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Three-dimensional domain patterns can self-assemble in a charged colloidal suspension with competing short-
range attraction and long-range Yukawa repulsion. Following the investigation of the ground-state domain
shapes in our previous paper, we study the stability of isolated spherical, cylindrical, and lamellar domains
with respect to shape fluctuations on boundaries. In the framework of the continuum model, we expand the
free energy variation to quadratic terms under the constraint of constant volume. For the three shapes (sphere,
cylinder, and lamella) discussed, domains with equilibrium sizes are stable with respect to shape fluctuations,
and the stability of domains decreases as the spatial symmetry decreases.

I. Introduction

In many self-assembly systems,1-8 the formation of domain
patterns can be explained successfully by the competing
interactions on different length scales.9-19 In a previous paper,20

we studied ground-state domains in charged colloidal suspen-
sions based on an effective pairwise colloid-colloid interaction
with a short-range attraction and a long-range repulsion. The
short-range attraction can be modeled by a square-well potential
with depthε and the range in (σ, λσ), whereσ is the diameter
of colloidal particles. By adjusting parametersε and λ, the
square-well form can provide qualitatively the same results as
other potential forms.21,22Because of the nature of the screened
electrostatics in charged colloids, the long-range repulsion is
described by the Yukawa potential,23,24which is different from
the dipole-dipole interaction in two-dimensional (2D) lipid
systems.15,25-29 The repulsion strength is denoted byA, and the
screening length is represented byú. To be consistent with ref
20, all the length variables in the paper are dimensionless in
units ofú. The effective potential between two colloidal particles
distanced byr is given by

where the hard-core repulsion is included, since colloidal
particles cannot penetrate each other.

Although eq 1 is a well-defined pairwise potential for studying
thermodynamic properties of domains in charged colloidal
suspensions, analytical calculations are complicated in providing
useful predictions. An alternative approach is to adopt the
continuum model where the summation over particles is
approximated by the integral over space weighted by density.
For example, a mean-field continuum model has been used to
study the block copolymer by Leibler9 and extended by Ohta
and Kawasaki.10 At low temperatures, boundaries separating
domains and dispersing medium are sharp, and the continuum
model can be further simplified by neglecting the colloidal
density fluctuations except for abrupt changes across boun-

daries.15,25-29 On the basis of this simplified model, we
investigated ground-state colloidal domains in spherical, cylin-
drical, and lamellar shapes in ref 20. The most stable domain
shape and structure are determined by the global minimum of
the energy density, and a phase diagram of the shape transfor-
mation is obtained.20

A complete thermodynamic study of domains requires the
stability analysis with respect to thermal fluctuations, which
assist the evolution from a homogeneous mixture to spatially
modulated phases and induce the shape transformation of
domains. At high temperatures, thermal fluctuations can be
described by density fluctuations of colloidal particles,16,17,30

whereas at low temperatures, thermal fluctuations can be
effectively described by shape fluctuations on sharp boundaries
separating domains and dispersing medium.15,25-33 These two
descriptions are both widely applied in the literature. In this
paper, we focus on the low temperature and density regime
where each domain can be treated as an isolated system. Our
analysis of the domain stability is based on the evaluation of
the free energy variation with respect to small shape fluctuations.
When the free energy variationδF is positive, the domain has
a restoring force to recover its original shape so that it is a
(meta)stable state. Otherwise, the reference shape is unstable,
and fluctuations induce spontaneous and irreversible transforma-
tions. For the reference shape, the sign ofδF determines stable
and unstable regimes with respect to shape fluctuations. To
obtain δF, we follow the theoretical method used by Deutch
and Low in 2D lipid systems:27 Shape fluctuations are expanded
in successive orders by fixing the domain volume and are then
used to calculated the free energy variation within the quadratic
approximation.

II. Continuum Model

The system we study is a colloidal suspension with a fixed
number density,F0 ) N/Vtot, whereN is the total number of
colloidal particles andVtot is the volume of system. With a
continuous colloidal number densityF(rb) ) ∑i)1

N δ(rb - rbi), the
sum over all the colloidal particles becomes an integral with
the weightF(rb), i.e., ∑i)1

N fi ) ∫ drb F(rb) f (rb), whererbi is the
position of theith particle andf is an arbitrary function. At
high temperatures, the system is homogeneous andF(rb) is a
uniform function with the constant value ofF0. Below a critical
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temperature, colloidal particles aggregate into domains through
a self-assembly process, andF(rb) becomes a periodical function
in space. At low temperatures, domains and dispersing medium
are separated by sharp boundaries, across whichF(rb) jumps from
a nonzero value to zero. Assuming that colloidal particles are
uniformly distributed inside domains, the density function is
reduced to

whereF2 is set to be zero in this paper for convenience. The
neglect of density fluctuations in eq 2 is acceptable at low
temperatures, since shape fluctuations are dominant as discussed
in the Introduction.

