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Time-divergence in linear and nonlinear classical response functions can be removed by taking a
phase-space average within the quantized uncertainty volume O(\n) around the microcanonical
energy surface. For a quasiperiodic system, the replacement of the microcanonical distribution
density in the classical response function with the quantized uniform distribution density results in
agreement of quantum and classical expressions through Heisenberg’s correspondence principle:
each matrix element̂uua(t)uv& corresponds to the (u2v)th Fourier component ofa(t) evaluated
along the classical trajectory with mean action (Ju1Jv)/2. Numerical calculations for one- and
two-dimensional systems show good agreement between quantum and classical results. The
generalization to the case ofN degrees of freedom is made. Thus, phase-space averaging within the
quantized uncertainty volume provides a useful way to establish the classical-quantum
correspondence for the linear and nonlinear response functions of a quasiperiodic system.
© 2005 American Institute of Physics.@DOI: 10.1063/1.1827212#

I. INTRODUCTION

Linear and nonlinear response functions carry complete
microscopic information necessary for the calculation of op-
tical measurements.1,2 The difficulty of quantum mechanical
calculations of the nonlinear response functions for large an-
harmonic systems provides a strong motivation for investi-
gating the semiclassical approach for evaluating these
observables.3–6 The classical limit of the quantum response
function is usually obtained by replacing commutation rela-
tions with Poisson brackets and neglecting terms in higher
order of the Plank constant.7 However, this leads to a vital
difference between the results from quantum and classical
approaches. The quantum response function is well-defined
in terms of matrix elements and transition frequencies,
whereas the simple classical limit of the response function
diverges with time because of the instability of classical non-
linear dynamics.8,9 For a given energy of the system, both
linear and nonlinear classical response functions diverge. It
was pointed out by van Kampen that even a weak perturba-
tion leads to the failure of classical nonequilibrium perturba-
tion theory at sufficiently long times.10 Yet, while individual
trajectories may be sensitive to the perturbation of initial
conditions leading to the divergence of the classical linear
response function, the phase space averaging over the initial
density matrix eliminates these difficulties and makes linear
response finite at all times.3 Thus, averaging over the Boltz-
mann distribution successfully cancels the divergence and
does not lead to practical difficulties in applying linear re-
sponse theory. In fact, the ensemble averaged molecular dy-
namics simulation technique has been applied extensively in
condensed phase vibrational spectroscopy. Similar problems
arise for classical nonlinear response functions. Calculation
of the latter involves evaluation of stability matrices, which

diverge in time linearly for regular systems8,11 and exponen-
tially for chaotic systems.9 It was thus noted that the stability
matrix may be a sensitive probe of classical chaos.3 Muka-
mel and Leegwater considered the question whether the ther-
mal averaging over initial conditions can cancel the diver-
gence of the nonlinear response function in the same way as
it does for the linear response function.8 They found that for
a quartic oscillator the third-order response functionR(3)(t3

5const,0,t1) indeed converges after thermal averaging.
However, Noid, Ezra, and Loring have shown that
R(3)(t,0,t) diverges even after thermal averaging for the ca-
nonical ensemble of noninteracting Morse oscillators.5 Be-
fore this divergent behavior of the classical nonlinear re-
sponse functions was pointed out, the molecular dynamics
~MD! simulations of liquids supported the idea of conver-
gence by Boltzmann averaging.12–14A many-body system in
the thermodynamic limit such as liquid can be described with
dissipative dynamics. Dissipation suppresses the interference
among the classical trajectories making the nonlinear re-
sponse function finite at all times. Nevertheless, for a non-
dissipative quasiperiodic dynamics, the thermal averaging
over the initial density matrix does not necessarily remove
divergence of the classical nonlinear response functions.15

Thus, the problem of classical divergence is a conceptual
question of quantum-classical correspondence, which is the
subject of discussion of this paper.

An analytical approach to the calculation of the classical
response function was reported in Ref. 6, where the algebraic
structure of the one-dimensional Morse oscillator was ex-
plored. It was shown that the replacement of the microca-
nonical distribution function with the uniform distribution
function of the width\ and 2\ results in the exact quantum
mechanical expression for the linear response function with
linear polarization operatora5(b1b1) and quadratic polar-
ization operatora5(b1b1)2, respectively, and almost ex-a!Electronic mail: jianshu@mit.edu
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act expression for the second-order nonlinear response func-
tion with polarization operatora5(b1b1)2. Yet, a general
form of polarization operator may result in divergence of the
classical second and higher order response functions. In the
present paper we generalize the approach proposed in Ref. 6
and show that using the uncertainty principle~or phase space
quantization! we conveniently obtain the classical result that
has well-defined quantum correspondence, both conceptually
and numerically. We consider the quantum response function
for a given eigenstate and its classical microcanonical limit.
Starting with the classical expression for the response func-
tion we replace the microcanonical phase-space distribution
density with the uniform distribution density within the
phase-space volume O(\n) around the classical trajectory. It
may seem that this replacement should not lead to any con-
siderable changes since in the classical limit\→0 the latter
distribution density becomes the microcanonicald-function.
Yet, the behavior of the classical response function changes
drastically once the replacement is made. Finally we obtain
the nondivergent classical expression which corresponds to
the quantum mechanical one through Heisenberg’s corre-
spondence principle, where each time-dependent quantum
matrix element^uua(t)uv& is replaced with the (u2v)th
classical Fourier component ofa(t), evaluated along the
classical trajectory with mean action (Ju1Jv)/2.11,16 This
correspondence principle was also used in spectral analysis
technique proposed in Ref. 17 and showed a good agreement
between the quantum and semiclassical linear spectral inten-
sities and frequencies. The semiclassical approach developed
in the present paper has a convenient representation in
action-angle variables. Thus we assume that the system un-
der consideration withN degrees of freedom hasN indepen-
dent first integrals, i.e., the bounded motion in phase space is
equivalent to motion onN torus.18 This assumption restricts
the variety of systems and includes only those with quasip-
eriodic motion, that is separable systems or nonseparable
systems with a weak coupling.7

The paper is organized as follows: In Sec. II the expres-
sion for the linear response function ofN-dimensional sys-
tems is obtained. We show in general that the uncertainty
width O~\! is necessary to match classical and quantum re-
sults. In Sec. III the classical expression for the nonlinear
response function is considered. Starting with the lowest or-
der nonlinear response function we show thatn-dimensional
uncertainty O(\n) around the microcanonical energy surface
in multidimensional phase space is necessary to obtain a
nondivergent classical formula for thenth-order nonlinear
response function. Classical and quantum expressions for the
nonlinear response function turn out to have the same form.
The result is generalized for the system withN degrees of
freedom. The numerical calculations for the second-order
nonlinear response function of a two-dimensional system
~coupled oscillators! are presented in Sec. IV, followed by
general comments and conclusions in Sec. V.

II. LINEAR RESPONSE

The expression for the response function can be obtained
by using time-dependent perturbation theory,1,2 giving

RQ
~n!~ tn ,...,t0!

5S i

\ D n

^@@ ...@a~ tn!,a~ tn21!#,...,a~ t1!#,a~ t0!#&, ~1!

where the operatora(t) stands for the time-dependent polar-
izability in Raman spectroscopy or the time-dependent di-
pole momentum in IR spectroscopy. The classical mechani-
cal expression for the response function3 may be obtained in
the limit \→0,

RC
~n!~ tn ,...,t0!

5~21!n^$$¯$a~ tn!,a~ tn21!%,...,a~ t1!%,a~ t0!%&, ~2!

where $¯% are Poisson brackets. In this section we
concentrate on the linear response functionRQ

(1)(t)
5( i /\)^@a(t),a(0)#& and its classical correspondence
RC

(1)(t)52^$a(t),a(0)%&. Using identity Tr@$A,B%C#
5Tr@A$B,C%# we write

RC
~1!~ t !52Tr~$a~ t !,a~0!%r!52Tr~a~ t !$a~0!,r%!. ~3!

