HTML AESTRACT * LINKEES

THE JOURNAL OF CHEMICAL PHYSICSL122 094108(2005

Stationary phase evaluations of quantum rate constants
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We compute the quantum rate constant based on two extended stationary phase approximations to
the imaginary-time formulation of the quantum rate theory. The optimized stationary phase
approximation to the imaginary-time flux-flux correlation function employs the optimized quadratic
reference system to overcome the inaccuracy of the quadratic expansion in the standard stationary
phase approximation, and yields favorable agreements with instanton results for both adiabatic and
nonadiabatic processes in dissipative and nondissipative systems. The integrated stationary phase
approximation to the two-dimensional barrier free energy is particularly useful for adiabatic
processes and demonstrates consistent results with the imaginary-time flux-flux correlation function
approach. Our stationary phase methods do not require calculation of tunneling paths or stability
matrices, and work equally well in the high-temperature and the low-temperature regimes. The
numerical results suggest their general applicability for calibration of imaginary-time methods and
for the calculation of quantum rate constants in systems with a large number of degrees of
freedom. ©2005 American Institute of PhysidDOI: 10.1063/1.1856461

I. INTRODUCTION is dominated by thermal activation and is described by tran-
T lculati fth | ; hemi Isition state theory. Quantum mechanical corrections lead to
e calculation of thermal rate constants for chemical,itications of classical transition state theory. The quan-

reactions has been one of the most active areas in theoretictrﬁlm transition state theo]r§/(QTST) uses a parabolic barrier

Che”_“'s”f Throggh gnalytlcal co_ntlnuatlon, the q“?”t.“m dy potential and the harmonic approximation to the rest of Fou-
namics calculation is mapped into quantum statistical me:. . -

) : . . rier modes. The path-integral quantum transition state theory
chanics, which has been implemented in a number of qua

tum, mixed quantum-classical, or semiclassical metfiods. n(PI'QTST) based on the centroid concept has a similar struc-

Of particular importance is the imaginary-time path—integralture to that of classical TST except that the classical transi-

. . 0 .
formulation of thermal averaged quantum tunneling rate, i.e.t,Ion state Is .replaced by the centrditt’ The mixed
antum-classical rate theoryMQCLT) transforms the

quantum rate constant. Two related concepts have appeargH : - :
in literature: the imaginary-time flux-flux correlation func- evaluation of the reactive flux into the reduced phase space

: - 1
tion and the barrier partition function. via the Wigner transformi* Both PI-QTST and MQCLT em-

The imaginary-time flux-flux correlation function is nu- POy stationary phase approximations to the unstable mode.
merically more feasible than the real-time flux-flux correla-At low temperatures, the rate process is dominated by the
tion function. Real-time correlation functions require inten- tunneling effect, resulting in the nontrivial periodic station-
sive calculations of Feynman path integfasd are difficult ~ ary path, i.e., the instantdrf?**In the instanton approach,
to converge. Numerical schemes proposed by Berne, Dolftationary phase approximations are employed to describe
and their co-workers are based on direct analytical continufluctuation modes around the instanton path. More recently,
ation of imaginary-time correlation functioh*®Yet the ana- Miller and co-workers successfully applied the semiclassical
lytical continuation from the imaginary-time to real time is Stationary phase approximation with two dividing surfaces to
numerically unstable, which is the major drawback of thesegquantum Boltzmann operator and reached excellent agree-
schemes. Since the thermal rate constant is the zerdnent with the exact results for one-dimensioffd) and 2D
frequency component and does not require the informatiolsystemsf‘. Several theoretical attempts were proposed to
about the whole spectrum, the quantum reaction rate can d&idge the imaginary-time flux-flux correlation function and
computed from the stationary phase approximation of théhe barrier partition functiof®*"?*The instanton concept
imaginary-time flux-flux correlation function. This method was originally introduced by Miller and has been widely
was proposed by Wolynes and yielded the Golden rule rate iapplied to adiabatic processes. Cao and Voth proposed the
the nonadiabatic limit:® nonadiabatic instanton approach?®where stationary phase

