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Time-divergence in linear and nonlinear classical response functions can be removed by taking a
phase-space average within the quantized uncertainty volumé&) @found the microcanonical
energy surface. For a quasiperiodic system, the replacement of the microcanonical distribution
density in the classical response function with the quantized uniform distribution density results in
agreement of quantum and classical expressions through Heisenberg's correspondence principle:
each matrix elemer(tu| a(t)|v) corresponds to theu(=v)th Fourier component ak(t) evaluated

along the classical trajectory with mean actiah,{J,)/2. Numerical calculations for one- and
two-dimensional systems show good agreement between quantum and classical results. The
generalization to the case Nfdegrees of freedom is made. Thus, phase-space averaging within the
quantized uncertainty volume provides a useful way to establish the classical-quantum
correspondence for the linear and nonlinear response functions of a quasiperiodic system.

© 2005 American Institute of Physic§DOI: 10.1063/1.182721]2

I. INTRODUCTION diverge in time linearly for regular systefiis and exponen-

éially for chaotic system8& It was thus noted that the stability

Linear and nonlinear response functions carry complet ) b " be of classical chibiuk
microscopic information necessary for the calculation of op-mat”X may be a sensitive probe of classical ¢ a-

tical measurements? The difficulty of quantum mechanical Me! and Leegwater considered the question whether the ther-
calculations of the nonlinear response functions for large anT@l @veraging over initial conditions can cancel the diver-
harmonic systems provides a strong motivation for investigence of the nonlinear response function in the same way as
gating the semiclassical approach for evaluating thes# does for the linear response functidhey found that for
observabled=® The classical limit of the quantum response & duartic oscillator the third-order response functi®i(ts
function is usually obtained by replacing commutation rela-=const,0t;) indeed converges after thermal averaging.
tions with Poisson brackets and neglecting terms in higheHowever, Noid, Ezra, and Loring have shown that
order of the Plank constahtHowever, this leads to a vital R®(t,0t) diverges even after thermal averaging for the ca-
difference between the results from quantum and classicdlonical ensemble of noninteracting Morse oscillafoBe-
approaches. The quantum response function is well-definef@re this divergent behavior of the classical nonlinear re-
in terms of matrix elements and transition frequenciessponse functions was pointed out, the molecular dynamics
whereas the simple classical limit of the response functiotMD) simulations of liquids supported the idea of conver-
diverges with time because of the instability of classical non-gence by Boltzmann averaging.}*A many-body system in
linear dynamicé:® For a given energy of the system, both the thermodynamic limit such as liquid can be described with
linear and nonlinear classical response functions diverge. Hissipative dynamics. Dissipation suppresses the interference
was pointed out by van Kampen that even a weak perturbaamong the classical trajectories making the nonlinear re-
tion leads to the failure of classical nonequilibrium perturba-sponse function finite at all times. Nevertheless, for a non-
tion theory at sufficiently long time¥. Yet, while individual dissipative quasiperiodic dynamics, the thermal averaging
trajectories may be sensitive to the perturbation of initialover the initial density matrix does not necessarily remove
conditions leading to the divergence of the classical lineativergence of the classical nonlinear response functions.
response function, the phase space averaging over the initighus, the problem of classical divergence is a conceptual
density matrix eliminates these difficulties and makes |ineaqUestion of quantum-classical correspondence, which is the
response finite at all timeésThus, averaging over the Boltz- subject of discussion of this paper.

mann distribution successfully cancels the divergence and An analytical approach to the calculation of the classical
does not lead to practical difficulties in applying linear re- response function was reported in Ref. 6, where the algebraic
sponse theory. In fact, the ensemble averaged molecular dytrycture of the one-dimensional Morse oscillator was ex-
namics simulation technique has been applied extensively igjored. It was shown that the replacement of the microca-
condensed phase vibrational spectroscopy. Similar problemgynical distribution function with the uniform distribution
arise for classical nonlinear response functions. Calculatiog,nction of the widths and % results in the exact quantum

of the latter involves evaluation of stability matrices, which echanical expression for the linear response function with
linear polarization operatar=(b+b™) and quadratic polar-
dElectronic mail: jianshu@mit.edu ization operatore=(b+b™)?, respectively, and almost ex-
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act expression for the second-order nonlinear response fungW(¢ .. t.)
tion with polarization operatow=(b-+b*)2. Yet, a general _
form of polarization operator may result in divergence of the _('_
classical second and higher order response functions. In the | %