As mentioned in the introduction, we assume that the
motion of the system is quasiperiodic, and therefore we con-
sider classical response functions in action-angle variables,
which can be found employing the technique of the EBK
quantization.19 Making use of the quasiperiodicity of motion
in the limit of infinitely long time interval,T→`, we can
express any dynamical variablef (t) as a convergent Fourier
expansion:7,11

f ~ t !5 (
n1n2 ...nN

f n1n2 ...nN
ei ~n1v11n2v21¯1nNvN!t ~4!

or in terms of angle variableswW 5vW t1wW 0 as

f ~ t !5 (
n1n2¯nN

f̃ n1n2¯nN
ei ~n1w11n2w21¯1nNwN!, ~5!

where$v i% are N fundamental frequencies and$w0i% are N
arbitrary constants. It is assumed that all frequenciesv i are
incommensurate. The fundamental frequencies are easy to
obtain considering the Fourier transform of the generalized
coordinates—the highest peak in the Fourier spectrum of
such a coordinate corresponds to one fundamental
frequency.19 Action Jj can then be expressed in terms of
fundamental frequencies and Fourier coefficients of Carte-
sian coordinatesQj as19

Jj5 (
n1n2 ...nN

nj~n1v11n2v21¯1nNvN!

3@ uQ1n1n2¯nN
u21uQ2n1n2¯nN

u21¯1uQNn1n2¯nN
u2#.

~6!

The difficulty of practical application of the numerical EBK
quantization grows with increasing the number of degrees of
freedom N.19 Yet, theoretically decomposition~5! may be
applied to the system with arbitraryN, which allows analyti-
cal description of a many-body quasiperiodic systems. With
this, we continue to consider classical response function in
action-angle variables.
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A. One-dimensional system

First, we consider a one-dimensional system with coor-
dinates$J,w%. The Poisson bracket in Eq.~3! is then

$a~0!,r%5
]a~0!

]w0

]r

]J
2

]a~0!

]J

]r

]w0
, ~7!

wherer is the normalized distribution function. Considering
distributionsr5r(J) uniform in w, we will have only the
first term in Eq.~7! and the classical expression for the linear
response function in Eq.~3! is then

RC
~1!~ t !52 R dw0 dJa~ t !

]a~0!

]w0

]r~J!

]J
. ~8!

According to Eq.~5! we can express polarizationa(t), a
dynamical variable, as a Fourier series

a~ t !5(
n

aneinw, ~9!

wherew5vt1w0 andv5dw/dt5]E/]J is a fundamental
frequency. On substituting Eq.~9! into Eq. ~8! and integrat-
ing out w0 we have

RC
~1!~ t !52p i(

n
E nuanu2einvt

]r~J!

]J
dJ. ~10!

Considering microcanonical distributionr5(1/2p)d(J
2J0), the integral in Eq.~10! gives well-known linear time
divergence10 of the classical response function

RC
~1!~ t !5(

n
einvtS tn2uanu2

]v

]J
2 in

]uanu2

]J D U
J5J0

. ~11!

If, instead, we introduce an uncertaintyD around the trajec-
tory J5J0 ,

r~J!5H 1

2p

1

D
, J02D/2,J,J01D/2,

0, otherwise,

~12!

then Eq.~10! becomes

RC
~1!~ t !5(

n

in

D
uanu2einvtuJ5J02D/2

2(
n

in

D
uanu2einvtuJ5J01D/2 . ~13!

We now compare this result with quantum-mechanical for-
mula for the linear response function

RQ
~1!~ t !5(

u

i

\
u^guauu&u2e2 i ~Eu2Eg!t/h

2(
u

i

\
u^guauu&u2e2 i ~Eg2Eu!t/h, ~14!

and notice that they will have similar expressions ifD
5unu\. This result was first observed in Ref. 6, where it was
found that classical description of one-photon transition in
the linear response of one-dimensional~1D! Morse oscillator
will give exact results ifD5\, andD52\ for the two-photon
transition. Indeed, let us show that the classical expression

RC
~1!~ t !5(

n

i

\
uanu2einvtuJ5J02n\/2

2(
n

i

\
uanu2einvtuJ5J01n\/2 ~15!

gives the exact result for the 1D Morse oscillator. We con-
sider the simplest case of linear polarization operatora5b
1b1 which has the following classical limit for the Morse
oscillator:6

ac5
2

xeA1/xe21
S xe

2J2

\2
2

xeJ

\ D 1/2

cos~w!, ~16!

wherew5@12(2xeJ/\)#v0t1w0 andv05A2Db2/m with
xe5\b/A8Dm are the parameters for the Morse potential.
Polarization~16! has only two Fourier components, therefore

RC
~1!~ t !52

i

\
ua21u2e2 ivtuJ5J02\/21

i

\
ua1u2eivtuJ5J02\/2

2
i

\
ua21u2e2 ivtuJ5J01\/21

i

\
ua1u2eivtuJ5J01\/2

5
2

~12xe!\
~~v11!~12xe~v11!!

3sin@~122xe~v11!!v0t#2v~12xev !

3sin@~122xev !v0t# !, ~17!

where the quantization conditionJ05\(v11/2) was used.
The last expression coincides with the quantum result.6

B. Two-dimensional system

Next, we examine the classical response function for the
two-dimensional system~coupled oscillators!. By analogy to
Eq. ~8! the expression for the classical response function is

RC
~1!~ t !52 R dw0x dw0y dJx dJy a~ t !

3S ]a~0!

]w0x

]r~Jx ,Jy!

]Jx
1

]a~0!

]w0y

]r~Jx ,Jy!

]Jy
D ,

~18!

where we again use the fact that distributionr is uniform in
w0x and w0y . Fourier decomposition of polarizationa(t)
5(nxny

anxny
ei (nxwx1nywy) yields

RC
~1!~ t !54p2i (

nxny

E dJx dJyuanxny
u2ei ~nxvx1nyvy!t

3S nx

]

]Jx
1ny

]

]Jy
D r~Jx ,Jy!. ~19!
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Microcanonical distribution function r(Jx ,Jy)
5(1/4p2)d(Jx2Jx0)d(Jy2Jy0), which comes as a limit of
quantum mechanical eigenstate, again results in the linear
time divergence of the classical response function~19!. Yet,
as in the case of 1D system we may introduce uncertainty
O~\! around the trajectory to remove this divergence. First,
we notice that our two-dimensional (2D) problem with the
transition frequencynxvx1nyvy can be converted into the
1D problem with one-photon transition on frequencyṽx af-
ter the change of variables,

J̃x5
nx

nx
21ny

2
Jx1

ny

nx
21ny

2
Jy ,

J̃y5
ny

nx
21ny

2
Jx2

nx

nx
21ny

2
Jy ,

~20!

ṽx5
]E

] J̃x

5
]E

]Jx

]Jx

] J̃x

1
]E

]Jy

]Jy

] J̃x

5vxnx1vyny ,

ṽy5
]E

] J̃y

5
]E

]Jx

]Jx

] J̃y

1
]E

]Jy

]Jy

] J̃y

5vxny2vynx .

The classical response function now becomes

RC
~1!~ t !54p2i (

nxny

E dJ̃x dJ̃yuanxny
u2ei ṽxt

]

] J̃x

r~ J̃x ,J̃y!,

~21!

with the microcanonical densityr( J̃x ,J̃y)5(1/4p2)d( J̃x

2 J̃x0)d( J̃y2 J̃y0). Integrating outJ̃y we get

RC
~1!~ t !5 i (

nxny
S E dJ̃xuanxny

u2ei ṽxt
]

] J̃x

d~ J̃x2 J̃x0! D U
J̃y5 J̃y0

,

~22!

which is the same as the one-dimensional linear response
function ~10!. As previously we now introduce uncertainty
D5\, which changes microcanonical distribution density
d( J̃x2 J̃x0) to the uniform distribution density within the
width \, (1/\)u(( J̃x2 J̃x0)1\/2)u(\/22( J̃x2 J̃x0)). This
results in

RC
~1!~ t !5 (

nxny

i

\
uanxny

u2ei ṽxtU J̃x5 J̃x02\/2

J̃y5 J̃y0

2 (
nxny

i

\
uanxny

u2ei ṽxtU J̃x5 J̃x01\/2

J̃y5 J̃y0

, ~23!

or in terms of the old variables$Jx ,Jy% the classical expres-
sion for the linear response function becomes

RC
~1!~ t !5 (

nxny

i

\
uanxny

u2ei ~nxvx1nyvy!tUJx5Jx02nx\/2
Jy5Jy02ny\/2

2 (
nxny

i

\
uanxny

u2ei ~nxvx1nyvy!tUJx5Jx01nx\/2
Jy5Jy01ny\/2

. ~24!