In the mean-field framework, the short-range attraction
contributes to bulk adhesion and surface free energy. The bulk
adhesion, is expressed asFA ) ∫ drb F(rb) fA(rb), wherefA(rb) is
the adhesive free energy density. Consistent with the simplifica-
tion for the density function,fA(rb) is approximated by its average
value,fA ) -ncε/2, wherenc is the average contact number per
particle. Since the bulk adhesion in a unit system volume,
FA/V ) -F0V0ncε/2, is a shape-independent constant,FA does
not contribute to the shape transformation and will be neglected.
For a single domainΓ with surface areaSd, its surface free
energy is given byFS(Γ) ) ISd drb γ(rb) ≈ γSd. Although the
surface tensionγ is a shape-dependent function in general, we
apply the zeroth-order approximation and considerγ as a
constant. As an implicit function of temperature, the surface
tension decreases as temperature increases.

The integrated contribution of the long-range Yukawa repul-
sion to free energy can be simplified to

whererij ) |rbi - rbj| andNd is the total number of domains. In
the above equation,FY

(1)(m) is the intradomain repulsive free
energy for domainΓm

whereasFY
(2)(m, n) is the interdomain repulsive free energy

between two domains,Γm andΓn

In the low-density limit, the distance between a pair of domains
is much larger than the characteristic domain size, so that each
domain can be treated as an isolated system, and the collective
contribution of FY

(2)(m, n) is ignored in the lowest-order
approximation. The resulting effective free energy for a single
domain is written as

In a more rigorous manner, the sum on the right-hand side of
eq 5 should be treated as energy instead of free energy. Since
the entropic effects can be partially included by the temperature-
dependent surface tensionγ, and the configurational randomness
of domains is omitted for the case of isolated domains, we
consider eq 5 as a good approximation for the free energy. In
the remainder of this paper, we will calculate the variation ofF

with respect to shape fluctuations for spherical, cylindrical, and
lamellar domains.

III. Spherical Domains

As shown in our previous paper,20 spherical domains are
energetically preferred in the low-density and weak attraction
limits. In this section, we analyze the stability of spherical
domains and study the shape transformation driven by spherical
harmonic shape fluctuations.

We first introduce a small fluctuationδR(Ω) for a reference
spherical domain with radiusR. Following Deutch and Low’s
approach,27 we expand the shape fluctuation in successive orders

where|δR0| . |δR1| . ‚‚‚. The same expansion will be applied
for the stability analysis of cylindrical domains in the next
section. According to this shape fluctuation, the domain volume
formally changes fromVd,0 ) 4πR3/3 to

whereI dΩ ) ∫0
π sin θ dθ ∫0

2π dφ is the integral over the solid
angle Ω. The volume of a stable domain remains the same
with respect to fluctuations, i.e.,Vd ) Vd,0. On the basis of
this constraint, the leading-order fluctuation satisfies
I dΩ δR0(Ω) ) 0, and the next order satisfiesδR1(Ω) )
-δR0

2(Ω)/R. Using spherical harmonicsYlm(Ω), we expand
δR0(Ω) as

wherecl,-m ) (-1)mclm
/ is required, sinceδR0(Ω) is real.

Next, we calculate the variation of the free energyF with
respect to the shape fluctuationδR(Ω). In the low-density limit,
the free energy of a colloidal domain is approximated as a sum
of the surface free energyFS and intradomain repulsionFY

(1).
With a constant surface tensionγ, the variation ofFS only
depends on the change of surface areaSd. Similar to eq 7, the
surface area difference is truncated to quadratic terms

where∇ΩB is the gradient operator for the solid angleΩ, ∇ΩB )
∂θ êθ + (sin θ)-1∂φêφ, and {êr, êθ, êφ} are unit vectors in
spherical coordinates. The relation,δR1(Ω) ) -δR2

0(Ω)/R, is
applied to derive eq 9. Following the expansion in eq 8 and

the spherical harmonic differential equation,∇f
Ω

2
Ylm(Ω) )

-l(l + 1)Ylm(Ω), we obtain the surface free energy variation

F( rb) ) {F1 inside domains
F2 outside domains

(2)

∑
i<j)1

N

uY(rij) ) ∑
m)1

Nd

FY
(1)(m) + ∑

m<n)1

Nd

FY
(2)(m,n) (3)

FY
(1)(m) ) ∫Γm

drb1∫Γm
drb2

F( rb1) F( rb2)

2
uY(| rb1 - rb2|) (4a)

FY
(2)(m, n) ) ∫Γm

drb1∫Γn
drb2 F( rb1) F( rb2) uY(| rb1 - rb2|) (4b)

F ≈ FS + FY
(1) (5)

δR(Ω) ) δR0(Ω) + δR1(Ω) + ‚‚‚ (6)

Vd ) 1
3

I dΩ[R + δR(Ω)]3

≈ Vd,0 + R3 I dΩ[δR(Ω)
R

+
δR2(Ω)

R2
+ O(δR3(Ω)

R3 )] (7)

δR0(Ω) ) ∑
l)1

∞

δR0(l, Ω) ) ∑
l)1

∞

∑
m)-l

l

clmYlm(Ω) (8)

δSd ) I dΩ{[R + δR(Ω)]

x[R(Ω) + δR(Ω)]2 + |∇ΩB δR(Ω)|2 - R2}

≈ I dΩ[|∇ΩB δR0(Ω)|2 - δR2
0(Ω)] (9)