resent paper we generalize the approach proposed in Ref. 6
gnd shO\?v tFr)lat usingg the uncertaint)?%rinci(llg pf?ase space yvherg th.e operata(t) stands for the time-.dependent polar-.
quantization we conveniently obtain the classical result thatzability in Ramap spectroscopy or the tlme-dgpendent d'f
has well-defined quantum correspondence, both conceptual le momeptum in IR spectroscopy. The cIaSS|caI' mec'hanl-
and numerically. We consider the quantum response functiofi@l €XPression for the response funcfiomay be obtained in
for a given eigenstate and its classical microcanonical limitthe fimit2—0,
Starting with the classical expression for the response funggm ty,. ko)
tion we replace the microcanonical phase-space distribution
density with the uniform distribution density within the =(—D"{{ - {a(ty), alty- )}, a(t)},a(ty)}), (2
phase-space volume ®0) around the classical trajectory. It where {3 are Poisson brackets. In this section we
may seem that this replacement should not lead to any con- he | functioriL)(t
siderable changes since in the classical limit0 the latter c_om/:;ntrate onO the 'ge?‘r relsponsel une '(R{? Ej)
distribution density becomes the microcanoniédunction. _((1|) )i[a(t)’a( )]) an 'ts classical correspondence
Yet, the behavior of the classical response function change'gC ()= —({a(t),a(Q)}). Using identity TE{A,B}C]
drastically once the replacement is made. Finally we obtain TA{B,C}] we write
the nondivergent clas§ical expression which corresponds 1) (t) = —Tr({a(t),(0)}p) = — Tr(a(t){(0),p}). (3
the quantum mechanical one through Heisenberg’'s corre-
Spondence princip|e, where each time-dependent quantum As mentioned in the introduction, we assume that the
matrix element(u|a(t)|v) is replaced with the (—v)th ~ motion of the system is quasiperiodic, and therefore we con-
classical Fourier component af(t), evaluated along the sider classical response functions in action-angle variables,
classical trajectory with mean actiod (+J,)/2.11® This ~ which can be found employing the technique of the EBK
correspondence principle was also used in spectral analysfigiantization-’ Making use of the quasiperiodicity of motion
technique proposed in Ref. 17 and showed a good agreeméiit the limit of infinitely long time interval,T—, we can
between the quantum and semiclassical linear spectral inte@xpress any dynamical variablét) as a convergent Fourier
sities and frequencies. The semiclassical approach deveIop@eipc'sll’ls‘iorf?ll
in the present paper has a convenient representation in
action-angle variables. Thus we assume that the system un- f(t)= > f
der consideration wittN degrees of freedom hasindepen- NNz --NN
denF first integralg, i.e., the boulgdeq motion in phase space & in terms of angle variableg= &t + ¢, as
equivalent to motion oM torus:® This assumption restricts
the variety of systems and includes only those with quasip-
eriodic motion, that is separable systems or nonseparable f= E
systems with a weak coupling.

The paper is organized as follows: In Sec. Il the expreswhere{w;} areN fundamental frequencies afdy;} areN

sion for the linear response function Mfdimensional sys- arbitrary constants. It is assumed that all frequencigare
tems is obtained. We show in general that the uncertaintjncommensurate. The fundamental frequencies are easy to
width O(%) is necessary to match classical and quantum reobtain considering the Fourier transform of the generalized
sults. In Sec. Il the classical expression for the nonlineagoordinates—the highest peak in the Fourier spectrum of
response function is considered. Starting with the lowest orsuch a coordinate corresponds to one fundamental
der nonlinear response function we show thatimensional ~ frequency:® Action J; can then be expressed in terms of
uncertainty Oan) around the microcanonical energy Surfacefundamental frequenCies and Fourier coefficients of Carte-
in multidimensional phase space is necessary to obtain $ian coordinate®); as”®
nondivergent classical formula for th@h-order nonlinear
response function. Classical and quantum expressions for thlg= > Nj(N1w1+ N0+ -+ Nyawy)
nonlinear response function turn out to have the same form. "n2--"n
The result is generalized for the system withdegrees of 2 24 ... 2
freedom. Thegnumerical calculatio)r/13 for the sgcond-order XUQunyngmy "+ [Qanyng [T+ [Quingny 71
nonlinear response function of a two-dimensional system (6)