From here it follows that in order to describe the transition
on frequencynxvx1nyvy in classical language, we need to
run the classical trajectory that corresponds to the mean val-
ues of actions

Jx5Jx01nx\/25\~vx11/2!1nx\/2

5~\~vx11/2!1\~vx1nx11/2!!/2

5~Jx01Jx f!/2,
~25!

Jy5Jy01ny\/25\~vy11/2!1ny\/2

5~\~vy11/2!1\~vy1ny11/2!!/2

5~Jy01Jy f!/2,

whereJx0 andJy0 are action variables of the initial semiclas-
sical state andJx f andJy f are action variables of the excited
semiclassical state.

We now generalize the expression for the linear response
function to theN-dimensional case~N degrees of freedom!.
Rotating and scalingN-dimensional action space similar to
transformations~20! to getṽ15]E/] J̃15( i

Nv ini we reduce
theN-dimensional problem to one-dimensional problem with
effective actionJ̃1 as in Eq.~22!. Imposing the uncertainty\
aroundJ̃1 and transforming action-space back, we obtain the
general expression for the classical linear response function
of the system withN degrees of freedom,

RC
~1!~ t !5 (

n1n2 ...nN

i

\
uan1n2 ...nN

u2ei ~(Nnjv j !•tU
JW5JW02nW \/2

2 (
n1n2 ...nN

i

\
uan1n2¯nN

u2ei ~(Nnjv j !•tU
JW5JW01nW \/2

,

~26!

which means that one should run classical trajectory with
mean actionsJj5(Jj 01Jj f )/2, j 51,...,N, to find classical
spectral amplitudeRC

(1)(v) of the transition with frequency
v5( j

Nnjv j .
The result in~26! reproduces the well-known Heisen-

berg’s correspondence principle11,16,17between the quantum
matrix element̂ uua(t)uv& and the classical (u2v)th Fou-
rier component ofa(t), evaluated along the trajectory with
mean action (Ju1Jv)/2. This correspondence turns out to be
almost exact for several exactly solvable systems such as
harmonic and Morse oscillators11 and explains the coinci-
dence of classical and quantum results noted in Ref. 6 and in
the preceding section.
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III. NONLINEAR RESPONSE

The nonlinear response function contains more detailed
dynamical information than the linear response function.
First, we focus on the lowest order nonlinear response func-
tion,

R~2!~t1 ,t2!52
1

\2
^@@a~ t2!,a~ t1!#,a~0!#&, ~27!

where t25t11t2 , t15t1 . The Fourier–Laplace transform
of the second-order response function is defined as

R̃~2!~ ṽ1 ,ṽ2!5E
0

`

dt1E
0

`

dt2 R~2!~t1 ,t2!

3exp~ i ṽ1t11 i ṽ2t2!. ~28!

It is convenient to work with the symmetrized spectrum2,20,21

S~V1 ,V2!5uR̃~2!~V1 ,V11V2!1R̃~2!~V2 ,V11V2!u,
~29!

which contains all the information about 2D response in the
range of (V1.0,uV2u,V1).

In the Heisenberg representation the time dependence
of the polarization operator is given bya(t)
5eiH 0t/\a(0)e2 iH 0t/\. The quantum expression for
R(2)(t1 ,t2) can be written as

RQ
~2!~t1 ,t2!52

1

\2
^gu@@a~t11t2!,a~t1!#,a~0!#ug&

52
1

\2 (v
(

u
^gua~0!uu&^uua~0!uv&^vua~0!ug&@exp~ i ~Eg2Eu!~t11t2!/\!exp~ i ~Eu2Ev!t1 /\!

2exp~ i ~Eu2Ev!~t11t2!/\!exp~ i ~Eg2Eu!t1 /\!2exp~ i ~Eu2Ev!~t11t2!/\!exp~ i ~Ev2Eg!t1 /\!

1exp~ i ~Ev2Eg!~t11t2!/\!exp~ i ~Eu2Ev!t1 /\!#, ~30!

whereEk is an energy eigenvalue that corresponds to a spe-
cific eigenstateuk&[uk1 ,k2 ,...,kN& of the system withN de-
grees of freedom. Stateug& is the initial state which is not
necessarily the ground state. As mentioned previously, to ob-
tain the classical limit for the response function we should
change quantum commutators to Poisson brackets,

RC
~2!~t1 ,t2!5^$$a~ t2!,a~ t1!%,a~0!%&. ~31!

Again, we use action-angle variables to describe classi-
cal motion. In the preceding section it was shown that the
number of degrees of freedom does not play any important
role, therefore we start our considerations with the one-
dimensional system with coordinates$J,w%. As shown in
Appendix A the nonlinear response function~31! will have
the following expression:

RC
~2!~t1 ,t2!5E dJE

0

2p

dw0S ]a~ t2!

]w0

]a~ t1!

]J

2
]a~ t2!

]J

]a~ t1!

]w0
D ]a~0!

]w0

]r

]J
. ~32!

Now we make use of the quasiperiodicity of motion to
decomposea(t) into fundamental frequencies as we did

FIG. 1. The consecutive transitions from the quantum~a! and the classical
single-trajectory~b! approaches. The simple classical method on the single
trajectory gives only one average frequencyvc5v(J01D/2), which corre-
sponds to actionJ01D/2, and therefore is not able to account forDv(ug&
→uu&)ÞDv(uu&→uv&).

FIG. 2. Distribution densityr(J1 ,J2 ,J3) for the second-order response
function in the (J1 ,J2) plane.
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in Eq. ~9! for the linear response functiona(t)
5Snanein(vt1w0). Substituting it into Eq.~32! and integrat-
ing out w0 we get

RC
~2!~t1 ,t2!

5 i(
n

(
m

H E dJ~n1m!S mam

]an

]J
2nan

]am

]J D
3a2n2m

]r

]J
einvt11 imvt21 imn~m1n!

3~ t12t2!E amana2n2m

]v

]J

]r

]J
einvt11 imvt2dJJ .

~33!

Microcanonical distribution densityr5(1/2p)d(J2J0)
again leads to the time divergence of the response function
~33!. If we now impose uncertaintyD5O~\! with the distri-
bution density given by Eq.~12! we will still have time di-
vergence due to the second term in Eq.~33!. Yet, if mn50
there will be no second term and we may describe spectral
peaks (V1 ,V2)5$(0,mv),(mv,0),(nv,2nv)% of symme-
trized spectrum S(V1 ,V2) with formula ~33! using density
~12!; these are transitions that involve only two states. Thus,
one can see that by considering single classical trajectory
with uncertainty O~\! around it one can correctly describe
transitions between two states—the case of linear response
function and the case of nonlinear response function for tran-
sitions (V1 ,V2)5$(0,mv),(mv,0),(nv,2nv)%. The latter
explains the nondivergence of the second-order response
function with quadratic polarization obtained in Ref. 6. In-
deed, polarizationa5(b1b1)2 results only in spectral
peaks (V1 ,V2)5$(0,2v),(2v,0),(2v,22v)%, therefore
phase averaging within uncertainty 2\ does not lead to the
divergence of the classical response function at long times.

A. One-dimensional system

Yet, in general the second-order response function in-
volves transitions between three states~Fig. 1!. Therefore
one trajectory is not sufficient. We need to employ multiple
trajectories in our method. This will solve one more problem
of the quantum-classical correspondence—the correct ac-
count of anharmonicity effects on the frequencies of transi-
tions between successive states~Fig. 1!. It was impossible to
do so having only one fundamental frequency from the
single trajectory simulation. The multiple trajectories con-
cept is usually used to calculate stability matrices in the clas-
sical expression of the nonlinear response function.3 Yet, sta-
bility matrices diverge. To overcome this difficulty we
propose another approach. First, we start with introducing
additional variables to the classical expression of the nonlin-
ear response function~31! as shown in Appendix B:

RC
~2!~t1 ,t2!5E $$a~J3 ,w3!,a~J2 ,w2!%3 ,a~J1 ,w0!%3

3
1

2p
d~J12J0!d~J22J1!

3d~J32J1!dJ1 dJ2 dJ3 dw0 , ~34!

where w35v(J3)t21w0 , w25v(J2)t11w0 and brackets
$¯%3 are defined as

$A,B%35
]A

]w0
S ]

]J1
1

]

]J2
1

]

]J3
DB2

]B

]w0

3S ]

]J1
1

]

]J2
1

]

]J3
DA. ~35!

