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We compute the quantum rate constant based on two extended stationary phase approximations to
the imaginary-time formulation of the quantum rate theory. The optimized stationary phase
approximation to the imaginary-time flux-flux correlation function employs the optimized quadratic
reference system to overcome the inaccuracy of the quadratic expansion in the standard stationary
phase approximation, and yields favorable agreements with instanton results for both adiabatic and
nonadiabatic processes in dissipative and nondissipative systems. The integrated stationary phase
approximation to the two-dimensional barrier free energy is particularly useful for adiabatic
processes and demonstrates consistent results with the imaginary-time flux-flux correlation function
approach. Our stationary phase methods do not require calculation of tunneling paths or stability
matrices, and work equally well in the high-temperature and the low-temperature regimes. The
numerical results suggest their general applicability for calibration of imaginary-time methods and
for the calculation of quantum rate constants in systems with a large number of degrees of
freedom. ©2005 American Institute of Physics. fDOI: 10.1063/1.1856461g

I. INTRODUCTION

The calculation of thermal rate constants for chemical
reactions has been one of the most active areas in theoretical
chemistry.1 Through analytical continuation, the quantum dy-
namics calculation is mapped into quantum statistical me-
chanics, which has been implemented in a number of quan-
tum, mixed quantum-classical, or semiclassical methods.2–7

Of particular importance is the imaginary-time path-integral
formulation of thermal averaged quantum tunneling rate, i.e.,
quantum rate constant. Two related concepts have appeared
in literature: the imaginary-time flux-flux correlation func-
tion and the barrier partition function.

The imaginary-time flux-flux correlation function is nu-
merically more feasible than the real-time flux-flux correla-
tion function. Real-time correlation functions require inten-
sive calculations of Feynman path integrals8 and are difficult
to converge. Numerical schemes proposed by Berne, Doll,
and their co-workers are based on direct analytical continu-
ation of imaginary-time correlation function.9–13Yet the ana-
lytical continuation from the imaginary-time to real time is
numerically unstable, which is the major drawback of these
schemes. Since the thermal rate constant is the zero-
frequency component and does not require the information
about the whole spectrum, the quantum reaction rate can be
computed from the stationary phase approximation of the
imaginary-time flux-flux correlation function. This method
was proposed by Wolynes and yielded the Golden rule rate in
the nonadiabatic limit.5,6

The barrier partition function concept relates the quan-
tum reactive flux to the imaginary part of the barrier partition
function.14–17The stationary phase approximations employed
to calculate the barrier partition function distinguish different
quantum rate theories. At high temperatures, the rate process

is dominated by thermal activation and is described by tran-
sition state theory. Quantum mechanical corrections lead to
modifications of classical transition state theory. The quan-
tum transition state theory18 sQTSTd uses a parabolic barrier
potential and the harmonic approximation to the rest of Fou-
rier modes. The path-integral quantum transition state theory
sPI-QTSTd based on the centroid concept has a similar struc-
ture to that of classical TST except that the classical transi-
tion state is replaced by the centroid.19,20 The mixed
quantum-classical rate theorysMQCLTd transforms the
evaluation of the reactive flux into the reduced phase space
via the Wigner transform.21 Both PI-QTST and MQCLT em-
ploy stationary phase approximations to the unstable mode.
At low temperatures, the rate process is dominated by the
tunneling effect, resulting in the nontrivial periodic station-
ary path, i.e., the instanton.2,22,23 In the instanton approach,
stationary phase approximations are employed to describe
fluctuation modes around the instanton path. More recently,
Miller and co-workers successfully applied the semiclassical
stationary phase approximation with two dividing surfaces to
quantum Boltzmann operator and reached excellent agree-
ment with the exact results for one-dimensionals1Dd and 2D
systems.4 Several theoretical attempts were proposed to
bridge the imaginary-time flux-flux correlation function and
the barrier partition function.2,16,17,24The instanton concept
was originally introduced by Miller and has been widely
applied to adiabatic processes. Cao and Voth proposed the
nonadiabatic instanton approach,24–26where stationary phase
approximation of the imaginary-time flux-flux correlation
function in the nonadiabatic limit gave rise to an explicit
form of the imaginary part of the barrier partition function.
This nonadiabatic instanton approach calculates both the
nonadiabatic electron-transfer rate and the adiabatic quantum
tunneling rate over a broad range of coupling constants
within the same framework.adElectronic mail: jianshu@mit.edu

THE JOURNAL OF CHEMICAL PHYSICS122, 094108s2005d

0021-9606/2005/122~9!/094108/10/$22.50 © 2005 American Institute of Physics122, 094108-1