(coupled oscillatosare present_ed n Sec. IV, followed by The difficulty of practical application of the numerical EBK
general comments and conclusions in Sec. V. guantization grows with increasing the number of degrees of
freedomN.2° Yet, theoretically decompositiof6) may be
Il LINEAR RESPONSE applied to the system with arbitraN, which allows analyti-
cal description of a many-body quasiperiodic systems. With
The expression for the response function can be obtainettis, we continue to consider classical response function in
by using time-dependent perturbation thebfygiving action-angle variables.

<[["-[a(tn)aa(tnfl)]v'"!a(tl)]ia(tO):Di (1)

i(N{wq+Nowy+---+nyoy)t
nlnz...nNe S 22 NN (4)

s i(N{@q+Nypot+ - +nyeN)
fnlnz“'nNe 1,17 N2¢2 NPN) (5)
Nynz Ny
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A. One-dimensional system

[ .
. ) ) ) ) R(l) t)= —|a Zelnwt L
First, we consider a one-dimensional system with coor- ¢'(t) ; h el g Jomnhlz

dinates{J,¢}. The Poisson bracket in EQ) is then
da(0) dp  Jda(0) dp

[ .
ap _; g|an|29'nwt|J=Jo+nh/2 (15
(9QDO aJ aJ 8g00’

{a(0),p}= (7)
wherep is the normalized distribution function. Considering gives the exact result for the 1D Morse oscillator. We con-
distributionsp=p(J) uniform in ¢, we will have only the sider the simplest case of linear polarization operaterb
first term in Eq.(7) and the classical expression for the linear +b* which has the following classical limit for the Morse

response function in Ed3) is then oscillator®
da(0) dp(J)
D4y = — 1/2
Rg’(1) éd%dh(t) PPy (8) - 2 AL
_ o ac= 1| 72 —7 | code), (16)
According to Eq.(5) we can express polarization(t), a XeVllxe—1\ 7

dynamical variable, as a Fourier series
wherep=[1—(2xeJ/%)]wot+ o and we= 2D 8/ . with
a(t)=> aem?, (99  xe=hpB/8Du are the parameters for the Morse potential.
n Polarization(16) has only two Fourier components, therefore
where ¢ = wt+ ¢y and w=de/dt=0JE/dJ is a fundamental
frequency. On substituting E€9) into Eq. (8) and integrat-

i . i A
ing out ¢, we have R&(t)=~ g|a—1|ze_'wt|a=ao—h/2+ f—t|a1|29'wt|3=307h/2
oo 0p(d)
R(t)=2i f n|ay) %€M t——dJ. 10 —iw : o
¢’ m; el dJ (19 —g|a—1|29 ' t|J=J0+m2"'g|a1|29' tlJ:JO+ﬁ/2

Considering microcanonical distribution= (1/27) 5(J 2
—Jo), the integral in Eq(10) gives well-known linear time =———((v+1)(1— xe(v+1))
divergencd’ of the classical response function (1=xe)h

. do  day? XS (1-2xe(v+1))wot] —v(1—xev)

RY(t)=2> ! tn?ay|>——in Ll ) . (11 ,

n 9J dJ J=3, Xsin (1—2xev) wot]), (17)
lgrmjtjid’ we introduce an uncertaintyaround the trajec- where the quantization conditialy=7% (v +1/2) was used.
y o The last expression coincides with the quantum résult.