Polarizationsa in Eq. ~34! are now evaluated on three
separate trajectories, which at this step have the same initial
conditions J15J25J35J0 , w205w305w0 . We can also
consider Eq.~34! in another way—as a trajectory in four-
dimensional space$J1 ,J2 ,J3 ,w% with microcanonical distri-
bution density

r~J1 ,J2 ,J3!5
1

2p
d~J12J0!d~J22J1!d~J32J1!. ~36!

As previously our main assumption is that this microca-
nonical distribution functionr(J1 ,J2 ,J3) can be replaced
with the uniform distribution function within volume O(\2)
around the trajectory$(J1 ,J2 ,J3 ,w):J15J25J35J0%. In
Appendix C such an uncertainty volume is found from the
condition of thenondivergence@i.e., absence of derivatives
]a(t)/]Jj ] of the classical response function~34! ~see Fig.
2!, which is provided by the distribution density

r~J1 ,J2 ,J3!5
1

2pD1D2
u~~J12J0!1D1/2!u~~D1/2!

2~J12J0!!u~~J22J1!1D2/2!u~~D2/2!

2~J22J1!!dS J31
n

m
J22

n1m

m
J1D . ~37!

With distribution ~37! the classical expression for the
second-order response function, as shown in Appendix C,
becomes
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RC
~2!~t1 ,t2!5(

n,m

2~m1n!m

D1D2 H am~J3!an~J2!a2m2n~J1!exp~ imv~J3!~t11t2!1 inv~J2!t1!U
J15J01D1/2

J25J01D2/21D1/2

J35J01~D12D2~n/m!!/2

2am~J3!an~J2!a2m2n~J1!exp~ imv~J3!~t11t2!1 inv~J2!t1!U J15J02D1/2
J25J01D2/22D1/2

J35J02~D11D2~n/m!!/2

2am~J3!an~J2!a2m2n~J1!exp~ imv~J3!~t11t2!1 inv~J2!t1!U J15J01D1/2
J25J02D2/21D1/2

J35J01~D11D2~n/m!!/2

1am~J3!an~J2!a2m2n~J1!exp~ imv~J3!~t11t2!1 inv~J2!t1!U J15J02D1/2
J25J02D2/22D1/2

J35J02~D12D2~n/m!!/2

J . ~38!

Comparing classical result~38! with quantum result~30! we can see that the forms of the two expressions are the same. As in
the case of the linear response function the arbitrariness of the size of the uncertainty volume for the classical nonlinear
response function~Fig. 2! is removed from the requirement of coincidence of quantum and classical expressions, i.e., for
D15un1mu\ andD25umu\. With this, the final formula for the classical second-order response function takes the following
form:

RC
~2!~t1 ,t2!5(

n,m

21

\2 H am~J3!an~J2!a2m2n~J1!exp~ imv~J3!~t11t2!1 inv~J2!t1!U
J15J01~n1m!\/2

J25J01m\1~n\/2!

J35J01m\/2

2am~J3!an~J2!a2m2n~J1!exp~ imv~J3!~t11t2!1 inv~J2!t1!U J15J02~n1m!\/2
J25J02n\/2

J35J02n\2~m\/2!

2am~J3!an~J2!a2m2n~J1!exp~ imv~J3!~t11t2!1 inv~J2!t1!U J15J01~n1m!\/2
J25J01n\/2

J35J01n\1~m\/2!

1am~J3!an~J2!a2m2n~J1!exp~ imv~J3!~t11t2!1 inv~J2!t1!U J15J02~n1m!\/2

J25J02m\2~n\/2!

J35J02m\/2

J . ~39!

Careful comparison of quantum expression~30!
and classical expression~39! shows that again each
quantum-mechanical propagator̂vuauu&exp(i(Ev2Eu)t/\)
is replaced with the Fourier componentav2u(J)
3exp(i(v2u)v(J)t)uJ5(Jv1Ju)/2 in the classical formula. There-

fore, for instance, to calculate the classical second-
order response of the 1D system in the process shown

in Fig. 1~a!, one should run three classical trajectories$J,w0%
with actionsJ01n\/2, J01n\1m\/2, J01(n1m)\/2 and
find fundamental frequencies and spectral components of
a(t) along these trajectories. One can check that formula
~39! reproduces almost exact quantum result for the one-
dimensional Morse oscillator with quadratic polarization5 a
5(b1b1)2, as shown in Ref. 6.
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B. nth-order response function
for multidimensional systems

The result~39! can be generalized for the system withN
degrees of freedom. As it was shown for the linear response
function, by scaling and rotating multidimensional action
space we may reduce aN-dimensional problem to a one di-

mensional one. As an example, the second part of Appendix
B contains transformations for the second-order response
function of two-dimensional systems. The final formula for
the N-dimensional system have the same result as for one-
dimensional system but with vectors instead of scalars@com-
pare Eq.~15! with Eq. ~26!#. The second-order classical re-
sponse function for theN-dimensional system reads

RC
~2!~t1 ,t2!5(

n,m

21

\2 H amW ~JW3!anW~JW2!a2mW 2nW~JW1!exp~ imW vW ~JW3!~t11t2!1 inW vW ~JW2!t1!U
JW15JW01~nW 1mW !\/2

JW25JW01mW \1~nW \/2!

JW35JW01mW \/2

2amW ~JW3!anW~JW2!a2mW 2nW~JW1!exp~ imW vW ~JW3!~t11t2!1 inW vW ~JW2!t1!U JW15JW02~nW 1mW !\/2

JW25JW02nW \/2

JW35JW02nW \2~mW \/2!

2amW ~JW3!anW~JW2!a2mW 2nW~JW1!exp~ imW vW ~JW3!~t11t2!1 inW vW ~JW2!t1!U JW15JW01~nW 1mW !\/2

JW25JW01nW \/2

JW35JW01nW \1~mW \/2!

1amW ~JW3!anW~JW2!a2mW 2nW~JW1!exp~ imW vW ~JW3!~t11t2!1 inW vW ~JW2!t1!U JW15JW02~nW 1mW !\/2

JW25JW02mW \2~nW \/2!

JW35JW02mW \/2

J , ~40!

where JW k5(Jk1
,Jk2

,...,JkN
), amW 5am1m2 ...mN

and mW vW
5m1v11m2v21¯1mNvN .

Basing on the results for the first- and second-order re-
sponse functions it becomes possible to find the classical
result for thenth order response function. As it was noticed
previously the difference between the results for the
N-dimensional system and for the one-dimensional system is
that all scalar parameters of the 1D system turn to the
N-component vectors. Therefore, for the purpose of simplic-
ity, we may consider only one-dimensional systems. The
classical expression~15! for the linear response function can
be rewritten in the form

RC
~1!~ t !5(

n

i

\
an~J1!a2n~J2!einv~J2!tUJ15J02n\/2

J25J02n\/2

2(
n

i

\
an~J1!a2n~J2!einv~J2!tUJ15J01n\/2

J25J01n\/2

~41!

with distribution density within the volume O~\! in three-
dimensional space$J1 ,J2 ,w0% given by

r~J1 ,J2!5
1

2p

1

unu\
ũ unu\~J12J0!d~J22J1!, ~42!

where ũD(x)5u(x1D/2)u(D/22x) is a square function of
the width D. Comparing Eq.~42! with Eq. ~37! it becomes
clear, that in order to obtain the nondivergent classical ex-
pression for thenth-order nonlinear response function, one
should impose uncertainty within the volume O(\n) around
the trajectory in (n11)-dimensional phase space. The uncer-
tainty volume is given for each sequence of transitionsuk0&
→uk01k1&→uk01k11k2&→¯→uk01¯1kn&→uk0& by
the distribution density
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r~J1 ,J2 ,...,Jn11!5
1

2p

1

uk1u\3uk11k2u\3uk11k21k3u\3¯

3 ũ uk1u\~J12J0!3 ũ uk11k2u\S J22
k1

k1
J1D

3 ũ uk11k21k3u\S J32
k2

k11k2
J22

k1

k11k2
J1D3¯3 ũ uk11¯1knu\S Jn2

kn21

k11k21¯1kn21
Jn21

2¯2
k1

k11k21¯1kn21
J1D dS Jn112

kn

k11k21¯1kn
Jn2¯2

k1

k11k21¯1kn
J1D . ~43!