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1856461


In the present paper, we examine two stationary phase
methods for computing quantum rate constants. The first
method is derived from the optimized stationary phase ap-
proximation to the imaginary-time flux-flux correlation func-
tion, which applies the approach by Wolynes5 to both adia-
batic and nonadiabatic processes. Optimized quadratic
approximation27,28 is employed to overcome the inaccuracy
of the quadratic expansion in the standard stationary phase
approximation. In the second method, the imaginary part of
the barrier partition function is calculated from the integrated
stationary phase approximations to the spatial coordinates of
the 2D barrier free energy surface. This method is motivated
by the quantum Boltzmann operator calculated by Milleret
al.4 and is a generalization of the barrier partition function
concept.14–17 The 2D barrier free energy method is appli-
cable to adiabatic processes where the 2D barrier free energy
profile can be computed. A spatial integration scheme is pro-
posed to enhance the accuracy of the stationary phase ap-
proximation. These two stationary phase methods do not re-
quire tunneling path calculations at low temperatures or
quantum correction factors at high temperatures, and the
imaginary-time dynamics can be computed with readily
available numerical path-integral techniques.

Although both stationary phase methods have been ex-
plored respectively, their accuracy has yet to be established
numerically and their consistency has yet to be demon-
strated. The goal of this paper is to demonstrate the agree-
ment between these two approaches for adiabatic processes
and their agreements with the instanton approach for nona-
diabatic processes. Our numerical calculation suggests that
the optimized stationary phase approximation to the
imaginary-time flux-flux correlation function is applicable to
both adiabatic and nonadiabatic processes.

The rest of the paper is organized as follows. In Sec. II,
we discuss the optimized imaginary-time stationary phase
method, the 2D barrier free energy method, and the instanton
approach. In Sec. III, we demonstrate the accuracy of these
two stationary phase methods and their agreements with the
instanton approach for adiabatic systems. Specifically we
present results for a nondissipative 1D Eckart potential, a
dissipative Eckart potential, and a dissipative double-well
potential. In Sec. IV, we test the optimized stationary phase
approximation to the imaginary-time flux-flux correlation
function for a nonadiabatic system, i.e., the spin-boson
Hamiltonian. The conclusion is presented in Sec. V.

II. METHODS

In this section, we apply several stationary phase ap-
proximations to evaluate the quantum rate. In the first ap-
proach, the quantum rate is computed from the optimized
stationary phase approximation to the imaginary-time coor-
dinate. Here we generalize Wolynes’s approach by including
anharmonicity. In the second approach, integrated stationary
phase approximations are applied to the spatial coordinates
on the 2D barrier free energy surface. Both methods origi-
nate from analytical continuation of the reactive flux corre-
lation functionCfsstd, and the relation is illustrated in Fig. 1.
The nonadiabatic instanton analysis essentially rotates the

stationary phase coordinate from the imaginary-time axis to
the spatial axes, providing a bridge between these two sta-
tionary phase methods.

A. Optimized stationary phase approximation
to the imaginary-time flux-flux correlation function

In this section, we apply the approach by Wolynes5 to
both adiabatic and nonadiabatic cases by incorporating the
non-Gaussian correction to the quadratic expansion used in
the standard stationary phase approximation. The quantum
flux operator is generally defined by

F̂ =
i

"
fĤ,ĥRg, s1d

whereĥR is the occupation operator in the reactant state. The
imaginary-time flux-flux correlation function is given by

Cffstd =
1

Zr
Tr e−bĤF̂stdF̂s0d, s2d

where F̂std=eHtF̂e−Ht is the imaginary-time flux operator
and Zr is the reactant partition function. Due to the cyclic
property of trace function, this imaginary-time flux-flux cor-
relation function is equivalent to the expression derived by
Miller, Schwartz, and Tromp3 after invoking the Wick’s ro-
tation t→ it. The quantum rate is the time integral of the
real-time correlation function, which becomes the imaginary
part of the integral of the imaginary-time flux-flux correla-
tion function, i.e.,

K = 1
2 Im E Cffstddt. s3d

The integral in Eq.s3d implies the stationary phase approxi-
mation to the imaginary-time and the quantum reactive flux
is given byFqm=KZr.

The evaluation of the quantum reaction rate depends on
the accuracy of the stationary phase approximation. This is-
sue becomes important at low temperatures, for example, for
the double-well potential investigated in Sec. III B. It is also
demonstrated in Sec. IV for the spin-boson model that the
correlation function becomes flat at large electronic cou-
plings. To achieve better accuracy, we employ a numerical
implementation of the stationary phase approximation using
the optimized quadratic approximationsOQAd.27,28 To pro-
ceed, we first write the imaginary-time flux-flux correlation
as Cffstd=expf−Fstdg, and expandFstd at the stationary
point tst, giving

FIG. 1. Illustration of the relation between the barrier partition function
concept, the imaginary-time flux-flux correlation function concept, and the
nonadiabatic instanton approach.
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Fstd = Fststd +
1

