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Stability Analysis of Three-Dimensional Colloidal Domains: Quadratic Fluctuations
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Three-dimensional domain patterns can self-assemble in a charged colloidal suspension with competing short-
range attraction and long-range Yukawa repulsion. Following the investigation of the ground-state domain
shapes in our previous paper, we study the stability of isolated spherical, cylindrical, and lamellar domains
with respect to shape fluctuations on boundaries. In the framework of the continuum model, we expand the
free energy variation to quadratic terms under the constraint of constant volume. For the three shapes (sphere,
cylinder, and lamella) discussed, domains with equilibrium sizes are stable with respect to shape fluctuations,
and the stability of domains decreases as the spatial symmetry decreases.

. Introduction daries!®252° On the basis of this simplified model, we
investigated ground-state colloidal domains in spherical, cylin-
drical, and lamellar shapes in ref 20. The most stable domain
shape and structure are determined by the global minimum of
the energy density, and a phase diagram of the shape transfor-
mation is obtained?

A complete thermodynamic study of domains requires the
|stability analysis with respect to thermal fluctuations, which
assist the evolution from a homogeneous mixture to spatially
modulated phases and induce the shape transformation of
domains. At high temperatures, thermal fluctuations can be
described by density fluctuations of colloidal particlé?-30
whereas at low temperatures, thermal fluctuations can be
effectively described by shape fluctuations on sharp boundaries
separating domains and dispersing mediait. 32 These two
descriptions are both widely applied in the literature. In this
paper, we focus on the low temperature and density regime
where each domain can be treated as an isolated system. Our
analysis of the domain stability is based on the evaluation of
the free energy variation with respect to small shape fluctuations.
When the free energy variatia¥* is positive, the domain has
a restoring force to recover its original shape so that it is a
00 r<o . .

(meta)stable state. Otherwise, the reference shape is unstable,
ur)={ ¢ R o<r=ilo @) and fluctuations induce spontaneous and irreversible transforma-
u () =Arte™ r>jo tions. For the reference shape, the sigdBfdetermines stable
and unstable regimes with respect to shape fluctuations. To
where the hard-core repulsion is included, since colloidal obtain dF, we follow the theoretical method used by Deutch
particles cannot penetrate each other. and Low in 2D lipid systems&’ Shape fluctuations are expanded

Although eq 1 is a well-defined pairwise potential for studying in successive orders by fixing the domain volume and are then
thermodynamic properties of domains in charged colloidal used to calculated the free energy variation within the quadratic
suspensions, analytical calculations are complicated in providing approximation.
useful predictions. An alternative approach is to adopt the
continuum model where the summation over particles is Il. Continuum Model
approximated by the integral over space weighted by density.
For example, a mean-field continuum model has been used to

study the block copolymer by Leibfeand extended by Ohta colloidal particles andVy is the volume of system. With a

and Kawasaki® At low temperatures, boundaries separating . . . <N R
domains and dispersing medium are sharp, and the continuum-ontinuous colloidal number densipff) = 3;—,0(F —T), the

model can be further simplified by neglecting the colloidal sum over all the colloidal particles becomes an integral with

. . N _ =
density fluctuations except for abrupt changes across boun-the _vyelghtp(“r'),.l.e., Zi_Tl fi=/ d? P T m wherer, IS the
position of theith particle andf is an arbitrary function. At

tPart of the special issue “Irwin Oppenheim Festschrift”. high temperatures, the system is homogeneousp@fdis a
* Email: jianshu@mit.edu. uniform function with the constant value p§. Below a critical
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In many self-assembly systerhis, the formation of domain
patterns can be explained successfully by the competing
interactions on different length sca&3? In a previous papet’
we studied ground-state domains in charged colloidal suspen-
sions based on an effective pairwise collemblloid interaction
with a short-range attraction and a long-range repulsion. The
short-range attraction can be modeled by a square-well potentia
with depthe and the range ing{ A0), whereo is the diameter
of colloidal particles. By adjusting parametersand A, the
square-well form can provide qualitatively the same results as
other potential form8!-22Because of the nature of the screened
electrostatics in charged colloids, the long-range repulsion is
described by the Yukawa potentf&l2*which is different from
the dipole-dipole interaction in two-dimensional (2D) lipid
systems>25-29 The repulsion strength is denoted Ayand the
screening length is represented hyTo be consistent with ref
20, all the length variables in the paper are dimensionless in
units of . The effective potential between two colloidal particles
distanced by is given by