The barrier partition function concept relates the quan-approximation of the imaginary-time flux-flux correlation
tum reactive flux to the imaginary part of the barrier partitionfunction in the nonadiabatic limit gave rise to an explicit
function**~*"The stationary phase approximations employectorm of the imaginary part of the barrier partition function.
to calculate the barrier partition function distinguish differentThiS nonadiabatic instanton approach calculates both the
quantum rate theories. At high temperatures, the rate proceggnadiabatic electron-transfer rate and the adiabatic quantum
tunneling rate over a broad range of coupling constants
dElectronic mail: jianshu@mit.edu within the same framework.
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In the present paper, we examine two stationary phase C(D)

methods for computing quantum rate constants. The first C.(®) HT (t+iT) nonadiabatic
method is derived from the optimized stationary phase ap- fs fs . instanton
proximation to the imaginary-time flux-flux correlation func- “* 1z,

tion, which applies the approach by Wolyﬁee both adia-
batic and nonadiabatic processes. Optimized quadratigiG. 1. lllustration of the relation between the barrier partition function
approximatioﬁ7'28 is employed to overcome the inaccuracy concept, the imaginary-time flux-flux correlation function concept, and the
of the quadratic expansion in the standard stationary phaginadiabatic instanton approach.
approximation. In the second method, the imaginary part of
the barrier partition function is calculated from the integratedstationary phase coordinate from the imaginary-time axis to
stationary phase approximations to the spatial coordinates dfie spatial axes, providing a bridge between these two sta-
the 2D barrier free energy surface. This method is motivatedionary phase methods.
by the quantum Boltzmann operator calculated by Midér
al.* and is a generalization of the barrier partition function
Conceptl.‘l_17 The 2D barrier free energy method is appli-
cable to adiabatic processes where the 2D barrier free ener
profile can be computed. A spatial integration scheme is pro-
posed to enhance the accuracy of the stationary phase ap- In this section, we apply the approach by Wolyhes
proximation. These two stationary phase methods do not réboth adiabatic and nonadiabatic cases by incorporating the
quire tunneling path calculations at low temperatures onon-Gaussian correction to the quadratic expansion used in
quantum correction factors at high temperatures, and ththe standard stationary phase approximation. The quantum
imaginary-time dynamics can be computed with readilyflux operator is generally defined by
available numerical path-integral techniques. .

Although both stationary phase methods have been ex- FE= '_[|Z|’ﬁR], (1)
plored respectively, their accuracy has yet to be established h
numerically and their consistency has yet to be demon- ~ ) )
strated. The goal of this paper is to demonstrate the agred!herehr is the occupation operator in the reactant state. The
ment between these two approaches for adiabatic process@aaginary-time flux-flux correlation function is given by
and their agreements with the instanton approach for nona- 1 -
diabatic processes. Our numerical calculation suggests that C(7) = —Tr e ""F(n)F(0), (2)
the optimized stationary phase approximation to the Z
imaginary-time flux-flux correlation function is applicable to
both adiabatic and nonadiabatic processes.

The rest of the paper is organized as follows. In Sec. |

A. Optimized stationary phase approximation
the imaginary-time flux-flux correlation function

where F(7)=e"""Fe™7 is the imaginary-time flux operator
Iand Z, is the reactant partition function. Due to the cyclic

we discuss the optimized imaginary-time stationary phas@rOperty of trace function, this imaginary-time flux-flux cor-
lation function is equivalent to the expression derived by

method, the 2D barrier free energy method, and the instantokj_ . . -

approach. In Sec. Ill, we demonstrate the accuracy of thes L!Ier,tSchwa}I[:]z, and T;ronfpatfter_ |nt\r/]ok[[ng th_e thckls :‘Oih

two stationary phase methods and their agreements with tH8 lont—i7. The quantum rate 1S the time integral of the
eal-time correlation function, which becomes the imaginary

instanton approach for adiabatic systems. Specifically wé ¢ of the int | of the | : time flux |
present results for a nondissipative 1D Eckart potential, gart ot the integral of the imaginary-ime flux-fiux correla-

dissipative Eckart potential, and a dissipative double-welltlon function, i.e.,

potential. In Sec. IV, we test the optimized stationary phase

approximation to the imaginary-time flux-flux correlation K:% Im fcff(r)dr. 3
function for a nonadiabatic system, i.e., the spin-boson

Hamiltonian. The conclusion is presented in Sec. V. The integral in Eq(3) implies the stationary phase approxi-
mation to the imaginary-time and the quantum reactive flux
II. METHODS is given bqum=_KZ,. .
The evaluation of the quantum reaction rate depends on
In this section, we apply several stationary phase apthe accuracy of the stationary phase approximation. This is-
proximations to evaluate the quantum rate. In the first apsue becomes important at low temperatures, for example, for
proach, the quantum rate is computed from the optimizedhe double-well potential investigated in Sec. Il B. It is also
stationary phase approximation to the imaginary-time coordemonstrated in Sec. IV for the spin-boson model that the
dinate. Here we generalize Wolynes’s approach by includingorrelation function becomes flat at large electronic cou-
anharmonicity. In the second approach, integrated stationamlings. To achieve better accuracy, we employ a numerical
phase approximations are applied to the spatial coordinatésplementation of the stationary phase approximation using
on the 2D barrier free energy surface. Both methods origithe optimized quadratic approximaticﬁﬁ)QA).”‘28 To pro-
nate from analytical continuation of the reactive flux corre-ceed, we first write the imaginary-time flux-flux correlation
lation functionCq4(t), and the relation is illustrated in Fig. 1. as Cy(7)=exd-®(7)], and expandd(7) at the stationary
The nonadiabatic instanton analysis essentially rotates thgoint =, giving
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D)= Blr) + 30 (r) (1= 7+ V)= Z,=Tre™= [ aq [ aq [ prace) [ Bl