2
F9ststdst − tstd2 +

1

4!
Fs4dststdst − tstd4

+ ¯ . s4d

The optimized quadratic potential readsFrefstd<
1

2
ast

−tstd2 and the reference distribution isf2p /ag−1/2expf−ast
−tstd2/2g. Explicit average of the second derivative of the
potentialFstd in Eq. s4d over the reference distribution leads
to the optimized quadratic approximation

a = kF9la < F9ststd +
Fs4dststd

2a

< F9ststdS1 +
Fs4dststd

2fF9ststdg2D , s5d

where the last expression is the leading order contribution
of the optimized quadratic term andk¯la represents the
average over the optimized reference system. It is straight-
forward to show thatF9ststd=Cff9 ststd /Cffststd and Fs4dststd
=Cff

s4dststd /Cffststd−3fCff9 ststd /Cffststdg2. Hence, the quantum
rate constant is given by

K =E
0

`

Cffstddt < F1

2
S Cff

s4dststd/Cffststd
fCff9 ststd/Cffststdg2 − 1DG−1/2

3F 2p

Cff9 ststd/Cffststd
G−1/2

Cffststd, s6d

where the first term is the non-Gaussian correction factor and
the rest is the rate from stationary phase approximation.

The optimized stationary phase approximation to the
imaginary-time flux-flux correlation function does not as-
sume weak coupling, hence is equally applicable to the nona-
diabatic limit, the adiabatic limit, and the intermediate re-
gion. The non-Gaussian correction factor incorporates the
deviation from the standard quadratic approximation and
makes the stationary phase method reliable for calculations
of quantum rate constants over a broader range of tempera-
tures. We illustrate these points in Secs. III and IV.

B. Integrated stationary phase approximation
to the 2D barrier free energy

Another approach to compute quantum rate constants is
using the barrier partition function concept. In this approach,
the quantum reactive flux is expressed as a product of a
simple frequency factor and the imaginary part of the barrier
partition function,

F . n Im Zb, s7d

whereZb is the partition function in the barrier region andn
is the temperature-dependent frequency factor. The barrier
partition function is given by

Zb = Tr e−bH =E dqE dq8E Dfqstdg E Dfq8stdg

3exph− Sfqstd,0,b/2g − Sfq8std,b/2,bgj,

s8d

where Sfqstd ,0 ,b /2g=e0
b/2Hstddt is the Euclidean action

functional of the pathqstd from 0 to b /2. " is taken to be
unity implicitly in the present paper unless otherwise speci-
fied. The functional integral is carried out over all the peri-
odic paths of period"b. For dissipative systems, the fre-
quency factor is given by

n = Hl0
‡/2p, b"l0

‡ , 2p

1/"b, b"l0
‡ ù 2p,

J with l0
‡ =

vb
2

l0
‡ + ĥsl0

‡d/m
.

s9d

Herem is the effective mass of the reaction coordinate and
ĥszd is the Laplace transform of the classical friction kernel
at the top of the barrier. The crossover temperature is defined
by b"l0

‡=2p with l0
‡ the Grote–Hynes frequency.29,30 For

nondissipative systems,ĥszd=0, andl0
‡ reduces tovb. At

high temperatures, the imaginary part of the barrier partition
function arises from the stationary phase approximation to
the unstable mode. At low temperatures, the imaginary part
of the barrier partition function is obtained from the station-
ary phase approximations for all the modes along the instan-
ton path.16

Instead of referring to parabolic approximations at high
temperatures and instanton paths at low temperatures, we
adopt a simple approach to calculate the imaginary part of
the barrier partition function for adiabatic processes. Moti-
vated by the 2D quantum Boltzmann operator analyzed in
recent work by Miller and co-workers,4 we obtain ImZb

from the structures of the 2D barrier free energy. Figure 2
illustrates the 2D barrier free energy profileSsq,q8d
=−lnkquexpf−bH /2guq8l of a symmetric Eckart potential
which will be further discussed in Sec. III A. It demonstrates
different saddle point structures above and below the cross-
over temperature, which give rise to the imaginary part of the
barrier partition function. As the temperature increases above
the crossover, the two saddle points on the 2D barrier free
energy surface gradually merge into one saddle point. The
2D contours were used in recent work by Miller and
co-workers4 to extract the two dividing surfaces in the flux-
flux correlation function. Here we analyze the saddle point
structure of the 2D barrier free energy surface and calculate
the barrier partition function with stationary phase approxi-
mations. At temperatures above the crossover, the free en-
ergy profile of the stable mode is steep, so a quadratic ap-
proximation is not accurate enough to approximate the
integration over the stable mode. To overcome the inaccu-
racy of the quadratic approximation, we apply stationary
phase approximations to the unstable modes along the stable
coordinate and sum all contributions,
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Im Zb =E dq+Î 2p

S9sq+,q−
std

expf− 2Ssq+,q−
stdg, s10d

whereq+=sq+q8d /2 is the stable coordinate along the diag-
onal andq−=sq−q8d /2 is the unstable coordinate along the
off-diagonal. The integrand is the stationary phase approxi-
mation to the unstable mode and the integration is along the
stable coordinate. This scheme does not require the determi-
nation of the saddle points. When quadratic expansion at the
saddle point is adequate, Eq.s10d reduces to the standard
stationary phase approximation to the unstable modes at the
saddle points.