The system we study is a colloidal suspension with a fixed
number densitypo = N/Vio;, WhereN is the total number of
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temperature, colloidal particles aggregate into domains throughwith respect to shape fluctuations for spherical, cylindrical, and
a self-assembly process, go@) becomes a periodical function  lamellar domains.

in space. At low temperatures, domains and dispersing medium

are separated by sharp boundaries, across vl fumps from [ll. Spherical Domains

a nonzero value to zero. Assuming that colloidal particles are

uniformly distributed inside domains, the density function is As shown in our previous papét spherical domains are

energetically preferred in the low-density and weak attraction

reduced to limits. In this section, we analyze the stability of spherical
~ P, inside domains domains and study the shape transformation driven by spherical
p(T) = {p2 outside domains (2 harmonic shape fluctuations.

We first introduce a small fluctuatiofR(€2) for a reference

wherep; is set to be zero in this paper for convenience. The SPherical domain with radiug. Following Deutch and Low’s
neglect of density fluctuations in eq 2 is acceptable at low approach we expand the shape fluctuation in successive orders
temperatures, since shape fluctuations are dominant as discussed
in the Introduction. OR(Q) = OR,(Q) + IR (Q) + *+* (6)

In the mean-field framework, the short-range attraction
contributes to bulk adhesion and surface free energy. The bulkwhere|dRy| > |0R;| > ---. The same expansion will be applied
adhesion, is expressed Bg = / dr p(F) fa(r), wherefa(r) is for the stability analysis of cylindrical domains in the next
the adhesive free energy density. Consistent with the simplifica- section. According to this shape fluctuation, the domain volume
tion for the density functiorfa(r) is approximated by its average  formally changes fromVgo = 47R%/3 to
value,fa = —ne/2, wheren; is the average contact number per
particle. Since the bulk adhesion in a unit system volume, 1 3
FalV = —povoncel2, is a shape-independent constdht,does Vy= 59{ dQ[R+ 0R(Q)]
not contribute to the shape transformation and will be neglected.
For a single domail™ with surface ared, its surface free OR(Q) 6R2(Q) 6R3(Q)

R + = + 0O = (7

energy is given byFg(I") = $s, df y(") ~ yS:. Although the ~VyoT R'$ dQ

surface tensiory is a shape-dependent function in general, we
apply the zeroth-order approximation and consigeas a
constant. As an implicit function of temperature, the surface
tension decreases as temperature increases.

The integrated contribution of the long-range Yukawa repul-
sion to free energy can be simplified to

wheref dQ = /7 sin0 do [>" d¢ is the integral over the solid
angle Q. The volume of a stable domain remains the same
with respect to fluctuations, i.e\q = Vgo. On the basis of
this constraint, the leading-order fluctuation satisfies
¢ dQ ORy(Q) = 0, and the next order satisfigfRy(Q) =

N Ng Ng —éRf,(Q)/R. Using spherical harmonicsim(€2), we expand
> w(ry) = ZF(Y”(m) + 5 Fmn (39 ORl(&)as
<=1 m= m<n=1
o 0 |
wherer;; = [f; — Tj| andNg is the total number of domains. In ORY(Q) = Z OR(l, Q) = Z CrYim(S2) (8)
the above equatiork{"(m) is the intradomain repulsive free = ==

energy for domaid',
(72 o(F) wherec; —m = (—1)"cy, is required, sinc®Ry(RQ) is real.
Wy — - o Py plry) Next, we calculate the variation of the free enefgyvith
Fyi(m) frm drlfrm dr 2 U (T, = Tol) (4a) respect to the shape fluctuatiéR(Q). In the low-density limit,
@ ) ) . . the free energy of a colloidal domain is approximated as a sum
whereasFy’(m, n) is the interdomain repulsive free energy of the surface free energys and intradomain repulsioR?.

between two domaind;, andI'y With a constant surface tensign the variation ofFs only
@ N - - L depends on the change of surface &g&Similar to eq 7, the
Fy(m, n) = frm drlfrn dr,p(Ty) p(T,) uy(IT, — T,|) (4b) surface area difference is truncated to quadratic terms