δFS ) γδSd ) γ∑
l)1

∞

∑
m)-l

l

[l(l + 1) - 1]| clm|2 (10)
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In spherical coordinates, the intradomain repulsion is explicitly
written as

where the distance between two vectorsrb1 and rb2 is given by
r12 ) |rb1 - rb2| ) (r1

2 + r2
2 - 2r1r2 cos ø)1/2, and ø is the

angle between these two vectors, cosø ) cos θ1 cos θ2 +
sin θ1 sin θ2 cos(φ1 - φ2). After a straightforward but tedious
derivation, the quadratic truncation of the intradomain repulsion
variation is given by

where the gradient operator for vectorrb is ∇rb ) ∂rêr + r-1∇ΩB
in spherical coordinates. We apply the spherical harmonic
expansion and simplify eq 12 to

where gl(r1, r2) is defined using thelth-order Legendre
polynomialPl(cosø) as

The details of this derivation are shown in Appendix A. The
free energy variation for a spherical domain is the sum of eqs
10 and 13.

As discussed in section I, the sign of the free energy variation
determines the stable (δF > 0) and unstable (δF < 0) regimes
with respect to a given shape fluctuation. Since the free energy
variation for a spherical domain is diagonalized in the basis of
Ylm(Ω), we focus on spherical harmonic shape fluctuations.
Several examples are shown in Figure 1. With respect to the
lth-order mode,δR0(l, Ω) ) ∑m)-l

l clmYlm(Ω), the critically
stable radiusRl is determined by

where the effective attraction-repulsion ratio,R ) γ/πF1
2Aú4,

is introduced in ref 20. A direct result of eq 15 is that spherical
domains are always stable with respect to the first-order shape
fluctuation mode (l ) 1). Here, we recall the equilibrium
spherical radiusReq determined by20

For conciseness, the notation of “equilibrium” is introduced
loosely throughout this paper to represent the optimal state for
a given shape instead of the state with the global minimum free
energy density. In addition, the symbolReq is introduced, since
the original one,Rm, in ref 20 will be used as themth-order
critical radius for cylindrical domains in this paper. In Figure

2, ratios between critical and equilibrium radii are plotted as
functions ofR for the first three important fluctuation modes.
With respect to thelth-order shape fluctuation, spherical domains
are stable below the curve ofRl(R)/Req(R), whereas they are
unstable above this curve. Since the value ofRl is at least twice
the equilibrium radius, spherical domains in equilibrium are
always stable with respect to shape fluctuations in the quadratic
approximation. In the weak attraction limit (R f 0), the critical

FY
(1) )

F2
1

2
I dΩ1 I dΩ2∫ dr1∫ dr2r

2
1r

2
2uY(r12) (11)

δFY
(1) )

R4F2
1

2
I dΩ1 I dΩ2 δR0(Ω1) δR0(Ω2)uY(|Rêr1

- Rêr2
|) +

R2F2
1

2
I dΩ1 I dΩ2 ∫0

R
dr1r

2
1 δR2

0(Ω2)[êr2
‚

∇ rb2
uY(| rb1 - Rêr2

|)] (12)

δFY
(1) ) πR4F2

1A ∑
l)1

∞

∑
m)-l

l

|clm|2[gl(R, R) - g1(R, R)] (13)

gl(r1, r2) ) A-1 ∫0

π
dø sin øPl(cosø)uY(r12) (14)

R[l(l + 1) - 1] + Rl
4[gl(Rl, Rl) - g1(Rl, Rl)] ) 0 (15)

dF
dReq

∝ (1 - R)Req
2 - 3 +

(2Req
3 + 5Req

2 + 6Req + 3)e-2Req ) 0 (16)

Figure 1. Examples of spherical harmonic shape fluctuations with
δR0 ) cYl0(Ω). Three figures on the left side correspond tol ) 2, and
the other three on the right side correspond tol ) 3. For figures in the
same row, their values ofc are the same and shown on the left.

Figure 2. The stability curves for spherical domains. With respect to
the l(g2)th order spherical harmonic fluctuation mode, spheres are
stable below the corresponding stability curve, whereas they are unstable
above this curve.
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radiusRl is an increasing function ofl, so that the second-order
shape fluctuation (l ) 2) is the most important mode. Asymp-
totically, the ratio between critical and equilibrium radii is given
by

With the increase of attraction strength, the critical radiusRl

quickly increases. Above a critical point,Rl ) (l2 + l - 2)/
[2(l2 + l - 1)], the lth-order radius approaches infinity, and
the associated free energy variation is always positive. For
R > R∞ ()1/2), all the spherical domains can resist shape
fluctuations in the quadratic approximation. Although other
shapes such as cylinders become more energetically favorable
than spheres forR > 0.788 as shown in Figure 4 of ref 20, the
transformation from isolated spheres to cylinders cannot be
spontaneously achieved by shape fluctuations.

IV. Cylindrical Domains

In comparison to spheres and lamellae, cylindrical domains
are the most stable state for 0.788< R < 0.846 in the low-
density limit.20 Shape fluctuations for cylinders can be separated
into two categories: about the radius and along the azimuthal
axis. In this section, we will investigate shape fluctuations about
the radius. The azimuthal shape fluctuations will be discussed
together with shape fluctuations for lamellae in the next section
because of their spatial similarities.