+ oo (4) Xexd_ S:q(T)voiﬁ/Z:l_S:q’(T)!B/ZIB]}:
1 (8)
The optimized quadratic potential readb,.(7)~ Ea(r
- 752 and the reference distribution &7/ a] Y%exgd-a(r  \where 9q(n),0,8/2]=[F2H(dr is the Euclidean action

~75)?/2]. Explicit average of the second derivative of the fynctional of the patfy(7) from 0 to 8/2. # is taken to be
potential®(7) in Eq. (4) over the reference distribution leads ity implicitly in the present paper unless otherwise speci-

to the optimized quadratic approximation fied. The functional integral is carried out over all the peri-
odic paths of periodh 8. For dissipative systems, the fre-
oW uency factor is given b
= (D7), ~ B (rg) + LT quency given by
2a
dW(r,
~ (I)”(TSQ<1 + ,,—(St)z> , (5 N2, BhN,< 2w _ w?
2l D" (7] = t with Ay = N
1hB, BINE= 2m, NS+ 7ND/m

where the last expression is the leading order contribution (9)
of the optimized quadratic term angd--), represents the
average over the optimized reference system. It is straight-
forward to show thatb” () =Cf(7s)/Cii(7s) and ®@(7)  Heremis the effective mass of the reaction coordinate and
=C\?(74)/ Cyt() — 3 Cly(7s) / Cri(7s) J>. Hence, the quantum 7(2) is the Laplace transform of the classical friction kernel
rate constant is given by at the top of the barrier. The crossover temperature is defined
by BiNs=27 with A} the Grote-Hynes frequenéy*° For
o (4 -1/2 nondissipative systems;(z)=0, and\} reduces tow,. At
Cff (Tsy)/Cff(TS‘) . . . 0 . ..
K —J Ci(ndr= [—(”—2 - )} high temperatures, the imaginary part of the barrier partition
0 2\ [Ci(7s)/Cie(75))] function arises from the stationary phase approximation to
2 -1/2 the unstable mode. At low temperatures, the imaginary part
X {,,—] Cii(7sy, (6) of the barrier partition function is obtained from the station-
Cir(7s/Crt(71 ary phase approximations for all the modes along the instan-
ton path%6
where the first term is the non-Gaussian correction factor and  |nstead of referring to parabolic approximations at high
the rest is the rate from stationary phase approximation. temperatures and instanton paths at low temperatures, we
The optimized stationary phase approximation to theygopt a simple approach to calculate the imaginary part of
imaginary-time flux-flux correlation function does not as- tne parrier partition function for adiabatic processes. Moti-
sume weak coupling, hence is equally applicable to the nonasateq by the 2D quantum Boltzmann operator analyzed in
diabatic limit, the adiabatic limit, and the intermediate re-yecent work by Miller and co-workefswe obtain Imz,
gion. The non-Gaussian correction factor incorporates thgom the structures of the 2D barrier free energy. Figure 2
deviation from the standard quadratic approximation angystrates the 2D barrier free energy profil&(q,q’)
makes the stationary phase method reliable for calculation§_|n<q|expz_,8|_|/2]|qr> of a symmetric Eckart potential
of quantum rate constants over a broader range of tempergsich will be further discussed in Sec. Il A. It demonstrates
tures. We illustrate these points in Secs. Il and IV. different saddle point structures above and below the cross-
over temperature, which give rise to the imaginary part of the
barrier partition function. As the temperature increases above
B. Integrated stationary phase approximation the crossover, the two saddle points on the 2D barrier free
to the 2D barrier free energy energy surface gradually merge into one saddle point. The

Another approach to compute quantum rate constants |2D contours were used in recent work by Miler and
. bp . pute q . Go-workeré to extract the two dividing surfaces in the flux-
using the barrier partition function concept. In this approachﬂux correlation function. Here we analyze the saddle point

the quantum reactive flux is expressed as a product of

simple frequency factor and the imaginary part of the barriergtrucmre of the 2D barrier free energy surface and calculate
P! quency ginary p the barrier partition function with stationary phase approxi-
partition function,