In the low-density limit, the distance between a pair of domains 03, = ¢ dQ{[R+ oR(Q)]
is much larger than the characteristic domain size, so that each

domain can be treated as an isolated system, and the collective \/[R(Q) +ORQ))*+ V5 0R(Q))* — R}
contribution of Fgf)(m, n) is ignored in the lowest-order ~ § dQ[|V; 6R0(Q)|2 — SR Q)] ©)
~ 3 0

approximation. The resulting effective free energy for a single

domain is written as ) ] )
whereVg is the gradient operator for the solid angdke Vo =

FaFg+ FP (5) d & + (sin 6)719,&,, and {&, &, &} are unit vectors in

spherical coordinates. The relatiaiRy(Q) = —0R%(Q)/R, is

In a more rigorous manner, the sum on the right-hand side of @Pplied to derive eq 9. Following the expansign in eq 8 and

eq 5 should be treated as energy instead of free energy. Sincehe spherical harmonic differential equatioW,>Y(Q) =

the entropic effects can be partially included by the temperature- —|(I + 1)Y,,(Q), we obtain the surface free energy variation

dependent surface tensipnand the configurational randomness

of domains is omitted for the case of isolated domains, we w

consider eq 5 as a good approximation for the free energy. In OFs =y, = VZ > I +1)-1] Cl®  (10)

the remainder of this paper, we will calculate the variatiof of =1 nF=—1



21344 J. Phys. Chem. B, Vol. 109, No. 45, 2005 Wu and Cao

In spherical coordinates, the intradomain repulsion is explicitly 1=2 =3
written as

2
p
F<Yl>=71f dQ, #dQ, [ dr, [ drrr%uy(ry,) (11)

where the distance between two vector&ndT, is given by

rz = [F1 — Tol = (2 + 15 — 2rirp cos y)¥2, and y is the
angle between these two vectors, gos= cos 0, cos 0, +

sin 01 sin 6, cosgy — ¢). After a straightforward but tedious
derivation, the quadratic truncation of the intradomain repulsion
variation is given by

OFY) =

R4P21 " .
£ A9, § d22, ORY(,) ORY2 U, (IRE, — R |) +
2 oo L 2 C=0.4R
P14 a0, de, [Fdr? oRyQIE,

2
V?ZUY(|_|:1 - RAQZD] (12)

where the gradient operator for vectois V¢ = 4,& + r Vg
in spherical coordinates. We apply the spherical harmonic
expansion and simplify eq 12 to

o |
OFY =R AS S G TORR - uRR] (13 T
=1 m=—I

where g(r1, ro) is defined using thelth-order Legendre
polynomial P((cosy) as

_1 pw ) Figure 1. Examples of spherical harmonic shape fluctuations with
g(ry,ry) =A ﬁ) dy sinyP,(cosy)u,(r;)  (14) ORy = cYio(Q). Three figures on the left side correspond te 2, and
the other three on the right side corresponti+o3. For figures in the

The details of this derivation are shown in Appendix A. The Same row, their values afare the same and shown on the left.

free energy variation for a spherical domain is the sum of eqs

10 and 13. 10
As discussed in section I, the sign of the free energy variation

determines the stablék > 0) and unstabledF < 0) regimes

with respect to a given shape fluctuation. Since the free energy

variation for a spherical domain is diagonalized in the basis of

Yim(€2), we focus on spherical harmonic shape fluctuations. 6

Several examples are shown in Figure 1. With respect to the g

Ith-order mode,0Ry(l, Q) = 31 __cmYim(), the critically e

stable radius} is determined by 4

ofl(l +1) - 1] + RIg(R, R) — 9,(R,R)] =0 (15)

where the effective attractiefrepulsion ratioo = y/npfAC“,

is introduced in ref 20. A direct result of eq 15 is that spherical 0 . 1 . 1 . 1 . I .
0 0.1 0.2 0.3 0.4 0.5

domains are always stable with respect to the first-order shape o

fluctut_:ltlon m_ode I(=1). _Here, we recall the equilibrium Figure 2. The stability curves for spherical domains. With respect to
spherical radiueq determined b the I(=2)th order spherical harmonic fluctuation mode, spheres are
dE stable below the corresponding stability curve, whereas they are unstable
— [O(1-a -3+ above this curve.

dReq ( )qu

(2R§q+ 5R§q+ 6R T 3)e Fa=0 (16) 2, ratios between critical and equilibrium radii are plotted as
functions ofa for the first three important fluctuation modes.