The 2D barrier free energy method proposed here is a
simple generalization of the barrier partition function
concept16,17and applies to temperatures above and below the
crossover. This method does not involve real-time calcula-
tions and can be implemented using available numerical al-
gorithms such as numerical matrix multiplicationsNMM d
scheme, or path-integral Monte Carlo,31 which is particularly
useful for more complicated potentials where instanton paths

are not easy to find. For dissipative systems, the quantum
Boltzmann operator is averaged over all realizations of bath
fluctuations. These numerical advantages render this method
feasible for reaction processes that involve a large number of
degrees of freedom. Further efforts along this direction
should focus on the development of more accurate methods
to extract the imaginary part of the barrier partition function.

C. Adiabatic and nonadiabatic instanton method

We now discuss the nonadiabatic instanton method
which bridges the adiabatic and the nonadiabatic limits. The
nonadiabatic coupling arises from the breakdown of the
Born–Oppenheimer approximation of the electron transfer
processes. The theoretical formalism for describing the nona-
diabatic dynamics was first proposed by Pechukas, Freed,
Tully, and Kapral, and developed by many others into sur-
face hopping and various other numerical schemes for mo-
lecular dynamicssMDd simulations.32–37 The nonadiabatic
instanton theory is the imaginary-time analog of the Pechu-

FIG. 2. sColord Left column: Contour plots of 2D bar-
rier free energy −lnkquexpf−bH /2guq8l for the symmet-
ric Eckart potential at different temperatures, from top
to bottom,b=b"vb=12, 2p, and 3, respectively. Right
column: −lnkquexpf−bH /2guq8l along the off-diagonal
directions of the corresponding contours.
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kas formulation.24–26 In the nonadiabatic limit, quantum re-
active events arise from the crossing between electronic sur-
faces. The barrier partition function can be computed from
the stationary phase approximation along the imaginary-time
coordinate.17 In the adiabatic limit, the reactive process is
dominated by the lower adiabatic energy surface resulting
from frequent crossings between the electronic surfaces. The
barrier partition function in this limit is obtained from the
stationary phase approximation to the spatial coordinates. Ef-
fectively, the nonadiabatic instanton approach rotates the sta-
tionary phase coordinate from the temporal axis in the nona-
diabatic limit to the spatial axis in the adiabatic limit, which
is illustrated in Fig. 1. The adiabatic instanton theory by
Miller2 relates the quantum reaction rate to the stationary
phase approximation of the imaginary-time flux-flux correla-
tion function in the adiabatic limit while the nonadiabatic
instanton theory17 demonstrate this relation in the nonadia-
batic limit. Hence, the instanton approaches yield an impor-
tant connection between the imaginary-time flux-flux corre-
lation function concept and the barrier partition function
concept.

The adiabatic instanton concept was originally intro-
duced by Miller and has been applied extensively to dissipa-
tive and nondissipative systems.2 To illustrate the connection
that the instanton approach provides, we use the symmetric
Eckart potential as an example. In agreement with discus-
sions in the literature,16,21 we notice the presence of an un-
stable mode of the instanton path, which corresponds to the
negative eigenvalue. As we discussed earlier, the unstable
mode also appears on the 2D barrier free energy surface.
Both unstable modes give rise to the imaginary part of the
barrier partition function. Figure 3 displays the curvature of
the unstable mode at the saddle point of the 2D barrier free
energy. It is proportional to the negative eigenvalue of the
instanton path over a wide range of temperatures. This is a
strong indication of the intrinsic connection between the 2D
barrier free energy method and the instanton method. The
eigenmode corresponding to the negative eigenvalue is

shown in Fig. 4. The first negative mode is asymmetric with
respect to the barrier top, and the first positive mode is a
symmetric trajectory around the barrier top.

III. ADIABATIC REACTIONS

To illustrate the stationary phase methods discussed in
the preceding section, we present numerical results for quan-
tum rate constants of several potentials in this section. For
the nondissipative case, we investigate a 1D Eckart potential.
For the dissipative case, we discuss a 1D Eckart potential
and a double-well potential, both coupled to a harmonic bath.
A study of the nonadiabatic rate constant of the spin-boson
model is presented in Sec. IV.

In the presence of a potential barrier, the quantum flux
operator measures the quantum reactive flux through the di-

viding surface qn and is given asF̂n=fdsq−qndp̂+ p̂dsq
−qndg /2m, wherep̂=−i]q is the momentum operator. Carry-
ing out the trace of Eq.s2d in the coordinate space yields

CffstdZr = S 1

2m
D2

fkq1ue−sb−tdHuq2l)kq1ue−tHuq2l8

+ )kq1ue−sb−tdHuq2l8kq1ue−tHuq2l

− )kq1ue−sb−tdHuq2l)kq1ue−tHuq2l

− kq1ue−sb−tdHuq2l8kq1ue−tHuq2l8g, s11d

FIG. 3. Comparison of the curvature of the unstable modes at the saddle
point of the 2D barrier free energy surface and the first negative eigenvalue
of the instanton solution for the symmetric Eckart potential. Over a wide
range of temperatures, they are proportional to each other.