mations. At temperatures above the crossover, the free en-
ergy profile of the stable mode is steep, so a quadratic ap-
F=wvimZ, (7)  proximation is not accurate enough to approximate the
integration over the stable mode. To overcome the inaccu-
whereZ, is the partition function in the barrier region amd racy of the quadratic approximation, we apply stationary
is the temperature-dependent frequency factor. The barrigthase approximations to the unstable modes along the stable
partition function is given by coordinate and sum all contributions,
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2 are not easy to find. For dissipative systems, the quantum
Im Zb:f do. S exd - 23(q.. %], (100 Boltzmann operator is averaged over all realizations of bath
G0 fluctuations. These numerical advantages render this method

whereq,=(q+q’)/2 is the stable coordinate along the diag- feasible for reaction processes that involve a large number of
onal andg_=(g-q’)/2 is the unstable coordinate along the degrees of freedom. Further efforts along this direction
off-diagonal. The integrand is the stationary phase approxishould focus on the development of more accurate methods
mation to the unstable mode and the integration is along tht® extract the imaginary part of the barrier partition function.
stable coordinate. This scheme does not require the determi-
nation of the saddle points. When quadratic expansion at th . . . o
saddle point is adeqpuate, E(1L0) rgduces to thF:e standard €. Adiabatic and nonadiabatic instanton method
stationary phase approximation to the unstable modes at the We now discuss the nonadiabatic instanton method
saddle points. which bridges the adiabatic and the nonadiabatic limits. The

The 2D barrier free energy method proposed here is aonadiabatic coupling arises from the breakdown of the
simple generalization of the barrier partition function Born—Oppenheimer approximation of the electron transfer
concep{e'17 and applies to temperatures above and below th@rocesses. The theoretical formalism for describing the nona-
crossover. This method does not involve real-time calculadiabatic dynamics was first proposed by Pechukas, Freed,
tions and can be implemented using available numerical afully, and Kapral, and developed by many others into sur-
gorithms such as numerical matrix multiplicatidNMM)  face hopping and various other numerical schemes for mo-
scheme, or path-integral Monte Carfoyhich is particularly  lecular dynamics(MD) simulations®*~" The nonadiabatic
useful for more complicated potentials where instanton pathsistanton theory is the imaginary-time analog of the Pechu-
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FIG. 3. Comparison of the curvature of the unstable modes at the saddle 1 —

First negative mode
point of the 2D barrier free energy surface and the first negative eigenvalue Eally d

of the instanton solution for the symmetric Eckart potential. Over a wide I ) | ) | ) | ) |

range of temperatures, they are proportional to each other. '20 0.2 04 0.6 0.8 ' 1
2 — 1 1 T T 1

kas formulatiorf*~2° In the nonadiabatic limit, quantum re- i ]

active events arise from the crossing between electronic sur- 1 /’ TS " N

faces. The barrier partition function can be computed from & -’ g ]

the stationary phase approximation along the imaginary-time o b 5 = '\.\ _

coordinate’’ In the adiabatic limit, the reactive process is [ .- '~

dominated by the lower adiabatic energy surface resulting 1 _’ First positive mode '=
from frequent crossings between the electronic surfaces. The 5 ) | ) I ) | ) A .
barrier partition function in this limit is obtained from the 0 0.2 0.4 0.6 0.8 1
stationary phase approximation to the spatial coordinates. Ef- T/ B

fectively, the nonadiabatic instanton approach rotates the sta- _ _ _ _ _ _

tionary phase coordinate from the temporal axis in the non EIG. 4. The instanton traje_ctory, the first n_egatlve mo_de, and the first posi-
. . . L. . R . ive mode for the symmetric Eckart potentiallat Shw,=24.

diabatic limit to the spatial axis in the adiabatic limit, which

is illustrated in Fig. 1. The adiabatic instanton theory byshown in Fig. 4. The first negative mode is asymmetric with

Miller? relates the guantum reaction rate to the stationar¥ . . I .
L . . . espect to the barrier top, and the first positive mode is a
phase approximation of the imaginary-time flux-flux correla—symrnetric trajectory around the barrier top