For conciseness, the notation of “equilibrium” is introduced With respect to thé&h-order shape fluctuation, spherical domains
loosely throughout this paper to represent the optimal state for are stable below the curve &i(a)/Re(ct), whereas they are
a given shape instead of the state with the global minimum free unstable above this curve. Since the valu&a$ at least twice
energy density. In addition, the syml®l is introduced, since  the equilibrium radius, spherical domains in equilibrium are
the original one Ry, in ref 20 will be used as theith-order always stable with respect to shape fluctuations in the quadratic
critical radius for cylindrical domains in this paper. In Figure approximation. In the weak attraction limi (—~ 0), the critical
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radiusR, is an increasing function df so that the second-order
shape fluctuationl (= 2) is the most important mode. Asymp-
totically, the ratio between critical and equilibrium radii is given
by

R

R,

lim
a—0

17)

2(2 + 1)(*+1 — )|+
5( — 1)

With the increase of attraction strength, the critical radfus
quickly increases. Above a critical poiry = (12 + | — 2)/
[2(12 4+ | = 1)], theIth-order radius approaches infinity, and
the associated free energy variation is always positive. For
o > 0 (=Y), all the spherical domains can resist shape
fluctuations in the quadratic approximation. Although other

J. Phys. Chem. B, Vol. 109, No. 45, 20051345

In cylindrical coordinate$& ., &, &}, vectors are expressed as
T=Tn+ Z&=rg&, + z&, and the explicit form of intradomain
repulsion for a cylindrical domain is

i [,

2
P1 pLi2

(1) —
R = 2 J-1r2

dz, [dfy [dF,
UY(\/(21 - 22)2 + T — ?D2|2)

:piALIdTDIdeDZKOUTDl_ Trpl) forL> 1( )
21

To derive the equation above, an integral identify, dz

exp(— VZ+HAIW 2+ = Ko([t]), is applied, wherdy(t) is the
mth-order modified Bessel function of the second kind. With

shapes such as cylinders become more energetically favorablgespect todR(#), we obtain the quadratic truncation for the

than spheres fom > 0.788 as shown in Figure 4 of ref 20, the
transformation from isolated spheres to cylinders cannot be
spontaneously achieved by shape fluctuations.

IV. Cylindrical Domains

In comparison to spheres and lamellae, cylindrical domains
are the most stable state for 0.788a. < 0.846 in the low-
density limit?° Shape fluctuations for cylinders can be separated

into two categories: about the radius and along the azimuthal . . . . »
d g ¢ 1O expancBFg(l) in the Fourier basis, we introduce the addition

dtheorem for Bessel functioffs

axis. In this section, we will investigate shape fluctuations abou
the radius. The azimuthal shape fluctuations will be discusse
together with shape fluctuations for lamellae in the next section
because of their spatial similarities.

Similar to the approach for spherical domains, we expand

the shape fluctuation in the Fourier basis under the constraint

of constant volume. For a cylindrical domain with radRiand
azimuth lengthL( > 1), a fluctuationdR(0) aboutR formally
changes the volume froiy o = 7R2L to

_pl2

Va= —L2

dz f; de j(;RMR(O) drr

6R2(9)]
2R

=Vyo+ RL S do 6R—Fg9) + (18)

where§ d§ = f%’ dé. Following the successive expansion,
OR(0) = ORy(0) + ORy(H) + -+, the constant volume constraint
for stable domains requires that the leading-order fluctuation
satisfiesf df oRy(#) = 0 and the next order satisfié&R(6) =
—6R(2,(6)/(2R). The leading-order fluctuation can be expanded
in the Fourier basis adRy(0) = ¥ m=oCm €™, wherec_, = ¢},
sincedRy(0) is real.