Again, distribution functions~43! result in the replacement
of the quantum mechanical matrix elements^vuauu& with the
Fourier coefficients ofa(t), evaluated along the classical
trajectory with average action (Jv1Ju)/2. The latter can be
verified by the detailed calculation of the third-order re-
sponse functionRC

(3)(t1 ,t2 ,t3) using the distribution density
in Eq. ~43!. It is useful to check that in the limit\→0 the
distribution density~43! becomes a microcanonical density
in the form of the product ofd-functions as in Eq.~36!.

IV. NUMERICAL CALCULATIONS

In this section we show how one can numerically imple-
ment the above results. We compute the second-order non-

linear response function of the two coupled oscillators and
compare its symmetrized spectraS(V1 ,V2) from quantum
and classical calculations. We consider Henon–Heiles
Hamiltonian22

H5 1
2~px

21py
21vx

0x21vy
0y2!1l~xy21h•x3! ~44!

with vx
050.7, vy

051.3, l520.1, h50.1.
The symmetrized spectrum of the second-order response

function is given by Eq.~29!. The Fourier–Laplace trans-
form R̃(2)(ṽ1 ,ṽ2) of the quantum-mechanical result~30! is

R̃Q
~2!~ ṽ1 ,ṽ2!52

1

4\2 (v
(

u
^gua~0!uu&^uua~0!uv&^vua~0!ug&@d~ṽ12~Eg2Ev!/\!d~ṽ22~Eg2Eu!/\!

2d~ṽ12~Eg2Ev!/\!d~ṽ22~Eu2Ev!/\!2d~ṽ12~Eu2Eg!/\!d~ṽ22~Eu2Ev!/\!

1d~ṽ12~Eu2Eg!/\!d~ṽ22~Ev2Eg!/\!#. ~45!

The Hamiltonian in Eq.~44! is diagonalized in a local mode
basis of 225 harmonic oscillator wave functions and the
quantum spectrum~45! of the second-order response func-
tion is calculated. We consider the polarization operator in
the form

a5x21y2. ~46!

The symmetrized spectrumSQ(V1 ,V2) is plotted in Fig.
4~a!. The system is considered to be initially in the state
ug&5u1,1&.

The classical expression forR̃(2)(ṽ1 ,ṽ2) arises from the
Fourier–Laplace transform of Eq.~40!,

FIG. 3. Spectral components ofa(t)5x21y2 in the region of the initial
stateu1,1&. Representation of the spectral frequencies in terms of the funda-
mental frequencies$vx ,vy% leads to decomposition given by Eq.~5!.
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RC
~2!~ ṽ1 ,ṽ2!5 (

nx ,ny ,mx ,my

21

4\2 H amxmy
~JW3!anxny

~JW2!a2mx2nx ,2my2ny
~JW1!d~ṽ12mW vW ~JW3!2nW vW ~JW2!!

3d~ṽ22mW vW ~JW3!!U
JW15JW01~nW 1mW !\/2

JW25JW01mW \1~nW \/2!

JW35JW01mW \/2

2amxmy
~JW3!anxny

~JW2!a2mx2nx ,2my2ny
~JW1!d~ṽ12mW vW ~JW3!2nW vW ~JW2!!

3d~ṽ22mW vW ~JW3!!U JW15JW02~nW 1mW !\/2

JW25JW02nW \/2

JW35JW02nW \2~mW \/2!

2amxmy
~JW3!anxny

~JW2!a2mx2nx ,2my2ny
~JW1!d~ṽ12mW vW ~JW3!2nW vW ~JW2!!

3d~ṽ22mW vW ~JW3!!U JW15JW01~nW 1mW !\/2

JW25JW01nW \/2

JW35JW01nW \1~mW \/2!

1amxmy
~JW3!anxny

~JW2!a2mx2nx ,2my2ny
~JW1!d~ṽ12mW vW ~JW3!2nW vW ~JW2!!

3d~ṽ22mW vW ~JW3!!U JW15JW02~nW 1mW !\/2

JW25JW02mW \2~nW \/2!

JW35JW02mW \/2

J , ~47!

where JW5(Jx ,Jy), vW 5(vx ,vy), mW 5(mx ,my), nW
5(nx ,ny). Given the spectrum ofa(t) one can select non-
vanishing terms in the above sum. The typical Fourier spec-
trum of a in the vicinity of the initial stateu1,1& is shown in
Fig. 3. It has 11 significant spectral components:a0,0, a1,0,
a2,0, a21,2, a0,2, a1,2, a21,0, a22,0, a1,22 , a0,22 ,
a21,22 , for whicha2nx ,2ny

5(anx ,ny
)* . Therefore the clas-

sical expression~47! will have only those values ofmW
5(mx ,my), nW 5(nx ,ny), which satisfy the equality

mW 1nW 5kW ,

mW ,nW ,kWP$~0,0!,~1,0!,~2,0!,~21,2!,~0,2!,~1,2!,~21,0!,

~22,0!,~1,22!,~0,22!,~21,22!%. ~48!

In total, there will be 73 such combinations. To calculate the
contributions of all the terms in the expression~47! we need
to run 17 classical trajectories with action variablesJx

5\(Nx11/2), Jy5\(Ny11/2), where the mean quantum
numbers (Nx ,Ny) are

~0,1!, ~0.5,1!, ~1,1!, ~1.5,1!, ~2,1!, ~2.5,1!,

~0,2!, ~0.5,2!, ~1,2!, ~1.5,2!, ~2,2!, ~2.5,2!,
~49!

~0,3!, ~0.5,3!, ~1,3!, ~1.5,3!, ~2,3!.

The above 17 trajectories are sufficient for calculating
the complete two-dimensional classical spectrum for the sys-
tem ~44! with polarization~46!. To run the above trajectories
we need to find proper initial conditions, which will result in
quantum numbers~49! according to formula~6!. It was

shown in Ref. 22 that the semiclassical spectrum of Henon–
Heiles system reasonably agrees with the quantum mechani-
cal one if the initial conditions were chosen by selectingJi

from the unperturbed Hamiltonian. Thus, we take mean
quantum numbers~49! for unperturbed actionsJx , Jy and
run classical trajectories keeping track of coordinatesx(t),
y(t) as well asa(x,y). Applying the Fourier transform to
x(t), y(t), and a(t) evaluated on the same trajectory we
select fundamental frequencies$vx ,vy% from the spectrum
of x(vx ,vy), y(vx ,vy),

19 and find spectral components of
a that correspond to these fundamental frequencies~e.g.,
Fig. 3!. The results of classical simulations and correspond-
ing quantum mechanical results are presented in Table I. The
final symmetrized spectrumSC(V1 ,V2) from the classical
calculations is shown in Fig. 4~b!. Both Table I and Fig. 4
show good agreement of quantum and classical results. The
discrepancy between quantum mechanical and classical cal-
culations may arise from the following three reasons:~a! the
semiclassical quantization does not result in the exact quan-
tum mechanical spectrum,~b! the mean-action trajectory
does not appropriately approximate the quantum matrix ele-
ment, ~c! the classical initial conditions do not lead to the
desired quantized actions~6!. The main error of the present
calculations results from the fact, that in classical simulations
we have used initial conditions of the unperturbed Hamil-
tonian. The latter can be improved by selecting better initial
conditions.

V. CONCLUSIONS AND DISCUSSIONS

In the present paper we have found that the replacement
of the microcanonical distribution density with the uniform
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density within volume O(\n) in the expanded multidimen-
sional phase space removes the inherent time divergence of
the classical linear and nonlinear response functions. Each
set of transitions, which corresponds to one term in quantum
mechanical formula, defines a particular quantized phase-
space uncertainty volume in the classical formula. The form
of uncertainty volume is determined by the requirement of
nondivergence of classical response function, which restricts
the class of distribution functions and their arguments, and
the requirement of a discrete spectrum, which selects only
theta and delta functions in the expression for distribution
density. The resulting classical response function is of the
same form as the quantum response function for a given
initial eigenstate. Classical and quantum expressions have
well-defined one-to-one correspondence if the coefficients of
the terms in the classical series are the same as those in the

quantum formula. Setting these coefficients to be equal, we
define the size of uncertainty volume and, in particular, jus-
tify the proposed phase-space quantization condition found
empirically in Ref. 6. As a result, we arrive at Heisenberg’s
correspondence principle, where each matrix element
^uua(t)uv& in the quantum formula corresponds to the clas-
sical Fourier (u2v)th coefficient ofa~t!. The same corre-
spondence principle was used in the spectral analysis tech-
nique proposed in Ref. 17 and showed good numerical
agreement between classical and quantum results. At the
same time, for the nonlinear response, we arrive at the mul-
tiple trajectories approach, which avoids the divergent inter-
ference of classical trajectories.