Similar to the approach for spherical domains, we expand
the shape fluctuation in the Fourier basis under the constraint
of constant volume. For a cylindrical domain with radiusRand
azimuth lengthL( . 1), a fluctuationδR(θ) aboutR formally
changes the volume fromVd,0 ) πR2L to

where I dθ ) ∫0
2π dθ. Following the successive expansion,

δR(θ) ) δR0(θ) + δR1(θ) + ‚‚‚, the constant volume constraint
for stable domains requires that the leading-order fluctuation
satisfiesI dθ δR0(θ) ) 0 and the next order satisfiesδR1(θ) )
-δR0

2(θ)/(2R). The leading-order fluctuation can be expanded
in the Fourier basis asδR0(θ) ) ∑m*0cm eimθ, wherec-m ) cm

/

sinceδR0(θ) is real.
Using shape fluctuations in the expansion form, we calculate

the free energy variation. Truncated to quadratic terms, the
change of surface area with respect toδR(θ) is given by

where the relationδR1(θ) ) -δR2
0(θ)/(2R) is applied. The

expansion of the surface free energy variation in in the Fourier
basis is thus written as

In cylindrical coordinates{êr⊥, êθ, êz}, vectors are expressed as
rb) rb⊥ + zêz ) r⊥êr⊥ + zêz, and the explicit form of intradomain
repulsion for a cylindrical domain is

To derive the equation above, an integral identity,∫0
∞ dz

exp(- xz2+t2)/xz2+t2 ) K0(|t|), is applied, whereKm(t) is the
mth-order modified Bessel function of the second kind. With
respect toδR(θ), we obtain the quadratic truncation for the
intradomain repulsion variation

To expandδFY
(1) in the Fourier basis, we introduce the addition

theorem for Bessel functions34

where Im(t) is the mth-order modified Bessel function of the
first kind, andr⊥> andr⊥< denote the larger and smaller ofr⊥1

and r⊥2, respectively. Substituting eq 23 into eq 22, the
intradomain repulsion variation is given by

As a sum of eqs 20 and 24, the free energy variation for a
cylindrical domain is diagonalized in the Fourier basis so that
we will concentrate on harmonic shape fluctuations. Examples
in Figure 3 show that an original cylindrical domain can evolve
into m subdomains induced by themth-order fluctuation mode,
δR0(m, θ) ) cm eimθ + cm

/ e-imθ. Since the stability of domains
is determined by the sign ofδF, themth-order critically stable
radiusRm with respect toδR0(m, θ) is given by

The equation above shows that cylindrical domains remain
marginally stable with respect to the first-order mode (m ) 1).
To discuss higher-order fluctuation modes, we recall the
equilibrium cylindrical radiusReq

20

Here, we reemphasize that the equilibrium radius in the equation
above is defined only for cylindrical domains without the
consideration of other shapes. The results ofRm(R)/Req(R) are
plotted in Figure 4 as functions of the control parameterR.
Similar to fluctuation modes for spheres, themth-order shape

lim
Rf0

Rl

Req
) [2(2l + 1)(l2 + l - 1)

5(l - 1) ]1/3

(17)

Vd ) ∫-L/2

L/2
dz∫-π

π
dθ ∫0

R+δR(θ)
drr

) Vd,0 + R2L I dθ[δR(θ)
R

+
δR2(θ)

2R2 ] (18)

δSd ≈ L I dθ{x[R + δR(θ)]2 + [∂θ(R + δR(θ))]2 - R}

≈ L
2R

I dθ[(∂θ δR0(θ))2 - δR2
0(θ)] (19)

δFS ) γδS)
2πγL

R
∑
m)1

∞

|cm|2(m2 - 1) (20)

FY
(1) )

F1
2

2 ∫-L/2

L/2
dz1∫-L/2

L/2
dz2∫ drb⊥1 ∫ drb⊥2

uY(x(z1 - z2)
2 + | rb⊥1 - rb⊥2|2)

) F1
2AL∫ drb⊥1∫ drb⊥2K0(| rb⊥1 - rb⊥2|) for L . 1

(21)

δFY
(1) )

F1
2ALR2 I dθ1 I dθ2 δR0(θ1) δR0(θ2)K0(|Rêr⊥1

- Rêr⊥2
|) +

F2
1ALRI dθ2 δR0(θ2) I dθ1 ∫0

R
r⊥1 dr⊥1

∂r⊥2
K0(|r⊥1êr⊥1

- Rêr⊥2
|) (22)

K0(a| rb⊥1 - rb⊥2|) ) ∑
m)-∞

∞

Km(ar⊥>)Im(ar⊥<) eim(θ1-θ2) (23)

δFY
(1) ) 2(2π)2F1

2ALR2 ∑
m)1

∞

|cm|2[Km(R)Im(R) - K1(R)I1(R)]

(24)

R
4Rm

3
(m2 - 1) + Km(Rm)Im(Rm) - K1(Rm)I1(Rm) ) 0 (25)

dF
dReq

∝ 1 + RReq
-1 - 2K1(Req)I1(Req) ) 0 (26)
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fluctuation can irreversibly distort cylinders in the regime above
the curve ofRm(R)/Req(R). SinceRm is greater thanReq by at
least 50%, equilibrium cylindrical domains are stable with
respect to shape fluctuations in the quadratic approximation.
As displayed in Figure 4, the critical radiusRm systematically
increases asm increases, indicating that the second-order
fluctuation (m) 2) is the most important mode for all the values
of R.28 In the weak attraction limit, eqs 25 and 26 can be
asymptotically solved, resulting in

With the increase ofR, the critical radiusRm experiences a slow
decrease and a successive increase. The value ofRm remains
finite, which is different from the results for spheres.