Using shape fluctuations in the expansion form, we calculate
the free energy variation. Truncated to quadratic terms, the
change of surface area with respect®(0) is given by

0S,~ L § dof \/[R—i— OR(0)]? + [0,(R+ OR(0)))* — R}

~ o 40[(0, ORY(O))? — RE(O)] (19)

where the relatiom®R(0) = —0R%(0)/(2R) is applied. The
expansion of the surface free energy variation in in the Fourier
basis is thus written as

2myl 2
OFg=y0S= e n;|cm|2(m2 -1) (20)

intradomain repulsion variation

OF) =
PrALR § d6, § d6, ORy(6,) ORY(0)K(IRG  — Re_|) +

p*ALRS d6, ORy(0,) ¢ dO, /E)er dry
O Kellrny, — R_)) (22)

Ko@lT o = Trol) = Z Kn@rg)l(@ars.) gme) (23)
m=—o

where (1) is the mth-order modified Bessel function of the
first kind, andrp> andrp< denote the larger and smaller o
and rpp, respectively. Substituting eq 23 into eq 22, the
intradomain repulsion variation is given by

OFY = 2(27)°IALR i|cm|2[Km(R)lm(R) — KRR
= (24)

As a sum of egs 20 and 24, the free energy variation for a
cylindrical domain is diagonalized in the Fourier basis so that
we will concentrate on harmonic shape fluctuations. Examples
in Figure 3 show that an original cylindrical domain can evolve
into m subdomains induced by tmath-order fluctuation mode,
ORo(M, 0) = cy €M + ¢, e7™. Since the stability of domains

is determined by the sign @fF, the mth-order critically stable
radiusRy, with respect tadRy(m, 0) is given by

é(mz — 1)+ KRRy — Ky(R)I(R) =0 (25)

The equation above shows that cylindrical domains remain
marginally stable with respect to the first-order mode=t 1).
To discuss higher-order fluctuation modes, we recall the
equilibrium cylindrical radiusRe°

dF

AR,

Here, we reemphasize that the equilibrium radius in the equation
above is defined only for cylindrical domains without the
consideration of other shapes. The result&Rafo)/Re(ct) are
plotted in Figure 4 as functions of the control parameter
Similar to fluctuation modes for spheres, tmth-order shape

01+ aRyy — 2Ky(Ryl4(Reg =0 (26)
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m=2 m=3 V. Lamellar Domains

With the lowest spatial symmetry, isolated lamellar domains

are energetically favorable in the case of strong attraction
c=0.IR (a0 > 0.846). In this section, we investigate the stability of

lamellae with respect to shape fluctuations. The length, height,

and width of a lamellar domain are denoted by (>1),

L, (>>1), andh, respectively. Two small shape fluctuations,

s(x, y) ands (x, y), are introduced on boundaries= 0 andz =

h, respectively. The domain volume changes fraf, =

L1L2h to

c=04R _ ple L2

h+s(xy)
Va= —L2 dx —Li2 dy (X, y) dz

=Vgot [ dx [ dyis(xy) —sixy)]  (28)

For convenience, we introduce two-dimensional vectorsy

X8+ y§, in the real space angh = g.& + q,&, in the Fourier
c=0.7R space. To satisfy the constant-volume constraint for stable

domains, the shape fluctuation aroune: 0 is expanded as

— _ iqgrT
Figure 3. Examples of harmonic shape fluctuations witR, = ¢ S(fp) = _z SqD gdr’o (29)
cosfnd) projected in thexy plane. Three figures on the left side LiL, %o
correspond tan = 2, and the other three on the right side correspond

to m = 3. For shapes in the same row, their valueg afe the same wheresy, = f dfps(fo) exp(—iGo-To) is the Fourier transform
and shown on the left. of S(f). The same expansion is applied to the shape fluctuation,
4 . . . . . . . . . s(fp), aroundz = h. The successive expansion used for spheres
and cylinders is unnecessary for lamella, since only linear terms
of shape fluctuations appear in eq 28.

With respect to the shape fluctuations on two boundaries,
the quadratic truncation of the surface area change is

Ly/2 La/2

631%f_|_1/2dx _|_2/2dy[ 1+|V?DS(?D)|2+

Y1tV sl —2]

~ % Soax [T dy [V, ST+ 1V, S(FRI - (30)

1 —_ whereVr, = & + 9,8, is the gradient for the two-dimensional

’ o ’ ’ vectorTp. Substituting the expansion forms s(fm) and s (fp)
Figure 4. The stability curves for cylindrical domains. With respect into the equation above, we obtain the surface free energy
to the m(=2)th order fluctuation mode (see Figure 3), cylinders are variation
stable below the corresponding stability curve, whereas they are unstable
above this curve.