One may speculate on the possible reasons for the con-
struction of the uncertainty principle in classical response
theory. We present a simple physical explanation below. The

TABLE I. Quantum matrix elements and corresponding classical Fourier components for the two-dimensional Henon–Heiles system.

^uxuyua(0)uvxvy&
a u^uxuyua(0)uvxvy&ua vQ5uEu2Evu/\b anx,ny(Nx ,Ny)

c uanx,ny(Nx ,Ny)uc vC5unxvx1nyvyud

^0,1uau0,1& 2.00 0 a0,0(0,1) 2.08 0
^0,0uau0,2& 0.54 2.552 a0,2(0,1) 0.62 2.558
^0,1uau0,3& 0.93 2.526 a0,2(0,2) 1.03 2.527
^0,2uau0,2& 2.94 0 a0,0(0,2) 3.12 0
^0,3uau0,3& 3.98 0 a0,0(0,3) 4.32 0
^0,2uau0,4& 1.32 2.498 a0,2(0,3) 1.36 2.497
^0,0uau1,2& 0.100 3.221 a1,2(0.5,1) 0.102 3.225
^0,1uau1,1& 0.62 0.680 a1,0(0.5,1) 0.59 0.679
^0,2uau1,0& 0.12 1.861 a1,2(0.5,1) 0.12 1.868
^0,1uau1,3& 0.18 3.182 a1,2(0.5,2) 0.16 3.175
^0,2uau1,2& 0.98 0.668 a1,0(0.5,2) 0.79 0.663
^1,1uau0,3& 0.22 1.846 a1,2(0.5,2) 0.23 1.848
^0,3uau1,3& 1.36 0.655 a1,0(0.5,3) 1.38 0.652
^0,2uau1,4& 0.27 3.140 a1,2(0.5,3) 0.22 3.137
^0,4uau1,2& 0.32 1.830 a1,2(0.5,3) 0.31 1.833
^1,1uau1,1& 3.55 0 a0,0(1,1) 3.60 0
^0,1uau2,1& 1.03 1.357 a2,0(1,1) 0.82 1.354
^1,1uau1,3& 0.88 2.501 a0,2(1,2) 0.91 2.504
^1,2uau1,2& 4.59 0 a0,0(1,2) 4.65 0
^0,2uau2,2& 1.04 1.332 a2,0(1,2) 0.98 1.327
^1,3uau1,3& 5.72 0 a0,0(1,3) 5.87 0
^1,2uau1,4& 1.24 2.472 a0,2(1,3) 0.94 2.474
^0,3uau2,3& 1.06 1.306 a2,0(1,3) 0.96 1.300
^1,1uau2,1& 1.08 0.676 a1,0(1.5,1) 0.89 0.675
^1,1uau2,3& 0.25 3.152 a1,2(1.5,2) 0.24 3.154
^2,1uau1,3& 0.30 1.825 a21,2(1.5,2) 0.21 1.830
^1,2uau2,2& 1.61 0.664 a1,0(1.5,2) 1.25 0.662
^1,3uau2,3& 2.18 0.650 a1,0(1.5,3) 2.12 0.648
^1,2uau2,4& 0.38 3.107 a1,2(1.5,3) 0.32 3.106
^2,2uau1,4& 0.43 1.808 a1,2(1.5,3) 0.46 1.810
^1,1uau3,1& 1.78 1.349 a2,0(2,1) 1.65 1.346
^2,1uau2,1& 5.15 0 a0,0(2,1) 5.18 0
^2,2uau2,2& 6.27 0 a0,0(2,2) 6.30 0
^1,3uau3,3& 1.83 1.295 a2,0(2,3) 1.47 1.292
^2,3uau2,3& 7.52 0 a0,0(2,3) 7.61 0
^2,2uau2,4& 1.16 2.443 a0,2(2,3) 1.03 2.447
^2,1uau3,1& 1.59 0.672 a1,0(2.5,1) 1.24 0.669
^2,2uau3,2& 2.26 0.659 a1,0(2.5,2) 2.06 0.658
^2,1uau3,3& 0.31 3.120 a1,2(2.5,2) 0.30 3.123
^3,1uau2,3& 0.35 1.803 a1,2(2.5,2) 0.34 1.808

aMatrix elements of the polarization operator in the eigenbasis of~44!.
bFrequencies of transition between quantum states in the first column.
cFourier components ofa(t) calculated along the classical trajectoriesJx5\(Nx11/2), Jy5\(Ny11/2) @each quantum mechanical matrix element
^vx,vyuauvx1nx ,vy1ny& corresponds to Fourier coefficientannny

evaluated on the classical trajectoryJx5\(vx1(nx/2)11/2), Jy5\(vy1(ny/2)11/2)].
dFrequencies of the Fourier components in the fourth column,ṽnxny

5nxvx(Nx ,Ny)1nyvy(Nx ,Ny).
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energy of an isolated quantum mechanical system will not
increase, i.e., a system will not respond to the external influ-
ence, unless a quantum transition occurs. And if it occurs, the
actionJ, as pointed out by Bohr, changes discontinuously by
DJ5n\ for allowedn-photon transition. Our primary goal is
to describe quantum mechanical response with classical
dynamics. Yet, in classical mechanics there is no
discontinuity—the influence of any force will result in an
immediate continuous response of the system, therefore the
smallest response of a classical system is zero. How is it
possible to describe quantum dynamics, in which the small-
est response of the system isDJ5n\, with continuous
theory ~classical dynamics!, in which the smallest response
of the system isDJ50? One possible solution is to intro-
duce theuncertainty n\ to the latter. This is exactly what we
have obtained in the present paper—to describe an-photon
transition in the response function we need to introduce the
uncertaintyn\ for the classical action. Multiple independent
transitions~in the case of nonlinear response! need multiple
independent uncertainties, which results in uncertainty vol-
ume in theexpandedaction space. Therefore the expanded
action space introduced in our approach is not just a result of
algebraic manipulations, but is also based on intuitive physi-
cal argument. The latter also turns out to be in agreement
with the results mentioned in the Introduction. Indeed, since
the nonlinear response function needs a phase space averag-

ing in the expanded phase space then the Boltzmann averag-
ing, which is intrinsically an averaging within the original
phase space, fails to converge the classical nonlinear re-
sponse function for the constant-energy system with quasip-
eriodic motion. The concept of configurational or thermal
averaging has been invoked in several classical and quasi-
classical approximations of quantum dynamics, including
wave-packet dynamics, nonadiabatic dynamics and centroid
dynamics.23–29 In the current context, phase space quantiza-
tion can be generally established for quasiperiodic systems
and leads to exact quantum mechanical results for a class of
integrable Hamiltonians.

The results of this paper raise a conceptual question of
whether the classical expression for the response function~2!
is an appropriate limit of the quantum expression~1!. Indeed,
the theory of semiclassical quantization of the Poisson
brackets30,31 establishes the relation between quantum com-
mutator and Poisson brackets in the form@ f̂ ,ĝ#5 i\$ f ,ĝ%
1O(\2), where the remainders O(\2) are power series in\
whose coefficients are bidifferential operators acting onf and
g. The quantization parameter\ is considered to be small but
finite, thus O(\2) can be neglected as long as the prefactor of
\2 is finite. However, this is not the case in response theory.
The expression for quantum response function contains com-
mutators@a(t2),a(t1)# of the same dynamical operatora(t)
taken at different times. Thus the differential operators in
O(\2) will result in classical divergent derivatives
]nxk(t2)/]xj (t1)n ~nth order stability matrices!, which be-
come infinitely large at timest2→` and elimination of these
terms is not justified. We usually do not face the above prob-
lem since most applications of classical mechanics contain
Poisson brackets of the functions evaluated at the same mo-
ment of time ~for example, commutator of the dynamical
function with Hamiltonian! and therefore we can always take
instantaneous coordinates and momenta as system variables
avoiding stability matrices. The O(\2) is thus finite and can
be omitted in the limit of\→0, resulting in the correspon-
dence principle@ f̂ ,ĝ#→ i\$ f ,g%. Yet, we cannot do the same
for the response function and the correct account of the
higher order terms in\ is also impossible. In the present
paper we show that the classical response function can still
be calculated as a limit of a quantum expression from the
correspondence principle@ f̂ ,ĝ#→ i\$ f ,g% if we change mi-
crocanonicald-functions to square-functions of the width
O~\!, (1/n\)u((J2J0)1n\/2)u(n\/22(J2J0)). Surpris-
ingly as it may seem, while the replacement of the distribu-
tion functions lies within the error of O~\!, which is intro-
duced as a result of eliminating higher order terms in the
Plank constant, the classical response function changes dras-
tically and becomes very close to quantum result once phase
space is quantized.