FIG. 4. The instanton trajectory, the first negative mode, and the first posi-
tive mode for the symmetric Eckart potential atb=b"vb=24.

094108-5 Evaluation of quantum rate constants J. Chem. Phys. 122, 094108 ~2005!

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



where the left and the right primes represent spatial deriva-
tives. This expression is given as Eq.s2.3d in Ref. 4. In our
calculations, the dividing surface is defined at the top of the
transition barrier,q1=q2=0, where reactants and products
separate from each other.

A. Nondissipative case: 1D symmetric Eckart
potential

Now we consider the nondissipative case using a 1D
symmetric Eckart potential,

Vsqd = V0 sech2Sq

a
D , s12d

which has been studied by many other groups. We examine
the optimized imaginary-time stationary phase method, the
2D barrier free energy method, and the consistency of these
two methods. We use the same parameters as in Ref. 16,
2pV0/"vb=12, a=1, m=1, and"=1. b=b"vb is a dimen-

sionless reduced temperature andb=2p is the crossover tem-
perature for the nondissipative case.

For the symmetric Eckart potential, the matrix element
of expf−Htg is evaluated using the NMM algorithm.31 The
imaginary-time flux-flux correlation functions at different
temperatures are shown in Fig. 5. For the nondissipative
Eckart potential, −lnCffstd is well approximated by the qua-
dratic reference discussed in Sec. III B. We notice that the
non-Gaussian corrections at different temperatures are
slightly different. In the crossover regime whereb,2p,
−ln Cffstd at the stationary pointt=b /2 is quadratic and the
quartic term is negligible. At temperatures below the cross-
over, b=8, 16, and 24, the quartic term increases gradually
and carries an opposite sign from the quadratic term. Hence,
the correlation function becomes flatter. Atb=3 above the
crossover temperature, the quartic term also increases but
carries the same sign as the quadratic term, consequently, the
flux-flux correlation function becomes deeper.

Figure 2 illustrates 2D contour plots of the barrier free
energy surface. Below the crossover temperature, two saddle
points are found along the off-diagonal direction. The con-
tour connecting these two saddle points essentially corre-
sponds to the bounce trajectory, or the instanton path. As the
temperature increases, the two saddle points merge into one,
i.e., the instanton path converges to the barrier top. As shown
in the left column of Fig. 2, at the temperature above the
crossover,b=3, only one saddle point exists at the center of
the contour plot. The crossover is better illustrated in the
corresponding free energy profile along the off-diagonal di-
rections in the right column of Fig. 2, where two minima of
the stable mode merge gradually at higher temperatures.

The quantum correction factorG=Fqm/Fcl, defined as
the ratio between the quantum reactive fluxFqm and the clas-
sical oneFcl=e−bV0/2p"b, is tabulated in Table I. The in-
stanton resultGinst is calculated with the method outlined in
Ref. 16 and the exact resultGexact is computed with the ex-

FIG. 5. The normalized imaginary-time flux-flux correlation function
Cffstd /Cffs0d for the nondissipative Eckart potential atb=3, 8, 16, and 24.

TABLE I. Quantum correction factor for the symmetric Eckart potential.

b"vb Gexact
a Ginst

b Gbp
c G flux

d

3 1.5 ¯ 1.68 1.53
4 2.07 ¯ 2.36 1.96
5 3.10 ¯ 3.69 3.08
6 5.20 ¯ 6.48 5.39
8 21.8 20.0 23.7 23.6
10 162 136 158 169
12 1973 1613 1796 1921
14 3.493104 2.783104 2.993104 3.133104

16 7.403105 6.043105 6.423105 6.603105

18 1.883107 1.533107 1.633107 1.653107

20 5.343108 4.373108 4.623108 4.633108

22 1.6431010 1.3531010 1.4231010 1.4131010

24 5.3831011 4.4331011 4.61431011 4.5831011

26 1.8431013 1.5231013 1.5631013 1.5631013

28 6.5531014 5.4431014 5.4031014 5.4931014

30 2.4031016 2.0031016 1.92431016 2.0031016

aExact results calculated from expression in Ref. 38.
bInstanton calculation with the method in Ref. 16.
cIntegrated stationary phase approximation to the 2D barrier free energy in Eq.s10d.
dOptimized stationary phase approximation to the imaginary-time flux-flux correlation function in Eq.s6d.
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pression in Ref. 38.G flux represents the quantum correction
factor calculated from the optimized stationary phase ap-
proximation to the imaginary-time flux-flux correlation func-
tion. Gbp is computed from the integrated stationary phase
approximation to the 2D barrier free energy discussed in Sec.
II B. The quantum correction factors from both stationary
phase methods compare favorably with the instanton calcu-
lation and the exact results over a wide range of tempera-
tures. These two methods proposed here show considerable
improvements to the instanton calculations in the crossover
regime and become almost identical to the instanton results
at temperatures far below the crossover. Compared to the
exact resultsGexact, the optimized imaginary-time stationary
phase method and the 2D barrier free energy method show
an accuracy of,10% at high temperature and,20% at
extremely low temperatures.