tion function in the adiabatic limit while the nonadiabatic
instanton theorV demonstrate this relation in the nonadia-
batic limit. Hence, the instanton approaches yield an impor!”' ADIABATIC REACTIONS
tant connection between the imaginary-time flux-flux corre-  To illustrate the stationary phase methods discussed in
lation function concept and the barrier partition functionthe preceding section, we present numerical results for quan-
concept. tum rate constants of several potentials in this section. For
The adiabatic instanton concept was originally intro-the nondissipative case, we investigate a 1D Eckart potential.
duced by Miller and has been applied extensively to dissipaFor the dissipative case, we discuss a 1D Eckart potential
tive and nondissipative systerh3o illustrate the connection and a double-well potential, both coupled to a harmonic bath.
that the instanton approach provides, we use the symmetri study of the nonadiabatic rate constant of the spin-boson
Eckart potential as an example. In agreement with discusmodel is presented in Sec. IV.
sions in the literaturé®?* we notice the presence of an un-  In the presence of a potential barrier, the quantum flux
stable mode of the instanton path, which corresponds to th@perator measures the quantum reactive flux through the di-
negative eigenvalue. As we discussed earlier, the unstabléding surfaceq, and is given asF,=[&(q—q,)p+pd(q
mode also appears on the 2D barrier free energy surface.qn)]/2m, wherep=-id, is the momentum operator. Carry-
Both unstable modes give rise to the imaginary part of theng out the trace of E¢(2) in the coordinate space yields
barrier partition function. Figure 3 displays the curvature of
the unstable mode at the saddle point of the 2D barrier free
energy. It is proportional to the negative eigenvalue of the
instanton path over a wide range of temperatures. This is a
strong indication of the intrinsic connection between the 2D
barrier free energy method and the instanton method. The
eigenmode corresponding to the negative eigenvalue is

1\2 o O
Cff(T)Zr=<%) [(qule”®"M|ap) (ayle ™|ay)’

+ ‘<Q1|e_(B_T)H|CI2>'<Q1|e_TH|CI2>
- ‘<Q1|e_(B_T)H|Q2>\<Q1|e_TH|Q2>
—(aale”F Mg (ayle a1, (11
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sionless reduced temperature drR7 is the crossover tem-
perature for the nondissipative case.
For the symmetric Eckart potential, the matrix element

09F "\ gd of exd—H7] is evaluated using the NMM algorithit.The
- \\ e ,," imaginary-time flux-flux correlation functions at different
‘5: \\ // temperatures are shown in Fig. 5. For the nondissipative
= Lo 2T Eckart potential, —IrC;;(7) is well approximated by the qua-
;t TRemma s S | dratic reference discussed in Sec. Il B. We notice that the

non-Gaussian corrections at different temperatures are

=3 slightly different. In the crossover regime whebe- 2,

=8 . . . .

=16 —In C(7) at the stationary point=4/2 is quadratic and the

=L quartic term is negligible. At temperatures below the cross-
0.65 . 0'2 ' 0'4 ' ols ' 0'8 ' 1 over,b=8, 16, and 24, the quartic term increases gradually

and carries an opposite sign from the quadratic term. Hence,
the correlation function becomes flatter. B3 above the
crossover temperature, the quartic term also increases but
carries the same sign as the quadratic term, consequently, the
) ) ) . flux-flux correlation function becomes deeper.

where the left and the right primes represent spatial deriva- Figure 2 illustrates 2D contour plots of the barrier free

tives. This expression is given as H@.3) in Ref. 4. Inour o000 surface. Below the crossover temperature, two saddle
calcu_le_ltlons, the dividing surface is defined at the top of th oints are found along the off-diagonal direction. The con-
transition barrier,q,=0,=0, where reactants and products tour connecting these two saddle points essentially corre-
separate from each other. sponds to the bounce trajectory, or the instanton path. As the
temperature increases, the two saddle points merge into one,
i.e., the instanton path converges to the barrier top. As shown
in the left column of Fig. 2, at the temperature above the
Now we consider the nondissipative case using a 1[lxrossoverb=3, only one saddle point exists at the center of
symmetric Eckart potential, the contour plot. The crossover is better illustrated in the
corresponding free energy profile along the off-diagonal di-
rections in the right column of Fig. 2, where two minima of
the stable mode merge gradually at higher temperatures.
which has been studied by many other groups. We examine The quantum correction factdr=Fg/F, defined as
the optimized imaginary-time stationary phase method, théhe ratio between the quantum reactive fiyy, and the clas-
2D barrier free energy method, and the consistency of thesgical oneFy=€e#Vo/274 3, is tabulated in Table I. The in-
two methods. We use the same parameters as in Ref. 18tanton resull’, is calculated with the method outlined in
27Vl hwp=12,a=1, m=1, and%Z=1. b=Bhw, is a dimen- Ref. 16 and the exact result,,is computed with the ex-

/B

FIG. 5. The normalized imaginary-time flux-flux correlation function
Ct(7)/C(0) for the nondissipative Eckart potential lat 3, 8, 16, and 24.

A. Nondissipative case: 1D symmetric Eckart
potential

V() =V, secﬁ( g) , (12)

TABLE I. Quantum correction factor for the symmetric Eckart potential.