The elucidation of the classical-quantum correspondence
of response functions has both conceptual and practical im-
plications: ~1! Spectroscopic measurements are often inter-
preted in terms of classical dynamics. For example, an effec-
tive Hamiltonian has been used to describe the bending
spectrum of acetene at high excitation energy from high-
resolution spectroscopy.32,33Through classical or semiclassi-
cal approximations, the measured spectrum can then be

FIG. 4. Symmetrized 2D spectrum S(v1 ,v2). ~a! Quantum mechanical
result @using formula~45!#; ~b! classical result@using formula~47!#.
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mapped to normal-mode or local-mode motions solved from
the effective Hamiltonian. Heisenberg’s correspondence rela-
tion and its generalization to nonlinear response functions
provide the theoretical basis for such mapping.~2! The dy-
namics of polyatomic molecules has stimulated topics such
as intramolecular vibrational relaxation, isomerization, and
energy localization.34–43A fundamental question is the mani-
festation of classical chaos in quantum dynamics and pos-
sible spectroscopic signals.1,43–45 To address this question,
we need to extend our formalism for quasiperiodic systems
to a larger class of dynamic systems.~3! Of particular inter-
est is the solute–solvent system, where the solvent must be
treated classically and solute quantum mechanically.24–28

The treatment usually leads to the inconsistency of mixed
quantum-classical dynamics. Since the phase-space averag-
ing introduces quantum dynamics through the initial condi-
tions, we can in principle treat the solute and solvent on the
same footing and thus avoid the difficulty of inconsistency.
Yet, the implementation of this idea remains a challenge.~4!
Another important direction to explore is the possibility of
developing classical pictures of quantum concepts, such as
phase coherence and relaxation. These pictures will advance
our theoretical understanding of quantum coherence
control46–51 and vibrational line shapes.52–58
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APPENDIX A: SIMPLIFICATION OF CLASSICAL
RESPONSE FUNCTIONS

In this Appendix we simplify the expression for the clas-
sical response function

RC
~2!~t1 ,t2!5^$$a~ t2!,a~ t1!%,a~0!%&

5Tr~$$a~ t2!,a~ t1!%,a~0!%r!. ~A1!

Using identity Tr@$A,B%C#5Tr@A$B,C%# we find

RC
~2!~t1 ,t2!

5Tr~$a~ t2!,a~ t1!%,$a~0!,r%!

5E dJE
0

2p

dw0S ]a~ t2!

]w0

]a~ t1!

]J
2

]a~ t2!

]J

]a~ t1!

]w0
D

3S ]a~0!

]w0

]r

]J
2

]a~0!

]J

]r

]w0
D . ~A2!

If r does not depend onw, then

RC
~2!~t1 ,t2!

5Tr~$a~ t2!,a~ t1!%,$a~0!,r%!

5E dJE
0

2p

dw0S ]a~ t2!

]w0

]a~ t1!

]J
2

]a~ t2!

]J

]a~ t1!

]w0
D

3
]a~0!

]w0

]r

]J
. ~A3!

Another approach used in the text is

RC
~2!~t1 ,t2!

5Tr~$a~ t2!,a~ t1!%,$a~0!,r%!

5Tr~a~ t2!,$a~ t1!,$a~0!,r%%!

5E dJE
0

2p

dw0 a~ t2!S ]a~ t1!

]w0

]

]J S ]a~0!

]w0

]r

]JD
2

]a~ t1!

]J

]

]w0
S ]a~0!

]w0

]r

]JD D ~A4!

which is obtained by successive applications of identity
Tr@$A,B%C#5Tr@A$B,C%#.

APPENDIX B: EXPANDED PHASE SPACE

1. One-dimensional system

In this Appendix we introduce additional variables into the expression for the classical second-order response function and
thus effectively increase the dimensionality of phase space. Using identitya(J1)5*a(J2)d(J22J1)dJ2 we introduce vari-
ablesJ2 andJ3 into the expression~31!,

RC
~2!~t1 ,t2!5E $$a~J1 ,w0 ,t2!,a~J1 ,w0 ,t1!%,a~J1 ,w0,0!%

1

2p
d~J12J0!dJ1 dw0

5E H S ]~*a3~J3!d~J32J1!dJ3!

]w0

]~*a2~J2!d~J22J1!dJ2!

]J1

2
]~*a3~J3!d~J32J1!dJ3!

]J1

]~*a2~J2!d~J22J1!dJ2!

]w0
D ,a1~J1!J 1

2p
d~J12J0!dJ1 dw0

5E H S ]a3~J3!

]w0
d~J32J1!•a2~J2!

]d~J22J1!

]J1
2a3~J3!

]d~J32J1!

]J1

]a2~J2!

]w0
d~J22J1! D ,a1~J1!J

3
1

2p
d~J12J0!dJ1 dJ2 dJ3 dw0 . ~B1!
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Using ]d(J22J1)/]J152]d(J22J1)/]J2 and integrating
by parts overJ3 andJ2 the terms in Eq.~B1!, we obtain

RC
~2!~t1 ,t2!

5E H ]

]w0
S ]a3~J3!

]w0

]a2~J2!

]J2
2

]a3~J3!

]J3

]a2~J2!

]w0
D

3
]a1~J1!

]J1
2F S ]

]J2
1

]

]J3
D S ]a3~J3!

]w0

]a2~J2!

]J2

2
]a3~J3!

]J3

]a2~J2!

]w0
D G ]a1~J1!

]w0
J 1

2p
d~J12J0!

3d~J22J1!d~J32J1!dJ1 dJ2 dJ3 dw0 ~B2!

which is equivalent to

RC
~2!~t1 ,t2!

5E $$a3~J3!,a2~J2!%3 ,a1~J1!%3

1

2p
d~J12J0!

3d~J22J1!d~J32J1!dJ1 dJ2 dJ3 dw0 , ~B3!

where

$A,B%35
]A

]w0
S ]

]J1
1

]

]J2
1

]

]J3
DB

2
]B

]w0
S ]

]J1
1

]

]J2
1

]

]J3
DA.

2. Two-dimensional system „two degrees of freedom …

Repeating the same steps~B1!–~B2! for the system with
two degrees of freedom$Jx ,Jy ,wx ,wy% we will get the same
expression as~B2! but with vectorsJW5(Jx ,Jy) and wW 0

5(w0x ,w0y) instead of scalarsJ and w0 . Substituting Fou-
rier decomposition ofa

a j~JW j ,wW j !5 (
nxny

anxny

~ j ! e~ i ~nxvx
~ j !

1nyvy
~ j !

!•t1 i ~nxw0x1nyw0y!!

[(
nW

ãnW
~ j ! , ~B4!

the classical second-order response function for the system
with two degrees of freedom takes the form

RC
~2!~t1 ,t2!5 (

n̄1nW 2nW 3

E H i S i ãnW 3

~3!Fn3x

]

]J2x
1n3y

]

]J2y
G ã n̄2

~2!2 i ã n̄2

~2!Fn2x

]

]J3x
1n2y

]

]J3y
G ãnW 3

~3!D F ~n3x1n2x!
]

]J1x
1~n3y1n2y!