4 2 2 2

OFs=yo0§= allsg |”t1s5. )77 (31)
fluctuation can irreversibly distort cylinders in the regime above S 2L, quZo 7 a0
the curve ofRy(a)/Re). SinceRy, is greater tharReq by at
least 50%, equilibrium cylindrical domains are stable with The variation of the intradomain repulsion is similarly expanded
respect to shape fluctuations in the quadratic approximation. y5 quadratic terms, resulting in
As displayed in Figure 4, the critical radit%, systematically
increases asm increases, indicating that the second-order pz
fluctuation (n= 2) is the most important mode for all the values 5@ =2 47 dF _uo(r + — 2 () +
of a.?® In the weak attraction limit, eqs 25 and 26 can be voo2 f 2 0T (s, + 5% = 51— ()]
asymptotically solved, resulting in

2
2 [ 7oy 07 i ([en, + OIS + ()2 — 555, — 818

B [ D g0 ] form= 2 (27) >

lim —
a—0 Req 6
whererqg; = [fm — T, and the subscripts for the shape

With the increase oft, the critical radiusR, experiences a slow fluctuationss ands denote the associated vector variables, e.g.,
decrease and a successive increase. The val&s oémains s1 = §(fm). Using the expansion forms for two shape fluctua-
finite, which is different from the results for spheres. tions,éFﬁ,l) is diagonalized in the Fourier space as
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2
TpA
SR = 22

L > (s, * + 155, 1)19() + g4 (0) — 6o(0)] —
1-2 q=0

Oy (M8, (S3)" + (54)'Sy ] (33)

wheregq(2) arises from the Fourier transform of the Yukawa
potential, 7Agy(2) = / diouy([r3 + 249 exp(Go-To). In the
low-density limit, the free energy variatiobF for a lamellar
domain is the sum of eqs 31 and 33.

To clearly demonstrate shape fluctuations, we consider single-
frequency modes, i.es(fn) = S coskoTo), and S(fn) =
scoskoTo + ¢), wheresy and s, are amplitudesks is a 2D
wavevector, andp is the phase difference. The free energy
variation is simplified to a harmonic formjF = C(w+si +
w_sz,), whereC = :rpfALlL2/4 is a width-independent con-
stant. The eigenfrequencies corresponding to two eigenmodes
Sy = (S0 £ 9)/2, are

o, = okl — go(0) + gy (0) + go(h) F g (h) cosg (34)

respectively. Since these two eigenfrequencies can be made

equivalent by adjusting the phase differemgaeve assume the
amplitudes of two shape fluctuations are the sape; 5. The
eigenmodes_ vanishes, and the free energy variation becomes
oF = Cw+%. In addition, we consider two limiting phase
differences, in-phasep(= 0) and out-phasep(= ), as shown

in Figure 5. The phase differences with an intermediate value
can be treated as a superposition of these two limits. For the
in-phase shape fluctuation, the eigenfrequency for nmde
asymptotically expanded as

0 (p=0)~ Ko+ 1+he"—1]+
k4D —h/12 6
13— e"(h"+3n+3)] + O (35)

in the long wavelength limitky — 0). As shown in ref 20, the
first term on the right-hand side of eq 35 becomes negative
when the lamellar width is larger than the equilibrium value
heq The long wavelength in-phase shape fluctuations thus can
irreversibly distort nonequilibrium lamellar domains whh>

heq and form disordered lamellar phases such as labyrirths.
For equilibrium lamellae, in-phase fluctuations are equivalen
to bending modes in the elasticity theofe®3¢ sincewy O

k‘é in the leading order. The eigenfrequenoy (¢ = 0) for
equilibrium lamellae is plotted in Figure 6 as a functionkgf

in a wide range. Sincev+ (¢ = 0) quickly increases witlkg,
long-wavelength modes are preferred for in-phase fluctuations
with the same amplitudes. As shown in Figure 5, out-phase
shape fluctuations are equivalent to width fluctuations and can
form cylinders if the amplitude is large. In the long-wavelength
limit, the eigenfrequency is asymptotically given by

t

w,(p=m)=4e"+Kfo—1— (1+he "+ 0K
(36)
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In—Phase QOut—Phase

Figure 5. Two important shape fluctuation modes for lamellar domains.
The left is an in-phase fluctuation mod¢ € 0), and the right is an
out-phase fluctuation mode & ).