Bhao, Fexacf1 l—‘ins'tb FbpC Ffluxd
3 1.5 1.68 1.53
4 2.07 2.36 1.96
5 3.10 3.69 3.08
6 5.20 ‘e 6.48 5.39
8 21.8 20.0 23.7 23.6
10 162 136 158 169
12 1973 1613 1796 1921
14 3.49x 10 2.78x 10 2.99x 10¢ 3.13x 10
16 7.40< 10°P 6.04x 10° 6.42x 10° 6.60x 10°
18 1.88x 107 1.53x 107 1.63x 107 1.65% 107
20 5.34x 10° 4.37x 108 4.62x10° 4.63x10°
22 1.64x 10 1.35x 1010 1.42% 100 1.41x 100
24 5.38x 101 4.43x 10 4.614x 101 4.58x 101t
26 1.84x 1083 1.52x 103 1.56x 10'3 1.56x 103
28 6.55x 1014 5.44x 101 5.40x 101 5.49x 101
30 2.40x 106 2.00x 106 1.924% 106 2.00x 106

*Exact results calculated from expression in Ref. 38.

PInstanton calculation with the method in Ref. 16.

‘Integrated stationary phase approximation to the 2D barrier free energy i1®q.

dOptimized stationary phase approximation to the imaginary-time flux-flux correlation function i(6)Eq.
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TABLE II. Quantum reactive flux for the dissipative symmetric Eckart potential.

Bliawy, :Bﬁ)‘(iJ FinSta Fbpb Ffluxc
4 3.9 e 1.60x 10 1.51x 10
8 7.8 3.3 1077 3.04x 1077 2.89x 1077
12 11.7 4.25107° 4.00x 10°° 3.97x10°
16 15.6 2.76¢10°%0 2.56x 10710 2.36x 10710
20 195 3.5% 1071t 3.46x 101 2.95x 10711
24 23.4 6.5 10712 6.41x 10712 5.69x 10712

“Instanton calculation with the method in Ref. 16.
bIntegrated stationary phase approximation to the 2D barrier free energy ii1@qg.
‘Optimized stationary phase approximation to the imaginary-time flux-flux correlation function iG)Eq.

pression in Ref. 38, represents the quantum correction =85 ex[-iQ,7]q(7dr is the Fourier modes of the path
factor calculated from the optimized stationary phase apx(7) at the Matsubara frequendy,=2=n/B. The frequency
proximation to the imaginary-time flux-flux correlation func- wg, the coupling constant, and¥(2,,) are determined from
tion. I',, is computed from the integrated stationary phasehe spectral density of the harmonic basee Appendix B in
approximation to the 2D barrier free energy discussed in Sedkef. 17. The action functional in Eq(14) provides a

Il B. The quantum correction factors from both stationarystraightforward way to simulate the quantum dynamics. The
phase methods compare favorably with the instanton calcysresence of the system coordinaten the action integral
lation and the exact results over a wide range of temperarenders an explicit route to computglexp(-H7)|q’), which
tures. These two methods proposed here show consideratienecessary for computing the imaginary-time flux-flux cor-
improvements to the instanton calculations in the crossovefelation function and the barrier partition function. At each
regime and become almost identical to the instanton result@mperature, the Fourier modes of the trajectrfy) are

at temperatures far below the crossover. Compared to thgenerated according to the Boltzmann distribution

exact resultd gy, the optimized_ imaginary-time stationary eXF{‘,BmEn>an3’(Qn)|;<_n|2]- The quantum Boltzmann op-
phase method and the 2D barrier free energy method shogtaior is computed accordingly and averaged over a number
an accuracy of~10% at high temperature ane20% at  of path trajectories. The imaginary-time flux-flux correlation
extremely low temperatures. function is computed using Eq11).

B. Dissipative case: 1D Eckart and double-well

- 1. Eckart potential
potentials P

_ ) For the dissipative Eckart potential, the bath averaged
Now we discuss the calculation of quantum raté con-pn paprier free energy surfac@ot shown here displays
stants for the dissipative 1D potential. The full Hamiltonian similar features as the nondissipative case in Sec. Il A. At

is given by temperatures below crossover, two saddle points are found
2 2 9 c 2 along the off-diagonal direction; at high temperatures, these
H= 2[3_:1 +V(g) + E {Z_F?n_ + Emj‘”jz<xi - mq) } two saddle points merge into one. The quantum fluxes from
) ! 1™ the optimized imaginary-time stationary phase method and
(13 the 2D barrier free energy method are listed in Table Il and
compared with the adiabatic instanton approach outlined in
I_Ref. 16.)\5 is the Grote—Hynes frequency determined with
Eq. (9). Clearly, bothFy, and F,, agree closely with each
(,ﬂWer in the full temperature range. They also agree favorably
with the instanton results below the crossover temperature.
The deviation from the instanton calculation is within 15—
20%. At low temperatures, the quantum fluxes obtained from
the two stationary phase methods proposed in the present
paper are consistently smaller than the instanton results. For
the dissipative Eckart potential, instanton paths are difficult
to calculate. In comparison, the two stationary phase meth-
ods in the present paper bypass the searching of instanton
path and demonstrate reasonable accuracy at both high tem-

Bl 1 -1 x|\ i i
S:f dr| Tmif +V(g) + SR + —mwé(x— q perature regime and low temperature regime.