]

]J1y
G

3ã n̄1

~1!2 i ãnW 1

~1!F ~n3x1n2x!S ]

]J2x
1

]

]J3x
D1~n3y1n2y!S ]

]J2y
1

]

]J3y
D G S i ãnW 3

~3!Fn3x

]

]J2x
1n3y

]

]J2y
G

3ãnW 2

~2!2 i ãnW 2

~2!Fn2x

]

]J3x
1n2y

]

]J3y
G ãnW 3

~3!D J 1

4p2
d~JW12JW0!d~JW22JW1!d~JW32JW1!dJW1 dJW2 dJW3 dwW 0 , ~B5!

where we have used the conditionnW 11nW 21nW 350 for non-
vanishing value of the integral overw0 . Now we make trans-
formations in six-dimensional space$J1x ,J1y ,J2x ,J2y ,

J3x ,J3y% and introduce new variablesJ̃W j5 fW j (JW1 ,JW2 ,JW3), j
51, 2, 3. For the particular case ofn3xn2yÞn2xn3y we take

such variablesJ̃W j that

]

] J̃1x

5~n3x1n2x!
]

]J1x
1~n3y1n2y!

]

]J1y
,

]

] J̃2x

5n3xS ]

]J2x
1

]

]J3x
D1n3yS ]

]J2y
1

]

]J3y
D , ~B6!

]

] J̃3x

5n2xS ]

]J2x
1

]

]J3x
D1n2yS ]

]J2y
1

]

]J3y
D .

With this, expression~B5! becomes

RC
~2!~t1 ,t2!5 (

n̄1nW 2nW 3

E H i S i ãnW 3

~3! ]

] J̃2x

ã n̄2

~2!2 i ãnW 2

~2! ]

] J̃3x

ãnW 3

~3!D ]

] J̃1x

ãnW 1

~1!2 i ãnW 1

~1!S ]

] J̃2x

1
]

] J̃3x
D S i ãnW 3

~3! ]

] J̃2x

ãnW 2

~2!2 i ã n̄2

~2! ]

] J̃3x

ãnW 3

~3!D J
3

1

4p2
d~JW1~ J̃W1!2JW0!d~JW2~ J̃W2 ,J̃W3!2JW1~ J̃W1!!d~JW3~ J̃W2 ,J̃W3!2JW1~ J̃W1!!U]JW

] J̃W
UdJ̃W1 dJ̃W2 dJ̃W3 dwW 0 ~B7!
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which after integrating outJ̃1y , J̃2y , J̃3y has the same
form as the one-dimensional expression~B2!. The cases
n3xn2y5n2xn3y can be considered separately as well. Thus,
each set of transitionsug1 ,g2 ,...,gN&→uu1 ,u2 ,...,uN&
→uv1 ,v2 ,...,vN&→ug1 ,g2 ,...,gN& can be described by the
appropriate series of transitions in the one-dimensional sys-
tem ug̃1&→uũ1&→uṽ1&→ug̃1&.

APPENDIX C: UNCERTAINTY DISTRIBUTION
DENSITY FOR TWO-TIME RESPONSE

In this Appendix we derive an explicit expression for the
distribution densityr(J1 ,J2 ,J3) that does not lead to the
divergence of the classical expression for the second-order
nonlinear response function

RC
~2!~t1 ,t2!5E $$a~J3 ,w3!,a~J2 ,w2!%3 ,

a~J1 ,w0!%3r~J1 ,J2 ,J3!dJ1 dJ2 dJ3 dw0 .

~C1!

Performing integration by parts we get

RC
~2!~t1 ,t2!5E a~J3 ,w3!$a~J2 ,f2!,$a~J1 ,w0!,

r~J1 ,J2 ,J3!%3%3 dJ1 dJ2 dJ3 dw0 . ~C2!

Our goal is to find such functionr(J1 ,J2 ,J3), that will
not result in divergent derivatives]a(t)/]Jj , and at the
same time will not have derivatives]nr/]Jn higher than
first-order ones. The latter is necessary to have discrete spec-
trum of RC

(2)(V1 ,V2), i.e., in the form ofd-functions. One
may notice that the derivative @(]/]J1)1(]/]J2)
1(]/]J3)# in brackets$A,B%3 does not influence a multi-
plier of the form f (aJ11bJ21cJ3), if a1b1c50. There-
fore it is reasonable to look for the expression of
r(J1 ,J2 ,J3) in the form

r~J1 ,J2 ,J3!5 f 1~J1! f 2~a1J11b1J2!

3 f 3~a2J11b2J21c2J3!, ~C3!

wherea11b150, a21b21c250. Substituting this into Eq.
~C2! we get

RC
~2!~t1 ,t2!5E S a3

]a2

]w0
F ]

]J1
S ]a1

]w0
f 18~J1! D f 2~a1J11b1J2! f 3~a2J11b2J21c2J3!G

2a3

]a2

]J2
F ]2a1

]w0
2

f 18~J1! f 2~a1J11b1J2! f 3~a2J11b2J21c2J3!G D dJ1 dJ2 dJ3 dw0

5E S 2a3

]a2

]w0

]a1

]w0
f 18~J1!

]

]J1
~ f 2~a1J11b1J2! f 3~a2J11b2J21c2J3!!1a3a2

]2a1

]w0
2

f 18~J1!

3
]

]J2
~ f 2~a1J11b1J2! f 3~a2J11b2J21c2J3!!D dJ1 dJ2 dJ3 dw0 , ~C4!

where in the last step integration by parts was used. After substituting Fourier decompositiona(Jj ,w j )5(nan(Jj )e
inw j and

integrating outw0 , the last expression in~C4! becomes

RC
~2!~t1 ,t2!5(

n,m
E dJ1 dJ2 dJ3 2pam~J3!an~J2!a2m2n~J1!~2m2n! f 18~J1!S S n

]

]J1
1~m1n!

]

]J2
D

3~ f 2~a1J11b1J2! f 3~a2J11b2J21c2J3!! Dexp~ imv~J3!t21 inv~J2!t1!. ~C5!

We now find such coefficientsa2 , b2 , c2 and a1 , b1 that na21(n1m)b250. These coefficients can be chosen asa2

52(n1m), b25n, c25m, a1521, b151. Finally the distribution density and the response function take the following
form:

r~J1 ,J2 ,J3!5 f 1~J1! f 2~J22J1! f 3~mJ31nJ22~n1m!J1!, ~C6!

RC
~2!~t1 ,t2!52p(

n,m
E dJ1 dJ2 dJ3 am~J3!an~J2!a2m2n~J1!~2m2n!m f18~J1! f 28~J22J1!

3 f 3~mJ31nJ22~n1m!J1!exp~ imv~J3!t21 inv~J2!t1!. ~C7!
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For the microcanonical distribution densityr(J1 ,J2 ,J3),
functions f 1(J1) and f 2(J22J1) would bed-functionsd(J1

2J0) andd(J22J1) correspondingly, which lead to the di-
vergence of the classical response function~C7!. Yet, we
may impose two uncertainties to the functionsf 1(J1) and
f 2(J22J1) replacingd-functions with the step functions of
the widthD,

f 1~J1!5
1

D1
u~~J12J0!1D1/2!u~D1/22~J12J0!!,

~C8!

f 2~J22J1!5
1

D2
u~~J22J1!1D2/2!u~D2/22~J22J1!!.

This removes the divergence of the classical response func-

tion since no derivatives of thed-function appears inRC
(2)

3(t1 ,t2). The normalized uncertainty distribution density
then has the following form:

r~J1 ,J2 ,J3!5
1

2pD1D2
u~~J12J0!1D1/2!u~~D1/2!

2~J12J0!!3u~~J22J1!

1D2/2!u~~D2/2!2~J22J1!!

3dS J31
n

m
J22

n1m

m
J1D ~C9!

and the classical response function~C7! becomes

RC
~2!~t1 ,t2!5(

n,m

2~m1n!m

D1D2 H am~J3!an~J2!a2m2n~J1!exp~ imv~J3!t21 inv~J2!t1!U J15J01D1/2
J25J01D2/21D1/2

J35J01~D12D2~n/m!!/2

2am~J3!an~J2!a2m2n~J1!exp~ imv~J3!t21 inv~J2!t1!U J15J02D1/2
J25J01D2/22D1/2

J35J02~D11D2~n/m!!/2

2am~J3!an~J2!a2m2n~J1!exp~ imv~J3!t21 inv~J2!t1!U J15J01D1/2
J25J02D2/21D1/2

J35J01~D11D2~n/m!!/2

1am~J3!an~J2!a2m2n~J1!exp~ imv~J3!t21 inv~J2!t1!U J15J02D1/2
J25J02D2/22D1/2

J35J02~D12D2~n/m!!/2

J . ~C10!
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