B. Dissipative case: 1D Eckart and double-well
potentials

Now we discuss the calculation of quantum rate con-
stants for the dissipative 1D potential. The full Hamiltonian
is given by

H =
pq

2

2m
+ Vsqd + o

j
F pj

2

2mj
+

1

2
mjv j

2Sxj −
cj

mjv j
2qD2G .

s13d

Here,q is the system coordinate andxj’s describe a harmonic
bath bilinearly coupled to the system coordinate. This Hamil-
tonian in Eq.s13d is widely employed to study the effects of
condensed phase environments on charge transfer. The bath
correlation is characterized by the spectral densityJsvd
=p /2o jsmjv jd−1cj

2dsv−v jd. In our calculation, we assume
an ohmic spectral density with a frequency cutoffvc, i.e.,
Jsvd=p"Kve−v/vc/2, whereK is the Kondo constant. In this
section, the bath parameters are chosen to bevc=vb andK
=0.1mvb. In the imaginary-time formulation, we integrate
out the harmonic bath in Eq.s13d in a manner consistent with
the Brownian oscillator model.17 The action functional is

S=E
0

b

dtF1

2
mq̇2 + Vsqd +

1

2
mẋ̄2 +

1

2
mv0

2Sx̄ −
l

mv0
2qD2G

+ bmo
n.0

VnĝsVndux̂̄nu2. s14d

The last term is the influence functional, andx̂̄n

=b−1e0
b expf−iVntgqstddt is the Fourier modes of the path

x̄std at the Matsubara frequencyVn=2pn/b. The frequency
v0, the coupling constantl, andĝsVnd are determined from
the spectral density of the harmonic bathssee Appendix B in
Ref. 17d. The action functional in Eq.s14d provides a
straightforward way to simulate the quantum dynamics. The
presence of the system coordinateq in the action integral
renders an explicit route to computekquexps−Htduq8l, which
is necessary for computing the imaginary-time flux-flux cor-
relation function and the barrier partition function. At each
temperature, the Fourier modes of the trajectoryx̄std are
generated according to the Boltzmann distribution

expf−bmon.0VnĝsVndux̂̄nu2g. The quantum Boltzmann op-
erator is computed accordingly and averaged over a number
of bath trajectories. The imaginary-time flux-flux correlation
function is computed using Eq.s11d.

1. Eckart potential

For the dissipative Eckart potential, the bath averaged
2D barrier free energy surfacesnot shown hered displays
similar features as the nondissipative case in Sec. III A. At
temperatures below crossover, two saddle points are found
along the off-diagonal direction; at high temperatures, these
two saddle points merge into one. The quantum fluxes from
the optimized imaginary-time stationary phase method and
the 2D barrier free energy method are listed in Table II and
compared with the adiabatic instanton approach outlined in
Ref. 16.l0

‡ is the Grote–Hynes frequency determined with
Eq. s9d. Clearly, bothFbp and Fflux agree closely with each
other in the full temperature range. They also agree favorably
with the instanton results below the crossover temperature.
The deviation from the instanton calculation is within 15–
20%. At low temperatures, the quantum fluxes obtained from
the two stationary phase methods proposed in the present
paper are consistently smaller than the instanton results. For
the dissipative Eckart potential, instanton paths are difficult
to calculate. In comparison, the two stationary phase meth-
ods in the present paper bypass the searching of instanton
path and demonstrate reasonable accuracy at both high tem-
perature regime and low temperature regime.

2. Double-well potential

The dissipative double-well potential is a practical
model for proton transfer and electron transfer processes in
condensed phases. By far there have been no direct applica-

TABLE II. Quantum reactive flux for the dissipative symmetric Eckart potential.

b"vb b"l0
‡ Finst

a Fbp
b Fflux

c

4 3.9 ¯ 1.60310−4 1.51310−4

8 7.8 3.32310−7 3.04310−7 2.89310−7

12 11.7 4.25310−9 4.00310−9 3.97310−9

16 15.6 2.76310−10 2.56310−10 2.36310−10

20 19.5 3.53310−11 3.46310−11 2.95310−11

24 23.4 6.50310−12 6.41310−12 5.69310−12

aInstanton calculation with the method in Ref. 16.
bIntegrated stationary phase approximation to the 2D barrier free energy in Eq.s10d.
cOptimized stationary phase approximation to the imaginary-time flux-flux correlation function in Eq.s6d.
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tions of the flux-flux correlation function approach and the
barrier partition function approach to the double-well sys-
tems. The present work provides a critical test of the opti-
mized imaginary-time stationary phase method and the 2D
barrier free energy method. The model Hamiltonian we study
next has the same form as Eq.s13d, except for the potential
along the reaction coordinate which is a symmetric double
well here,

Vsqd = − a1q
2 + a2q

4. s15d

In our calculation,a1=0.5 anda2=0.015 and the barrier fre-
quencyvb=1. This set of parameters are consistent with the
DW1 parameters used by Topaler and Makri.8 As shown in
Fig. 6, the flux-flux correlation function is quite flat and the
flatness increases at lower temperatures. The optimized sta-
tionary phase approximation to the imaginary-time flux-flux
correlation function requires accurate determination of the
second and the fourth derivatives at the stationary pointtst.
We perform bath averages over 103–104 trajectories to ob-
tain better accuracy and apply the optimized quadratic ap-
proximation.