2. Double-well potential

Here,q is the system coordinate angs describe a harmonic
bath bilinearly coupled to the system coordinate. This Hami
tonian in Eq.(13) is widely employed to study the effects of
condensed phase environments on charge transfer. The b
correlation is characterized by the spectral dendity)
:W/ZEj(mjwj)_lcjz5(w—wj). In our calculation, we assume
an ohmic spectral density with a frequency cuteff, i.e.,
J(w)=mhKwe /2 whereK is the Kondo constant. In this
section, the bath parameters are chosen tefew, andK
=0.Imwy. In the imaginary-time formulation, we integrate
out the harmonic bath in E4L3) in a manner consistent with
the Brownian oscillator modéf. The action functional is

+ BN, O HQ [ (14)

"0 The dissipative double-well potential is a practical

R model for proton transfer and electron transfer processes in
The last term is the influence functional, ang, condensed phases. By far there have been no direct applica-
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0.001

peratures. Compared to the real-time path-integral method
such as quasiadiabatic path inted*ralhese two imaginary-

. time methods are simpler to compute numerically and yield
] the rate constant with similar accuracy. Yet, the stationary
| phase calculations do not contain the full dynamics. For ex-
ample, they exclude the recrossing of the dividing surface
observed in the real-time calculations.

— b=6

..... b=8

- =-b=12
b=16

0.0008 |-

0.0006 |-

o
2
g
I
——__— --------.

CD/C(0)

0.0002 |-

IV. NONADIABATIC PROCESSES: SPIN-BOSON
MODEL

| , | , : , | , The application of reaction rates for nonadiabatic con-
v O : densed phase processes is an important step to test the meth-

ods discussed in Sec. Il. The dynamic picture of such process

FIG. 6. The normalized imaginary-time flux-flux correlation function jnyolves transitions between two diabatic surfaces corre-

Cy1(7)/Cy4(0) for the dissipative double-well potential lat 6, 8, 12, and 16. sponding to the reactant and the product sites, respectively.

The transition is induced by the coupling between the two

tions of the flux-flux correlation function approach and thediabatic surfaces. At low temperatures, this two-surface sys-

barrier partition function approach to the double-well sys-tem reduces practically to a two-level system. Combination

tems. The present work provides a critical test of the opti-of the two surfaces and the bath leads to the famous spin-

mized imaginary-time stationary phase method and the 2oson Hamiltonian,

barrier free energy method. The model Hamiltonian we study

next has the same form as Hd3), except for the potential NTq 1 c 2

along the reaction coordinate which is a symmetric double H=Aoy+ 21 [EmjkaJf Emjwjz(xj - m%) } (16)

well here, 1= 1]

V(Q) = - a,0° + a,q*. (150  whereo;, i=x,y,z is the Pauli spin matrixA is one-half of
the tunneling splitting. Despite its simplicity, the spin-boson
model is widely employed to study the nonadiabatic dynam-

; N N&cs of electron transfer reactions in biological systems and

DW1 parameters used by Topaler and Mdk#is shown in optical properties in one-dimensional conductors. Here we

Fig. 6, the flux-flux correlation function is quite flat_ ar_ld the explore this problem using the optimized stationary phase
flatness increases at lower temperatures. The optimized Stébproximation to the imaginary-time flux-flux correlation
tionary phase approximation to the imaginary-time ﬂux'ﬂuxfunction

correlation function requires accurate determination of the
second and the fourth derivatives at the stationary paint (1) reduces toF=Ac,. Consequently the imaginary-time
We perform bath averages over3:Q(* trajectories to ob- flux-flux correlation fuynction is

tain better accuracy and apply the optimized quadratic ap-

In our calculationa; =0.5 anda,=0.015 and the barrier fre-
quencyw,=1. This set of parameters are consistent with th

For the spin-boson Hamiltonian, the flux operator in Eq.

proximation. = 27717y B
Table Il demonstrates that the quantum correction factor Cir(n r Treoy(noy(0)
I'sux from the two stationary phase methods agree surpris- =A’Z Tr e Mg etg, (17

ingly well over the temperature range we studied. Even at

low temperatures they differ by-10%. The quantitative In our calculation, the spin-boson Hamiltonian is trans-
agreement with the instanton calculations is excellent aformed into a two-level Brownian oscillator. The derivation
higher temperatures and slightly less favorable at lower temean be found in Ref. 17 and the action term is given by

TABLE Ill. Quantum correction factor for the dissipative symmetric double-well potential.