V. Lamellar Domains

With the lowest spatial symmetry, isolated lamellar domains
are energetically favorable in the case of strong attraction
(R > 0.846). In this section, we investigate the stability of
lamellae with respect to shape fluctuations. The length, height,
and width of a lamellar domain are denoted byL1 (.1),
L2 (.1), andh, respectively. Two small shape fluctuations,
s(x, y) ands′(x, y), are introduced on boundariesz ) 0 andz )
h, respectively. The domain volume changes fromVd,0 )
L1L2h to

For convenience, we introduce two-dimensional vectors,rb⊥ )
xêx + yêy in the real space andqb⊥ ) qxêx + qyêy in the Fourier
space. To satisfy the constant-volume constraint for stable
domains, the shape fluctuation aroundz ) 0 is expanded as

wheresqb⊥ ) ∫ drb⊥s(rb⊥) exp(-iqb⊥‚rb⊥) is the Fourier transform
of s(rb⊥). The same expansion is applied to the shape fluctuation,
s′(rb⊥), aroundz ) h. The successive expansion used for spheres
and cylinders is unnecessary for lamella, since only linear terms
of shape fluctuations appear in eq 28.

With respect to the shape fluctuations on two boundaries,
the quadratic truncation of the surface area change is

where∇rb⊥ ) ∂xêx + ∂yêy is the gradient for the two-dimensional
vector rb⊥. Substituting the expansion forms ofs(rb⊥) ands′(rb⊥)
into the equation above, we obtain the surface free energy
variation

The variation of the intradomain repulsion is similarly expanded
to quadratic terms, resulting in

where r⊥12 ) |rb⊥1 - rb⊥2|, and the subscripts for the shape
fluctuationssands′ denote the associated vector variables, e.g.,
s1 ≡ s(rb⊥1). Using the expansion forms for two shape fluctua-
tions, δFY

(1) is diagonalized in the Fourier space as

Figure 3. Examples of harmonic shape fluctuations withδR0 ) c
cos(mθ) projected in thexy plane. Three figures on the left side
correspond tom ) 2, and the other three on the right side correspond
to m ) 3. For shapes in the same row, their values ofc are the same
and shown on the left.

Figure 4. The stability curves for cylindrical domains. With respect
to the m(g2)th order fluctuation mode (see Figure 3), cylinders are
stable below the corresponding stability curve, whereas they are unstable
above this curve.

lim
Rf0

Rm

Req
≈ [m(m + 1)

6
log(R-1)]1/3

for m g 2 (27)

Vd ) ∫-L/2

L/2
dx∫-L/2

L/2
dy∫s(x, y)

h + s′(x, y)
dz

) Vd,0 + ∫-∞

∞
dx∫-∞

∞
dy[s′(x, y) - s(x, y)] (28)

s( rb⊥) )
1

L1L2
∑

qb⊥*0

sqb⊥
eiqb⊥‚ rb⊥ (29)

δSd ≈ ∫-L1/2

L1/2 dx∫-L2/2

L2/2 dy [x1 + |∇ rb⊥
s( rb⊥)|2 +

x1 + |∇ rb⊥
s′( rb⊥)|2 - 2]

≈ 1
2∫-∞

∞
dx∫-∞

∞
dy [|∇ rb⊥

s( rb⊥)|2 + |∇ rb⊥
s′( rb⊥)|2] (30)

δFS ) γδSd )
γ

2L1L2
∑

qb⊥*0

q2
⊥[|sqb⊥

|2 + |s′qb⊥
|2] (31)

δFY
(1) )

F1
2

2 ∫ drb⊥1 drb⊥2uY(r⊥12)[s1s2 + s′1s′2 - s1
2 - (s′1)

2] +

F1
2

2 ∫ drb⊥1 drb⊥2uY([r2
⊥12 + h2]1/2)[s1

2 + (s′1)
2 - s1s′2 - s′1s2]

(32)
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wheregq⊥(z) arises from the Fourier transform of the Yukawa
potential,πAgq⊥(z) ) ∫ drb⊥uY([r⊥

2 + z2]1/2) exp(iqb⊥‚rb⊥). In the
low-density limit, the free energy variationδF for a lamellar
domain is the sum of eqs 31 and 33.