Table III demonstrates that the quantum correction factor
G flux from the two stationary phase methods agree surpris-
ingly well over the temperature range we studied. Even at
low temperatures they differ by,10%. The quantitative
agreement with the instanton calculations is excellent at
higher temperatures and slightly less favorable at lower tem-

peratures. Compared to the real-time path-integral method
such as quasiadiabatic path integral,8 these two imaginary-
time methods are simpler to compute numerically and yield
the rate constant with similar accuracy. Yet, the stationary
phase calculations do not contain the full dynamics. For ex-
ample, they exclude the recrossing of the dividing surface
observed in the real-time calculations.

IV. NONADIABATIC PROCESSES: SPIN-BOSON
MODEL

The application of reaction rates for nonadiabatic con-
densed phase processes is an important step to test the meth-
ods discussed in Sec. II. The dynamic picture of such process
involves transitions between two diabatic surfaces corre-
sponding to the reactant and the product sites, respectively.
The transition is induced by the coupling between the two
diabatic surfaces. At low temperatures, this two-surface sys-
tem reduces practically to a two-level system. Combination
of the two surfaces and the bath leads to the famous spin-
boson Hamiltonian,

H = Dsx + o
j=1

N F1

2
mjẋj

2 +
1

2
mjv j

2Sxj −
cj

mjv j
2szD2G , s16d

wheresi, i =x,y,z is the Pauli spin matrix,D is one-half of
the tunneling splitting. Despite its simplicity, the spin-boson
model is widely employed to study the nonadiabatic dynam-
ics of electron transfer reactions in biological systems and
optical properties in one-dimensional conductors. Here we
explore this problem using the optimized stationary phase
approximation to the imaginary-time flux-flux correlation
function.

For the spin-boson Hamiltonian, the flux operator in Eq.
s1d reduces toF=Dsy. Consequently the imaginary-time
flux-flux correlation function is

Cffstd = D2Zr
−1Tr e−bHsystdsys0d

= D2Zr
−1Tr e−Hsb−tdsye

−Htsy. s17d

In our calculation, the spin-boson Hamiltonian is trans-
formed into a two-level Brownian oscillator. The derivation
can be found in Ref. 17 and the action term is given by

FIG. 6. The normalized imaginary-time flux-flux correlation function
Cffstd /Cffs0d for the dissipative double-well potential atb=6, 8, 12, and 16.

TABLE III. Quantum correction factor for the dissipative symmetric double-well potential.

b"vb b"l0
‡ Ginst

a Gbp
b G flux

c

2.4 2.35 ¯ 1.27 1.40
4 3.92 ¯ 2.10 2.12
6 5.88 ¯ 8.71 8.12
8 7.84 293 281 294

10 9.80 1.403105 1.253105 1.223105

12 11.76 1.593108 1.543108 1.413108

16 15.68 2.4031014 1.9931014 2.1431014

aInstanton calculation with the method in Ref. 16.
bIntegrated stationary phase approximation to the 2D barrier free energy in Eq.s10d.
cOptimized stationary phase approximation to the imaginary-time flux-flux correlation function in Eq.s6d.
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S=E
0

b

sDsx − lxszddt + bmo
n.0

fv0
2 + Vn

2 + vnĝsVndg

3ux̃nu2 +
b

2
mv0

2ux̃0u2 +
bl2

2mv0
2 , s18d

wherel, v0, andĝsVnd are identical to the definitions in the
dissipative Eckart potential. First, the Fourier modes of bath
fluctuations are sampled from the Boltzmann distribution and
the Euclidean path trajectoryxstd is generated accordingly.
Then, the imaginary-time path integral is propagated and the
flux-flux correlation function of Eq.s18d is calculated along
the trajectoryxstd. Finally the flux-flux correlation function
is averaged over all possible realizations of bath fluctuations.
To facilitate the comparison with the calculation in Ref. 17,
in the present calculation we adopt the same set of param-
eters,"=1, b=3, vc=1/Î2, andK=0.25.