5

>me
QR
I
SOO
o Li—

4

3F

+

3

Figure 6. The eigenfrequencw, as a function of wavenumbég,
for equilibrium lamellar domaind(= heg). The dashed lines correspond
to in-phase fluctuationsy(= 0), and the solid lines correspond to out-
phase fluctuationsg(= 7). The values of the control parameteare
as follows: oo = 0.1 for lines with circlespt = 0.5 for lines with squares,
ando = 0.9 for lines with up triangles.

phase fluctuations are thus expected to be close to original
lamellar widths, consistent with the study of the strijieibble
transformation in two-dimensional lipid systesfsHowever,

this shape transformation is not spontaneous, and an energy
barrierdF(kom) is required to be conquered by thermal fluctua-
tions.

In addition to the phenomena discussed in the previous
section, shape fluctuations of cylinders can also occur along
the azimuthal axis. The azimuthal fluctuations can be considered
as superpositions of two fundamental modes. For the first mode,
the center of the circular cross-section fluctuates around the
azimuthal axis of the original cylinder, whereas the radius of
the circular cross-section is the same as the original value. This
mode is similar to the in-phase fluctuation for lamellae. For

indicating that lamellae can resist out-phase shape fluctuations,the second mode, the circular centers are kept in a straight line,

sincew+ > 0. As a comparison with in-phase fluctuations, we
plot w4+ (¢ = x) in Figure 6 for equilibrium lamellae. The
minimum value ofw (¢ = &) appears at a finite wavenumber
kom, implying the largest out-phase fluctuatioisThe reduced
optimal wavenumbekomheq is plotted in Figure 7, which dem-
onstrates thak, is in the same order as the equilibrium width
heq in @ broad range of.. Sizes of cylinders induced by out-

whereas the radius of the circular cross-section fluctuates
periodically along the azimuthal axis. This mode is similar to
the out-phase fluctuations for lamellae. Because of the spatial
similarities, we would expect that the first type of shape
fluctuations can be realized with less energy costs than the
second type. However, to obtain quantitative results of these
two modes, detailed calculations are needed in the future.



21348 J. Phys. Chem. B, Vol. 109, No. 45, 2005 Wu and Cao

2 T T T T T T T T T the system approaches the homogeneous state, the density
: 1 change from colloidal domains to surrounding environments
1.8k - becomes smooth, and sharp boundaries are hard to define.

Accordingly, thermal fluctuations are better described by density
fluctuations, and the simple continuum model in this paper has
to be modified®1° For example, the transition between domains
and the homogeneous phase has recently been predicted using
density fluctuations in the Hartree approximatidrDynamics

of charged colloids is also important in predicting the phase
. behaviors of domain patterns. In the diffusion-limited procéss,
domains with fractal structures can be formed. Computer
simulations demonstrate domains with loose structéframn-
equilibrium glassy states of domains with local structural arrest

. can be found in quenching processes. The cluster glass transition
0 0.2 0.4 0.6 0.8 1 has been studied in charged colloids within the framework of

_ _ _ o _ mode-coupling theor§617.21.22.3941 and further theoretical ef-
Figure 7. The dimensionless optimal wavenumkgsheq as a function forts are needed to include hopping processes.
of the control parametea.. Given by the minimum of the eigen-
frequencyw(kom) for equilibrium lamellae (see Figure &y indicates
the wavenumber of the out-phase fluctuation with the largest ampli-

0.8 L | L | L | L |

Acknowledgment. This work is supported by the NSF

tude. Career Award (Che-0093210) and the Camille Dreyfus Teacher-
Scholar Award. We dedicate this paper to Professor Irwin
VI. Discussions Oppenheim with admiration. His work on the mode-coupling

theory has influenced many of our papers.
In charged colloidal suspensions with competing short-range