11
— — Jp—A2<I< I+ A2,
p(J)=1 2mA (12
0, otherwise, B. Two-dimensional system
then Eq.(10) becomes Next, we examine the classical response function for the
in two-dimensional systertoupled oscillators By analogy to
RE;l)(t):; X|an|zemwt|J:Jo_M2 Eqg. (8) the expression for the classical response function is
N inet RY(t)=— & degy degy dd, dJ, a(t)
_; X|an| o IR 13 c ox Uepoy O Oy
We now compare this result with quantum-mechanical for- X(‘M(O) Ip(JIx,Jy) n da(0) dp(Jx,Jy)
mula for the linear response function dPox a4Jy oy ddy '
i _ (19
RS (0= 7 l(glalu’e
where we again use the fact that distributjprs uniform in
[ CE.— and . Fourier decomposition of polarizatioa(t)
_ _ 2,—i(E,—E,)t/h Pox Poy - p p
2 7 Kglaju)|?e™EamEm, WD =5 o €879 yields

and notice that they will have similar expressions Af
=|n|#. This result was first observed in Ref. 6, where it was R(Cl>(t):4772i 2 dJ, d\]y|a’nxny|2ei(nxwx+nywy)t

found that classical description of one-photon transition in NNy
the linear response of one-dimensioffD) Morse oscillator
will give exact results iA=7%, andA=2# for the two-photon g J
. : . . X| Mo+ Nyo3-]pIx,dy).- (19
transition. Indeed, let us show that the classical expression X y
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Microcanonical distribution function  p(Jy,Jy)
= (1/47%) 5(Ix— Ixo) 8(3y— Jy0), Which comes as a limit of

guantum mechanical eigenstate, again results in the linear

time divergence of the classical response functit®). Yet,

as in the case of 1D system we may introduce uncertainty
O(#) around the trajectory to remove this divergence. First,

we notice that our two-dimensional 9 problem with the

transition frequency,w,+nyw, can be converted into the

1D problem with one-photon transition on frequeriwy af-
ter the change of variables,

Ny n

3= J+—2-13,,
X n)2(+n§ X n)2<+n§ Y
~ n Ny
Jy=—25 3~ Jy,
Y n)2(+n§ n§+n§ y
(20
_ _OE _JE ad OE 4, .\
D= = — et — 2 =g ny+ wyny,
“0dy 9dxad, ddyad, vy
_ _JE _JEd), 0E 3
==t —— 2 =@,N n
YT, A el Ay al, YT

The classical response function now becomes

. ~ - o 0~

R =47% X | ddcddyfan, [P~ p(3y,d,),
nyny /AN

(1)

with the microcanonical densi~t)p(3x,jy):(1/4772)5(3x

—Jy0) 8(Jy—Jy0). Integrating out], we get
Mt ] 20o 0 s
RC —uE ddlan,n |76/ 8(35—Jxo) :
) 3,350
y

(22)

which is the same as the one-dimensional linear response -
function (10). As previously we now introduce uncertainty
A=#, which changes microcanonical distribution density

0(Jx—Jxo) to the uniform distribution density within the
width A, (1/h) 0((Iy—Jdyo) +A12)0(h12— (I,—dyo)). This
results in
i .
(1) _ _ 2niwpt|
RS (t)—% plann s 5
Jy=dyo
[
_ _ 2hlout|
nXEny 7 lan,[%e 3=yt iz’ 23
Jy=Jyo

or in terms of the old variablegl,,J,} the classical expres-
sion for the linear response function becomes

J. Chem. Phys. 122, 024109 (2005)

[ .
1
Rg)(t)z z %|anxny|zel(nxw><+nywy)t

Ay Iy =dyo—n,hi2

Jy= ‘JyO_ nyﬁ/2

—E

2 A (Nyowy+ny )t
|a“ Ny | ety I =dyotnhi2" (24

3,=dyo+nyhl2

From here it follows that in order to describe the transition
on frequencyn,w,+nyw, in classical language, we need to
run the classical trajectory that corresponds to the mean val-
ues of actions

3= dyot NAI2=Fi(vy+ 1/2) +n,7if2
= (A(vy+ 12 +h (v + N+ 1/2)/2

=(Jxot 012,
(25
3,= 3,0t NAI2=fi(vy+ 1/2) + N fi/2

= (fi(vy+1/2) +h(v,+n,+1/2))/2
=(3,0+ 3,112,

whereJ,, andJ,, are action variables of the initial semiclas-
sical state and,; andJy; are action variables of the excited
semiclassical state.