The imaginary-time flux-flux correlations for different
coupling constants at the temperatureb=3 are plotted in Fig.
7. In the weak coupling limit, the flux-flux correlation func-
tion approaches the Golden rule result for the nonadiabatic
limit,17

Cffstd = expH−
4

p"
E Jsvddv

v2 sinhsb"v/2dFcosh
b"v

2

− coshSb"v

2
− vtDGJ . s19d

In the largeD limit, we notice that the imaginary-time flux-
flux correlation function becomes flat, a behavior similar to
that of the double-well potential in Fig. 6. In fact, in the large
D limit, the energy gap between the two adiabatic surfaces of
the spin-boson model is large compared to the thermal en-
ergy kBT. Then, there is little contribution from the upper
energy surface and the quantum dynamics is completely
dominated by the lower energy surface, giving the adiabatic
limit of the spin-boson Hamiltonian. Considering the pres-
ence of the diabatic surfaces of reactants and products, the
adiabatic limit of the spin-boson Hamiltonian is similar to a
double-well potential. This explains the close resemblance of
the imaginary-time flux-flux correlation function at largeD

to the dissipative double-well potential. When the correlation
function is flat, the quadratic stationary phase approximation
is inadequate for time integration. To incorporate the non-
Gaussian effects, we use the optimized quadratic approxima-
tion discussed in Sec. II A.28

The quantum fluxes are plotted as a function of the cou-
pling constantD in Fig. 8. The quantum flux obtained from
the optimized imaginary-time stationary phase method is in
excellent agreement with the nonadiabatic instanton calcula-
tions in Ref. 17. In the weak coupling limit, the quantum rate
approaches the Golden rule rate in the nonadiabatic limit,
which is proportional toD2.17,39 In the strong coupling limit,
the spin-boson rate constant approaches the adiabatic rate,
which has an exponential dependence on the coupling con-
stant, K~ebD. Nevertheless, the optimized imaginary-time
stationary phase method differs slightly from the nonadia-
batic instanton results at the intermediate coupling strengths.
We observed that the non-Gaussian correction factor in Eq.
s6d becomes significant at largerD, indicating a substantial
deviation from the quadratic reference system. This can be
seen from the difference between the plain stationary phase
approximation and the optimized quadratic approximation in
Fig. 8. Overall, the optimized quadratic approximation has
improved dramatically the standard stationary phase approxi-
mation and more advanced numerical techniques have to be
developed to overcome the inaccuracy introduced by the
quadratic reference system.

V. CONCLUDING REMARKS

Two stationary phase methods, the optimized stationary
phase approximation to the imaginary-time flux-flux correla-
tion function and the integrated stationary phase approxima-
tion to the 2D barrier free energy, provide a practical way to
compute the quantum reaction rate in complex systems. Un-
like quantum transition state theory which diverges at low
temperatures, or the instanton theory which is valid below
the crossover temperature, these two stationary phase meth-
ods work equally well for high and low temperatures, as well
as in the crossover regime. In the optimized imaginary-time

FIG. 7. The imaginary-time flux-flux correlation for the spin-boson model.
The coupling constant varies from top to bottom,D=0.01, 0.1, 1, and 10.

FIG. 8. The quantum flux of the spin-boson model calculated with the
optimized imaginary-time stationary phase method in Eq.s6d. The dotted-
dashed line is the Golden rule rate. The dotted line is the nonadiabatic
instanton result.
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stationary phase method, we employ the optimized quadratic
approximation to overcome the inaccuracy of the standard
stationary phase approximation, which extends the stationary
phase approach by Wolynes5 to both adiabatic and nonadia-
batic processes. In the 2D barrier free energy method, the
quantum rate is obtained from the integrated stationary phase
approximations to the spatial coordinates on the 2D barrier
free energy surface. This method is applicable to adiabatic
processes only. The nonadiabatic instanton approach effec-
tively rotates the stationary phase axis from the imaginary-
time coordinate in the nonadiabatic limit to the spatial coor-
dinates in the adiabatic limit, providing a natural unification
between these two stationary phase approximations. In com-
parison, these two stationary phase methods are numerically
simpler and computationally feasible for complex systems.

In the present paper, we extensively test the general ap-
plicability and reliability of the optimized imaginary-time
stationary phase method and the 2D barrier free energy
method. For the adiabatic systems we studied, these two sta-
tionary phase methods agree at all temperatures studied and
match the instanton results with reasonable accuracy in the
low-temperature region. For the nonadiabatic spin-boson
model, the optimized imaginary-time stationary phase
method agrees with the nonadiabatic instanton result and in-
terpolates well between the nonadiabatic and the adiabatic
limits. Considering the conceptual clarity and the numerical
simplicity of the stationary phase approximations, further ef-
forts along this direction should be focused on developing
more dependable approximations to evaluate or extract the
quantum reactive flux. The optimized stationary phase ap-
proximation to the imaginary-time flux-flux correlation func-
tion is generally applicable to both adiabatic and nonadia-
batic processes while the 2D barrier free energy method is
particularly easy to use for adiabatic processes. With compa-
rable accuracy to other available methods, these two station-
ary phase approximations are numerically faster. Applica-
tions to higher dimensional complex systems are necessary
to corroborate the validity and the numerical advantages of
these methods.
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