to obtain analytic expressions of thermal conduc-
tance, which are applicable to quasiparticles with arbi-
trary dispersion relations. In other words, the explicit
dispersion relations in Eq. (1) are needed only at the last
stage when calculating corresponding relaxation times
and thermodynamic quantities. As usual, we seek a
pefturbative solution of system (2) in the form

(3)

e1 u1 p1, e2 u2a p2
2,= =

v i

∂ f i

∂z
------- Cij f i f j,( )

j 1=

2

∑ Ci3 f i( ), i+ 1 2,,= =

f i f i
0( ) δ f i,+=
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where  is the local equilibrium Bose-function and

δfi !  represents a small deviation from the equilib-
rium. The perturbation term can be conveniently cho-

sen to be δfi = –gi∂ /∂ei with gi the new target func-
tions. After the standard linearization procedure,
Eq. (2) can be written in the following matrix form:

(4)

where

The two-dimensional (2D) collision matrix  can be
decomposed into a sum of three terms, corresponding

to different relaxation mechanisms—  =  +  +

—where , with matrix elements (ij = Cikδij +
Cij(1 – δij) (k ≠ i), describes the relaxation due to inter-

action between quasiparticles of different types; 
(6ij = Ciiδij) describes collisions between identical qua-

siparticles; and  (8ij = Ci3δij) describes all the other
relaxation mechanisms, including scattering on defects,
boundaries, umklapp processes, etc. Here, Cij represent
linearized collision operators [20].

Let us define the scalar product of two-dimensional
bra- and ket-vectors as follows [20]:

(5)

where (φk | and |χk) are the correspondent one-compo-
nent vectors and dΓ is the element of phase volume.

Under this condition, the collision operator  becomes
hermitian. System (4) is a system of nonuniform linear
integral equations. According to the general theory of
integral equations, the target solution |g〉  must be
orthogonal to the solution of corresponding uniform

equations |φuni〉 . It is therefore convenient to write the
formal solution of (4) so that the orthogonality condi-
tion (〈g|φuni〉) is imposed explicitly in the solution. For

this purpose we define the projection operator  onto

the subspace orthogonal to the vector |φuni〉 ,  = 1 –

,  = |φuni〉〈φuni|. As a result, the formal solution of
system (4) can be written in the form

(6)
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The heat flux density due to thermal excitations of
different types is given by the expression Q =

v kfkdΓk. Using relation (3) and the defini-

tion of scalar product (5), Q can be rewritten as Q =
〈φκ |g〉 . On the other hand, the effective thermal conduc-
tivity coefficient is defined by the relation Q =
−κeff∂T/∂z. Comparing the above two expressions for Q
and using formal solution (6), we obtain

(7)

To derive an exact and analytical expression for thermal
conductivity coefficient (7), it is necessary to introduce
a complete set of orthonormal 2D vectors |ψn〉  (n = 1, 2,
3, …) belonging to an infinite-dimensional Hilbert
space with scalar product (5). In principle, the particu-
lar choice of the basis is not essential, but for conve-
nience of calculations it is useful to specify at least four
of them. It is convenient to chose the first of them as
corresponding to the total momentum of quasiparticles
and the second as orthogonal, but still linear in momen-
tum [20]:

(8)

where ρi = (pi |pi) is the normal density of the ith com-
ponent, ρ = ρ1 + ρ2. The third and the fourth vectors
correspond to the energy flux,

(9)

where

(10)

and 1κj =  is the corresponding normaliza-
tion coefficient. The partial entropy of quasiparticle
subsystem Sj in Eq. (10) is given by the relation

(11)

Formally, the kinetic problem of a two-component
quasiparticles system can be solved in the above basis

set. The inversion of the operator matrix  in Eq. (7) is
similar to the procedure described in [20]. The final
result contains infinite-dimensional nondiagonal matri-
ces. To obtain closed form expressions, we must use
some approximations, a correct τ-approximation [19]
or Kihara approximation [20–23]. In some physical sit-
uations, we are able to obtain closed analytical expres-
sions. It is rigorously proved in [20] that, in the case of
quasi-equilibrium within each subsystem of quasiparti-

ek∫k 1 2,=∑
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cles, the corresponding transport coefficient can be
obtained in close analytical form. This is a reliable
approximation when the low temperature relaxation is
mainly governed by defect scattering processes. The
approximation formally implies that all the matrix ele-

ments of matrix  in Eq. (7) tend to infinity. The ther-
mal conductivity coefficient in this case can be obtained
in the form κeff = κF + κD. Here we separate the flux part
of thermal conductivity coefficient κF = τFS2T/ρ with
S = S1 + S2, which approaches infinity when the quasi-
particles do not interact with scatterers, and the diffu-
sive part κD = τD(S1T/ρ1 – S2T/ρ2)2ρ1ρ2/Tρ. The corre-
sponding relaxation times are given by

(12)

and

(13)

Relaxation times contained in formulas (12) and
(13) are defined by

(14)

We emphasize that these are not actual scattering times,
which are momentum dependent, but relaxation times
associated with the corresponding scattering mecha-
nisms. Once we obtain the particular scattering rate
νkj(pk) from standard scattering theory, we can replace
the true collision operator Ck with νkj(pk), so that the
corresponding relaxation time can be calculated by

(15)

As can be seen from the derived formulas, the coef-
ficient of thermal conductivity contains different relax-
ation times in a rather nontrivial combination. If one
component (say set S2 = 0, ρ2 = 0) drops out, we recover

the usual result,  = τ13 T/ρ1. For phonons with lin-
ear dispersion e = vp, κF reduces to the well-known

result  = Cphv 2τ13/3, where Cph = 3Sph is the heat
capacity of phonon gas.