attraction and long-range Yukawa repulsion, three-dimensional Appendix A: Intradomain Repulsion Variation for
domain patterns can be self assembled. Following an early Spherical Domains
investigation of ground-state shap@ this paper we analyze
the stability of isolated spherical, cylindrical, and lamellar
domains with respect to shape fluctuations, which effectively
describe entropic effects at low temperatures. Our stability
analysis adopts the simplified continuum model and follows
closely the approach introduced by Deutch and 126wnder
the constraint of constant volume for stable domains, shape
fluctuations are expanded in successive orders and used t
calculate the free energy variatia¥+ within the quadratic
approximation. The sign obF determines the stability of
domains: The reference shape can be recoveredRor O, w
hereas a spontaneous distortion occursder< 0. On the — 2+1
\t/)v . spontane : o glt) = z—gﬂ(t) (A1)
asis of this criterion, spherical, cylindrical, and lamellar & 2
domains with equilibrium sizes are stable with respect to small
shape fluctuations in the quadratic approximation. In addition, where the coefficieng; is defined byg = ffl dt g(t) Pi(t).
the domain stability decreases as the spatial symmetry decreasesince the explicit form of12is ri2 = (r2 + r3 — 2rir; cosy)Y?
Spherical domains have the highest spatial symmetryaFer wherey is the angle between vectdisandT, and cosg; = cos
0.5, all the spherical domains are stable with respect to shapeg,; cos, + sin 6; sin 6, cosg: — ¢2), and we use eq Al to
fluctuations, and the transformation from spheres to other shapesexpanduy(r1,) in the basis ofP(cosy) as
are not spontaneous. With the lowest spatial symmetry, lamellar
domains whose widths are larger than the equilibrium value - 2+1
heq are unstable with respect to in-phase shape fluctuations in Uy(r) = Z ——— Ag(ry, rp)P(cosy) (A2)
the long wavelength limit. Instead of ordered one-dimensional < 2
lattice, disordered labyrinths composed of lamellae are often
observed in experiments and simulatiddsBetween limiting
cases of spheres and lamellae, critically stable sizes of cylindrical g(ry, 1) =
domains are finite but larger than the equilibrium value with
respect to shape fluctuations about the radius. Another interest- Aflﬁ)n sin Xu\((\/rz1 + rz2 — 2r,r,cosy)P,(cosy)dy (A3)
ing result of this paper is that out-phase fluctuations can
transform lamellar domains to cylinders with similar sizes Following the additional theorem for Legendre polynomials
through an activation process, consistent with the study of two-
dimensional lipid$3 4
In this paper, we focus on the low-temperature and low- P (cosy) :2I—+1 z Yim(€21) Yin(22) (A4)
density regime, where each domain can be treated as an isolated ==
system. With the increase of temperature, shape fluctuations
with large amplitudes become important. Higher-order free
energy variations are required to improve the quadratic ap- ® |
proximation in our analysis. For finite volume fraction, the uy(rp) = ZJTAZ z g(ry, 1)Yim(R)Yi(RQ,)  (A5)
variation of interdomain repulsions has to be included. When =0 n=—I

As shown in eq 12, the quadratic truncation&ﬁﬁ}) for a
spherical domain is a sum of two integrals, which will be
denoted byw, and Wz for convenience. In this appendix, we
use the spherical harmonic expansion to explicitly calcigte
andWe.

The first step is to expand the Yukawa potentiga(ri2) by

pherical harmonics. An arbitrary functiog(t) with t e
— 1, 1] can be expanded in the basis of Legendre polynomials
Pi(t) as

where the coefficieng(ry, r2) is given by

we further simplifyuy(ryz) to be
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Using the expansion forms for the shape fluctuad®g(2)
and the Yukawa potentialy (r12), the first integral on the right-
hand side of eq 12 is derived as

R0} o
W= 22§ 09, § 09, OR(S) OR(Q)u (IRE, — %)

I1

S ChmYim (@] x

m1—*|1

Z Cm, "1, mz(Qz)][Z Z G(R R)Yim(R1)Yin(22)]
=0 m=—|

mp=—lp

= JTRApiA Z z
|]_, =1 [= ml,Z\z,m

= aR’p? AfdQlfdQZ[Z

*1m1U|(R' RIC, m9(R ROy 10mm 01, 10mm,
= R piA Z; Z 9(R R)[Cp)° (A6)
Rearranging the second integh&k to be
W = RZTPi f dQ, OR(Q,)we(<,) (A7)
where
We(Q,) = f dQ; foR dryr®; U (71 —RgJ) (A8)
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The second integral on the right-hand side of eq 12 is given by
|

W = —aRpiAG(R RY 3 oml®  (A10)
=1 m=—1

As a result, we obtain the spherical harmonic expansion of
oF% in eq 13.
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