To clearly demonstrate shape fluctuations, we consider single-
frequency modes, i.e.,s(rb⊥) ) s0 cos(kB⊥‚rb⊥), and s′(rb⊥) )
s′0cos(kB⊥‚rb⊥ + φ), wheres0 and s′0 are amplitudes,kB⊥ is a 2D
wavevector, andφ is the phase difference. The free energy
variation is simplified to a harmonic form,δF ) C(ω+s+

2 +
ω-s-

2 ), where C ) πF1
2AL1L2/4 is a width-independent con-

stant. The eigenfrequencies corresponding to two eigenmodes,
s( ) (s0 ( s′0)/2, are

respectively. Since these two eigenfrequencies can be made
equivalent by adjusting the phase differenceφ, we assume the
amplitudes of two shape fluctuations are the same,s0 ) s′0. The
eigenmodes- vanishes, and the free energy variation becomes
δF ) Cω+s0

2. In addition, we consider two limiting phase
differences, in-phase (φ ) 0) and out-phase (φ ) π), as shown
in Figure 5. The phase differences with an intermediate value
can be treated as a superposition of these two limits. For the
in-phase shape fluctuation, the eigenfrequency for modes+ is
asymptotically expanded as

in the long wavelength limit (k⊥ f 0). As shown in ref 20, the
first term on the right-hand side of eq 35 becomes negative
when the lamellar width is larger than the equilibrium value
heq. The long wavelength in-phase shape fluctuations thus can
irreversibly distort nonequilibrium lamellar domains withh >
heq and form disordered lamellar phases such as labyrinths.1,2

For equilibrium lamellae, in-phase fluctuations are equivalent
to bending modes in the elasticity theories26,35,36, sinceω+ ∝
k⊥

4 in the leading order. The eigenfrequencyω+ (φ ) 0) for
equilibrium lamellae is plotted in Figure 6 as a function ofk⊥
in a wide range. Sinceω+ (φ ) 0) quickly increases withk⊥,
long-wavelength modes are preferred for in-phase fluctuations
with the same amplitudes. As shown in Figure 5, out-phase
shape fluctuations are equivalent to width fluctuations and can
form cylinders if the amplitude is large. In the long-wavelength
limit, the eigenfrequency is asymptotically given by

indicating that lamellae can resist out-phase shape fluctuations,
sinceω+ > 0. As a comparison with in-phase fluctuations, we
plot ω+ (φ ) π) in Figure 6 for equilibrium lamellae. The
minimum value ofω+ (φ ) π) appears at a finite wavenumber
k⊥m, implying the largest out-phase fluctuations.33 The reduced
optimal wavenumberk⊥mheq is plotted in Figure 7, which dem-
onstrates thatk⊥m

-1 is in the same order as the equilibrium width
heq in a broad range ofR. Sizes of cylinders induced by out-

phase fluctuations are thus expected to be close to original
lamellar widths, consistent with the study of the stripe-bubble
transformation in two-dimensional lipid systems.33 However,
this shape transformation is not spontaneous, and an energy
barrierδF(k⊥m) is required to be conquered by thermal fluctua-
tions.

In addition to the phenomena discussed in the previous
section, shape fluctuations of cylinders can also occur along
the azimuthal axis. The azimuthal fluctuations can be considered
as superpositions of two fundamental modes. For the first mode,
the center of the circular cross-section fluctuates around the
azimuthal axis of the original cylinder, whereas the radius of
the circular cross-section is the same as the original value. This
mode is similar to the in-phase fluctuation for lamellae. For
the second mode, the circular centers are kept in a straight line,
whereas the radius of the circular cross-section fluctuates
periodically along the azimuthal axis. This mode is similar to
the out-phase fluctuations for lamellae. Because of the spatial
similarities, we would expect that the first type of shape
fluctuations can be realized with less energy costs than the
second type. However, to obtain quantitative results of these
two modes, detailed calculations are needed in the future.

δFY
(1) )

πF1
2A

2L1L2
∑

qb⊥*0

(|sqb⊥
|2 + |s′qb⊥

|2)[g0(h) + gq⊥
(0) - g0(0)] -

gq⊥
(h)[sqb⊥

(s′qb⊥
)* + (sqb⊥

)*s′qb⊥
] (33)

ω( ) Rk2
⊥ - g0(0) + gk⊥

(0) + g0(h) - gk⊥
(h) cosφ (34)

ω+(φ ) 0) ≈ k2
⊥[R + (1 + h)e-h - 1] +

k4
⊥

4
[3 - e-h(h2 + 3h + 3)] + O(k6

⊥) (35)

ω+ (φ ) π) ) 4 e-h + k2
⊥[R - 1 - (1 + h)e-h] + O(k4

⊥)

(36)

Figure 5. Two important shape fluctuation modes for lamellar domains.
The left is an in-phase fluctuation mode (φ ) 0), and the right is an
out-phase fluctuation mode (φ ) π).