The main advantage of our approach is its universal-
ity. In fact, up to this point we have not restricted our-
selves to any particular dimensionality of the system or
any quasiparticles dispersion. All the necessary infor-
mation is contained in the corresponding relaxation
times and thermodynamic quantities. This formalism
allows us to analyze contributions from different relax-
ation mechanisms to the total thermal conductivity

6̂
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coefficient. Given the dispersion relations of quasipar-
ticles, we can easily calculate all the quantities con-
tained in (12) and (13).

With Eqs. (12) and (13), we are able to address the
competition between relaxation processes of the flex-
ural and phonon modes. Glavin [14] noted that such a
competition can be essential at extremely low tempera-
tures if the dominant relaxation mechanism is elastic
scattering on defects, where, he argued, the thermal
conductivity coefficient would scale as T1/2. Our
approach allows us to study this competition compre-
hensively. In particular, we predict a strong dependence
of the temperature scaling exponent on the wire diame-
ter. The standard Fermi golden rule approach [14] gives
the momentum dependent scattering rates for different

modes ν13 = W13 , ν23 = W23 , where Wkj are

the corresponding scattering amplitudes, which depend
on the physical properties of particular material. Using
Eq. (15), it is easy to show that the corresponding relax-
ation times scale as

(16)

Different temperature dependences of relaxation
times lead to a strong competition between two physi-
cally different mechanisms of thermal conductivity—
flux and diffusive. The dominance of one over the other
strongly depends on the wire diameter at a given tem-
perature. To make some specific conclusions, let us
summarize the approximations done and specify the
range of validity of the proposed theory. We consider a
situation in which thermal excitations are multiply scat-
tered elastically while being transferred through the
wire, so that other scattering mechanisms are strongly
suppressed by interaction with defects. Only for this
case were we able to drop relaxation within each sub-
system of identical quasiparticles to obtain closed
expressions (12) and (13). The influence of the bound-
ary is accounted for in the dispersion of the flexural
mode and in the dimensionality of the system. The
range of temperature is supposed to satisfy the relation
T < ∆e, where ∆e ~ 1/a is the characteristic value of the
frequency gap between the adjacent phonon branches.
For a larger temperature, we cannot use acoustic modes
(1) only, but need to account for higher branches.

In Fig. 1, we compare our theoretical results with
the experimental data from [11]. We have chosen the
unknown parameters W13 = 1.2 × 10–44 m5 s–4 and W23 =
0.9 × 10–44 m5 s–4 to fit data for a = 22 nm. Deviations
from the experimental data for large diameters and tem-
peratures show the restriction of the applicability of our
initial approximations. They arise from the Debye
approximation and simplified dispersion expression.
Additionally, when the diameter of the wire increases,
the mechanism we consider becomes less dominant. To
be more precise, we need to include higher excitation
branches as well as other relaxation mechanisms. How-

p1/2

u1
3a3/2

------------- 1

pu2
3a3

--------------

τ13
1– a 3/2– T1/2, τ23

1– a 5/2– T 1/2– .∝ ∝
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ever, our approach allows us to understand the physics
of the processes in the region under consideration. It is
clear that the observed crossover is the result of compe-
tition between κF ∝  T1/2 and κD ∝  T3. For smaller diam-
eters, κF is strongly dominant in a wide range of tem-
peratures as shown on Fig. 2 for wire diameter a =
2 nm. Figure 3 demonstrates a complete crossover from
T1/2 to T3 dependence for a nanowire of a = 30 nm. It
can be seen that the T dependence between 20 and 40 K
is nearly linear, which was observed in experiment
[11]. It should be noted that T3 dependence of κD cannot
be interpreted by simple analogy with the bulk case. It
comes not from a specific heat directly, but from differ-

Fig. 1. Thermal conductivity coefficient calculated from
Eqs. (12) and (13) for different values of nanowire diameter.
Experimented data are from [11].

Fig. 2. Comparative contribution from flux and diffusive
parts of thermal conductivity for a 2-nm wire.
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ent sources, including competition of the relaxation
times in Eqs. (12) and (13).

In summary, we derived the general analytical
expressions (12) and (13) to explicitly calculate the
contributions of different scattering mechanisms to the
total relaxation of the system. The simple expressions
clarify the essential effects leading to the observed
behavior of the thermal conductivity coefficient. It is
clear that the particular dispersion laws (and their
reconstruction) affect scattering rates and thermody-
namic quantities. Restricted geometry and low dimen-
sionality lead to additional scattering mechanisms.
Note the information about dimensionality is naturally
included in the particular form of phase space element
dΓi. Such a formalism helps to distinguish effects from
different scattering mechanisms. When applied to a
regime in which phonon modes compete with flexural
ones, our theory agrees favorably with the available
experimental data. Furthermore, we showed that the
thermal conductivity coefficient changes from approxi-
mately T1/2-dependence to T3-dependence with increas-
ing temperature. In view of our theoretical results, it
will be useful to investigate smaller diameters or lower
temperatures with fixed diameters in experiment to bet-
ter reveal the crossover from T3- to T1/2-dependence.
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Fig. 3. Crossover from T1/2- to T3-dependence of κeff for
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