Bhay Bh)‘é I‘ins'ta l—‘bpb l—‘I‘quc
2.4 2.35 1.27 1.40
4 3.92 2.10 2.12
6 5.88 8.71 8.12
8 7.84 293 281 294
10 9.80 1.4 10° 1.25x 10° 1.22x 10°
12 11.76 1.5% 10 1.54x 10° 1.41x 108
16 15.68 2.4(x 1014 1.99x 1014 2.14x 1014

dnstanton calculation with the method in Ref. 16.
bIntegrated stationary phase approximation to the 2D barrier free energy i @g.
“Optimized stationary phase approximation to the imaginary-time flux-flux correlation function iG)Eq.
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FIG. 7. The imaginary-time flux-flux correlation for the spin-boson model. FIG_' 8 The qF’a”‘””? flux Of. the spin-boson mOd?' calculated with the
The coupling constant varies from top to bottai+0.01, 0.1, 1, and 10. optimized imaginary-time stationary phase method in @). The dotted-
' B dashed line is the Golden rule rate. The dotted line is the nonadiabatic

instanton result.

B
5= i (Ao~ Axodr+ M, [0d+ 02+ onA Q)]
0

= to the dissipative double-well potential. When the correlation

function is flat, the quadratic stationary phase approximation
is inadequate for time integration. To incorporate the non-
Gaussian effects, we use the optimized quadratic approxima-
tion discussed in Sec. Il &
where\, wo, andy((2,,) are identical to the definitions in the The quantum fluxes are plotted as a function of the cou-
dissipative Eckart potential. First, the Fourier modes of battpling constantA in Fig. 8. The quantum flux obtained from
fluctuations are Sampled from the Boltzmann distribution andhe Optimized imaginary_time Stationary phase method is in
the Euclidean path trajectony(7) is generated accordingly. excellent agreement with the nonadiabatic instanton calcula-
Then, the imaginary-time path integral is propagated and thgions in Ref. 17. In the weak coupling limit, the quantum rate
flux-flux correlation function of Eq(18) is calculated along approaches the Golden rule rate in the nonadiabatic limit,
the trajectoryx(7). Finally the flux-flux correlation function which is proportional taA2*"*In the strong coupling limit,
is averaged over all possible realizations of bath fluctuationghe spin-boson rate constant approaches the adiabatic rate,
To facilitate the comparison with the calculation in Ref. 17,which has an exponential dependence on the coupling con-
in the present calculation we adopt the same set of paranstant, K« ef2. Nevertheless, the optimized imaginary-time
etersi=1, B=3, w,=1/y2, andK=0.25. stationary phase method differs slightly from the nonadia-
The imaginary-time flux-flux correlations for different batic instanton results at the intermediate coupling strengths.
coupling constants at the temperatge3 are plotted in Fig. We observed that the non-Gaussian correction factor in Eq.
7. In the weak coupling limit, the flux-flux correlation func- () becomes significant at largey, indicating a substantial
tion approaches the Golden rule result for the nonadiabatigeviation from the quadratic reference system. This can be

B

BN
<ol + S+ o

, 18
meg (18)

limit, *’ seen from the difference between the plain stationary phase
4 Hw)dw Bl approximation and the gptimized quadiatic apprpxim.ation in
Cy(7) = ex _—i o icosh Fig. 8. Overall, the optimized quadratic approximation has
mh J o sinh(fhol2) 2 improved dramatically the standard stationary phase approxi-

mation and more advanced numerical techniques have to be
developed to overcome the inaccuracy introduced by the
quadratic reference system.

—costi@—aw)i}. (19
2

In the largeA limit, we notice that the imaginary-time flux-
flux correlation function beco_mgs fl_at, a behawqr similar 0\, CONCLUDING REMARKS

that of the double-well potential in Fig. 6. In fact, in the large

A limit, the energy gap between the two adiabatic surfaces of Two stationary phase methods, the optimized stationary
the spin-boson model is large compared to the thermal erphase approximation to the imaginary-time flux-flux correla-
ergy kgT. Then, there is little contribution from the upper tion function and the integrated stationary phase approxima-
energy surface and the quantum dynamics is completeltion to the 2D barrier free energy, provide a practical way to
dominated by the lower energy surface, giving the adiabaticompute the quantum reaction rate in complex systems. Un-
limit of the spin-boson Hamiltonian. Considering the pres-like quantum transition state theory which diverges at low
ence of the diabatic surfaces of reactants and products, themperatures, or the instanton theory which is valid below
adiabatic limit of the spin-boson Hamiltonian is similar to a the crossover temperature, these two stationary phase meth-
double-well potential. This explains the close resemblance obds work equally well for high and low temperatures, as well
the imaginary-time flux-flux correlation function at large  as in the crossover regime. In the optimized imaginary-time
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