We now generalize the expression for the linear response
function to theN-dimensional caséN degrees of freedom
Rotating and scalingN-dimensional action space similar to
transformation$20) to getwl—aE/ﬁJl >Nwin; we reduce
the N-dimensional problem to one- dlmen5|onal problem with
effective action; as in Eq.(22). Imposing the uncertainty
aroundJ; and transforming action-space back, we obtain the
general expression for the classical linear response function
of the system withN degrees of freedom,

1 _ 2 Z
Rg)(t)_ 2 ﬁ|a’nln2...nN| mje)t
NiM2--NN J=Jy—1itl2
[ SN
201 (3NN 0:)-
E g|a’n1n2--~nN| gl et o )
NiN2--NN J=Jy+nil2
(26)

which means that one should run classical trajectory with
mean actions);=(Jjp+J;7)/2, j=1,...N, to find classical
spectral amplltudeRgl)(w) of the transition with frequency
w= EJ Njw; .

The result in(26) reproduces the well-known Heisen-
berg's correspondence principté®l’between the quantum
matrix elementu|a(t)|v) and the classicaly—v)th Fou-
rier component ofx(t), evaluated along the trajectory with
mean action J,+J,)/2. This correspondence turns out to be
almost exact for several exactly solvable systems such as
harmonic and Morse oscillatdfsand explains the coinci-
dence of classical and quantum results noted in Ref. 6 and in
the preceding section.

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



024109-5 Nondivergent classical response functions J. Chem. Phys. 122, 024109 (2005)

III. NONLINEAR RESPONSE ~ o o
R(Z)(H)l,Z)Z)=f drlf d7, R?(7y,7,)
The nonlinear response function contains more detailed 0 0
dynamical information than the linear response function. Xexplio,m+iwm,Ts). (28)

First, we focus on the lowest order nonlinear response funcl-t is convenient to work with the symmetrized spectRift??

tion, ~ ~
S(01,9,)=R?(Q1,0,+Q,) +RP(Q,,0,+Q,)],
(29)
which contains all the information about 2D response in the

1
R(Z)(Tlﬂ'z): - ﬁ([[a(tz),a(tl)],a(O)]), (27) range of 01>Ov|92|<91)-
In the Heisenberg representation the time dependence
of the polarization operator is given bya(t)
wheret,= 7+ 7,, t;=7;. The Fourier—Laplace transform =e'Ho""(0)e Ho"  The quantum expression for
of the second-order response function is defined as R®)(r,,7,) can be written as

1
RG (71,7 =~ ﬁ<9|[[a(71+ 5),a(71)],2(0)]|g)

1
_— EZ % (gla(0)|u)(ula(0)|v){v|a(0)|g)[expli(Eq—Ey) (71 + 72)/h)expli(E,— E,) 71 /)

—exp(i(Ey—E,) (1 + )/ )expli(Eqg—Ey) 71 /h) —expli (Ey— E, ) (71 + 7o)/ )expli (E, —Eg) 71 /1)

+expli(E,—Eg) (1 + )/ )expli(E,—E,) 11 /)], (30)

whereE, is an energy eigenvalue that corresponds to a spe- 5 27 da(ty) da(ty)

cific eigenstatek)=|k,,ks,... ky) of the system witiN de- R(c)(leTz)ZJ de d(Po( 3 53

grees of freedom. Stafg) is the initial state which is not 0 o

necessarily the ground state. As mentioned previously, to ob- da(ty) da(ty)) da(0) dp

tain the classical limit for the response function we should Y Jo0 | o 9 (32

change quantum commutators to Poisson brackets,

Now we make use of the quasiperiodicity of motion to
(2) _
Re™(11,75) =({{a(ty), a(ty)}, «(0)}). (3D) decomposea(t) into fundamental frequencies as we did

Again, we use action-angle variables to describe classi-
cal motion. In the preceding section it was shown that the
number of degrees of freedom does not play any important
role, therefore we start our considerations with the one-
dimensional system with coordinatés,¢}. As shown in J
Appendix A the nonlinear response functi@di) will have 4
the following expression:

pay)

E(fr+m)h) ]g T

E(jy+ah)
- R ke e E(h#A2)
b= Bl Aw= % Aw=na, T Aw=nrmw, ’

Lw=mid,

E(q)