Figure 6. The eigenfrequencyω+ as a function of wavenumberk⊥
for equilibrium lamellar domains (h ) heq). The dashed lines correspond
to in-phase fluctuations (φ ) 0), and the solid lines correspond to out-
phase fluctuations (φ ) π). The values of the control parameterR are
as follows: R ) 0.1 for lines with circles,R ) 0.5 for lines with squares,
andR ) 0.9 for lines with up triangles.
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VI. Discussions

In charged colloidal suspensions with competing short-range
attraction and long-range Yukawa repulsion, three-dimensional
domain patterns can be self assembled. Following an early
investigation of ground-state shapes,20 in this paper we analyze
the stability of isolated spherical, cylindrical, and lamellar
domains with respect to shape fluctuations, which effectively
describe entropic effects at low temperatures. Our stability
analysis adopts the simplified continuum model and follows
closely the approach introduced by Deutch and Low.27 Under
the constraint of constant volume for stable domains, shape
fluctuations are expanded in successive orders and used to
calculate the free energy variationδF within the quadratic
approximation. The sign ofδF determines the stability of
domains: The reference shape can be recovered forδF > 0,
whereas a spontaneous distortion occurs forδF < 0. On the
basis of this criterion, spherical, cylindrical, and lamellar
domains with equilibrium sizes are stable with respect to small
shape fluctuations in the quadratic approximation. In addition,
the domain stability decreases as the spatial symmetry decreases.
Spherical domains have the highest spatial symmetry. ForR >
0.5, all the spherical domains are stable with respect to shape
fluctuations, and the transformation from spheres to other shapes
are not spontaneous. With the lowest spatial symmetry, lamellar
domains whose widths are larger than the equilibrium value
heq are unstable with respect to in-phase shape fluctuations in
the long wavelength limit. Instead of ordered one-dimensional
lattice, disordered labyrinths composed of lamellae are often
observed in experiments and simulations.1,2 Between limiting
cases of spheres and lamellae, critically stable sizes of cylindrical
domains are finite but larger than the equilibrium value with
respect to shape fluctuations about the radius. Another interest-
ing result of this paper is that out-phase fluctuations can
transform lamellar domains to cylinders with similar sizes
through an activation process, consistent with the study of two-
dimensional lipids.33

In this paper, we focus on the low-temperature and low-
density regime, where each domain can be treated as an isolated
system. With the increase of temperature, shape fluctuations
with large amplitudes become important. Higher-order free
energy variations are required to improve the quadratic ap-
proximation in our analysis. For finite volume fraction, the
variation of interdomain repulsions has to be included. When

the system approaches the homogeneous state, the density
change from colloidal domains to surrounding environments
becomes smooth, and sharp boundaries are hard to define.
Accordingly, thermal fluctuations are better described by density
fluctuations, and the simple continuum model in this paper has
to be modified.9,10For example, the transition between domains
and the homogeneous phase has recently been predicted using
density fluctuations in the Hartree approximation.17 Dynamics
of charged colloids is also important in predicting the phase
behaviors of domain patterns. In the diffusion-limited process,37

domains with fractal structures can be formed. Computer
simulations demonstrate domains with loose structures.38 Non-
equilibrium glassy states of domains with local structural arrest
can be found in quenching processes. The cluster glass transition
has been studied in charged colloids within the framework of
mode-coupling theory,16,17,21,22,39-41 and further theoretical ef-
forts are needed to include hopping processes.
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Appendix A: Intradomain Repulsion Variation for
Spherical Domains

As shown in eq 12, the quadratic truncation ofδFY
(1) for a

spherical domain is a sum of two integrals, which will be
denoted byWA andWB for convenience. In this appendix, we
use the spherical harmonic expansion to explicitly calculateWA

andWB.
The first step is to expand the Yukawa potentialuY(r12) by

spherical harmonics. An arbitrary functiong(t) with t ∈
[- 1, 1] can be expanded in the basis of Legendre polynomials
Pl(t) as

where the coefficientgl is defined bygl ) ∫-1
1 dt g(t) Pl(t).

Since the explicit form ofr12 is r12 ) (r1
2 + r2

2 - 2r1r2 cosø)1/2

whereø is the angle between vectorsrb1 andrb2 and cosø ) cos
θ1 cosθ2 + sin θ1 sin θ2 cos(φ1 - φ2), and we use eq A1 to
expanduY(r12) in the basis ofPl(cosø) as

where the coefficientgl(r1, r2) is given by

Following the additional theorem for Legendre polynomials

we further simplifyuY(r12) to be

Figure 7. The dimensionless optimal wavenumberk⊥mheq as a function
of the control parameterR. Given by the minimum of the eigen-
frequencyω+(k⊥m) for equilibrium lamellae (see Figure 6),k⊥m indicates
the wavenumber of the out-phase fluctuation with the largest ampli-
tude.

g(t) ) ∑
l)0

∞ 2l + 1

2
glPl(t) (A1)

uY(r12) ) ∑
l)0

∞ 2l + 1

2
Agl(r1, r2)Pl(cosø) (A2)

gl(r1, r2) )

A-1∫0

π
sin øuY(xr2

1 + r2
2 - 2r1r2 cosø)Pl(cosø)dø (A3)

Pl(cosø) )
4π

2l + 1
∑

m)-l

l

Ylm(Ω1)Ylm
/ (Ω2) (A4)

uY(r12) ) 2πA∑
l)0

∞

∑
m)-l

l

gl(r1, r2)Ylm(Ω1)Ylm
/ (Ω2) (A5)
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Using the expansion forms for the shape fluctuationδR0(Ω)
and the Yukawa potentialuY(r12), the first integral on the right-
hand side of eq 12 is derived as

Rearranging the second integralWB to be

where

we can straightforwardly use the spherical harmonic expansion
to prove thatωB(Ω2) is independent ofΩ2. A specific set of
solid angles,Ω2 ) {θ2 ) π/2, φ2 ) 0}, is introduced to simplify
wB, resulting in

The second integral on the right-hand side of eq 12 is given by

As a result, we obtain the spherical harmonic expansion of
δFY

(1) in eq 13.
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(1) Möhwald, H.Annu. ReV. Phys. Chem.1990, 41, 441.
(2) Seul, M.; Andelman, D.Science1995, 267, 476.
(3) Shiloach, A.; Blankschtein, D.Langmuir1998, 14, 7166.
(4) Tsonchev, S.; Schatz, G. C.; Ranter, M. A.J. Phys. Chem. B2004,

108, 8817.
(5) Sear, R. P.; Chung, S. W.; Markovich, G.; Gelbart, W. M.; Heath,

J. R.Phys. ReV. E 1999, 59, R6255.
(6) Kindt, J. T.; Gelbart, W. M.J. Chem. Phys. 2001, 114, 1432.
(7) Lipowsky, R.Nature (London)1991, 349, 475.
(8) Ayton, G.; Voth, G. A.Biophys. J.2002, 83, 3357.
(9) Leibler, L. Macromolecules1980, 13, 1602.

(10) Ohta, T.; Kawasaki, K.Macromolecules1986, 19, 2621.
(11) Fredrickson, G. H.; Helfand, E.J. Chem. Phys.1987, 87, 697.
(12) Blankschtein, D.; Thurston, G. M.; Benedek, G. B.Phys. ReV. Lett.

1985, 54, 955.
(13) Widom, B.; Dawson, K. A.; Lipkin, M. D.Phys. A1986, 140, 26.
(14) Dawson, K. A.Phys. ReV. A 1987, 36, 3383.
(15) McConnell, H. M.Annu. ReV. Phys. Chem.1991, 42, 171.
(16) Schmalian, J.; Wolynes, P. G.Phys. ReV. Lett. 2000, 85, 836.
(17) Wu, S. W.; Westfahl, H.; Schmalian, J.; Wolynes, P. G.Chem.

Phys. Lett.2002, 359, 1.
(18) Maibaum, L.; Dinner, A. R.; Chandler, D.J. Phys. Chem. B2004,

108, 6778.
(19) Stoycheva, A. D.; Singer, S. J.Phys. ReV. Lett. 2000, 84, 4657.
(20) Wu, J. L.; Cao, J. S. To be submitted.
(21) Wu, J. L.; Liu, Y.; Chen, W. R.; Cao, J. S.; Chen, S. H.Phys. ReV.

E 2004, 70, 050401.
(22) Sciortino, F.; Mossa, S.; Zaccarelli, E.; Tartaglia, P.Phys. ReV.

Lett. 2004, 93, 055701.
(23) Verwey, E. J. W.; Overbeek, J. Th. G.Theory of the Stability of

Lyophobic Colloids; Elsevier: Amsterdam, 1948.
(24) Wu, C.; Chen, S. H.J. Chem. Phys.1987, 87, 6199.
(25) McConnell, H. M.J. Phys. Chem.1990, 94, 4728.
(26) de Koker, R.; Jiang, W. N.; McConnell, H. M.J. Phys. Chem.1995,

99, 6251.
(27) Deutch, J. M.; Low, F. E.J. Phys. Chem.1992, 96, 7097.
(28) Mayer, M. A.; Vanderlick, T. K.J. Chem. Phys.1994, 100, 8399.
(29) Ng, K. O.; Vanderbilt, D.Phys. ReV. B 1995, 52, 2177.
(30) Laradji, M.; Shi, A. C.; Noolandi, J.; Desai, R. C.Macromolecules

1997, 30, 3242.
(31) Kashuba, A. B.; Pokrovsky, V. L.Phys. ReV. B 1993, 48, 10335.
(32) Muratov, C. B.Phys. ReV. E 2002, 66, 066108.
(33) Deutsch, A.; Safran, S. A.Phys. ReV. E 1996, 54, 3906.
(34) Watson, G. N.A Treatise on the Theory of Bessel Functions;

Cambridge University Press: New York, 1944.
(35) Grinstein, G.; Pelcovits, R. A.Phys. ReV. A 1982, 26, 915.
(36) Landau, L. D.; Lifshitz, E. M.Theory of Elasticity; Pergamon

Press: New York, 1970.
(37) Witten, T. A.; Sander, L. M.Phys. ReV. Lett. 1981, 47, 1400.
(38) Gutman, L.; Yang, L.; Cao, J. S. In preparation.
(39) Liu, C. Z. W.; Oppenheim, I.Phys. A1997, 247, 183.
(40) Mauro, M.; Oppenheim, I.Phys. A1999, 265, 520.
(41) Cates, M. E.; Fuchs, M.; Kroy, K.; Poon, W. C. K.; Puertas, A. M.

J. Phys.: Condens. Matter2004, 16, S4861.

WA )
R4F1

2

2
I dΩ1 I dΩ2 δR0(Ω1) δR0(Ω2)uY(|Rêr1

- Rêr2
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