I
[
|
(a) ®)
| |

|
|
FIG. 1. The consecutive transitions from the quani@nand the classical J gAY} J J .4__@1 ]
single-trajectory(b) approaches. The simple classical method on the single 0 2 0 Yo 2 1
trajectory gives only one average frequenrgy= w(Jo+ A/2), which corre-

sponds to actiody+ A/2, and therefore is not able to account foe(|g) FIG. 2. Distribution densityp(J,,J,,J3) for the second-order response
—|u)) #Aw([uy—|v)). function in the 0,,J,) plane.
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in Eqg. (9) for the linear response functiona(t) @
=3 a,e"@t* 90 Substituting it into Eq(32) and integrat-  R¢ (71,72)=f Ha(Js,¢3),a(J2,¢2)}3,@(J1,00)}3
ing out ¢y we get

1
X5 831 30) 83~ 30)

Rg)( T1, TZ)

=i; %‘, HdJ(n+m)

X&(J3_\]1)dJ1dJ2 dJ3ngo, (34)

day dapn
May, EX Nay, EX

where 3= w(J3)t,+ ¢y, @,=w(Jdy)t;+ ¢y and brackets

ap . .
Not;+imoty 4 i .
X pmyye +imn(m+n) {--}3 are defined as

dw dp . .
X(tl—tz)f amana,n,mﬁ Eelnwtlﬁ—lmwtzd‘]}_
(33 AB _(9A (9+(?+r78 JB
{ ' }3_(9@0 (9\]1 (9\]2 (?J3 &(,DO
Microcanonical distribution density= (1/2m) 5(J— J;) X(i P i) A (35
again leads to the time divergence of the response function 9y 9y 93

(33). If we now impose uncertainty=0(%) with the distri-
bution density given by Eq.12) we will still have time di-

ergence due to the second term in . Yet, if mn=0 o .
vergence du S in E86) " Polarizationsa in Eq. (34) are now evaluated on three
there will be no second term and we may describe spectrasle arate trajectories, which at this step have the same initial
peaks (21,Q5)={(0mw),(Mw,0),(Nw,—nw)} of symme- b J ' P

) X ) , conditions J;=J,=J3=Jg, ¢20= ¢30= ¢o9- We can also
trized spectrum ¢,,{2,) with formula (33) using density consider Eq.(34) in another way—as a trajectory in four-

(12); these are transitions that involve only two states. ThuSgimensional spacgl;,J,,Js, ¢} with microcanonical distri-
one can see that by considering single classical trajectonyytion density

with uncertainty @%) around it one can correctly describe

transitions between two states—the case of linear response

function and the case of nonlinear response function for tran- 1

sitions (1,Q,)={(0mw),(Mw,0),(Nw,—Nw)}. The latter  p(J;,J,,J3)= Eé(Jl—Jo) 8(J5—31)6(J5—J4). (36
explains the nondivergence of the second-order response

function with quadratic polarization obtained in Ref. 6. In-

deed, polarizationa=(b+b™)? results only in spectral ) . o o
peaks Q;,0,)={(0,20),(2,0),(2w,—2w)}, therefore As pre_:vu_)usly our main assumption is that this microca-
phase averaging within uncertaintyi 2loes not lead to the nonical distribution functionp(Js,J,,J3) can be replaced

divergence of the classical response function at lon timesWith the uniform distribution function within volume @¢)
9 P 9 around the trajectory{(J;,J5,J3,¢):J1=J,=J3=J¢}. In

Appendix C such an uncertainty volume is found from the
A. One-dimensional system condition of thenondivergencdi.e., absence of derivatives

Yet, in general the second-order response function infya(t)/a‘]i] of the classical response functi¢4) (see Fig.

" . 2), which is provided by the distribution densit
volves transitions between three stat€sy. 1). Therefore ) P y y
one trajectory is not sufficient. We need to employ multiple
trajectories in our method. This will solve one more problem

of the quantum-classical correspondence—the correct aG5(3,,35,5) 0((31— o) +A1/2) 0((A112)

count of anharmonicity effects on the frequencies of transi- S 2mALA,

tions betwgen successive stategy. 1). It was impossible to — (31— 30) 8((Jp—31) + Asl2) B((A,I2)
do so having only one fundamental frequency from the

single trajectory simulation. The multiple trajectories con- n n+m

. - A —(J5—31)) 6| I3+ —=Jpo— —J4]|. 3
cept is usually used to calculate stability matrices in the clas- (J2791))9[ J5 m?2 m ! 37

sical expression of the nonlinear response functivet, sta-

bility matrices diverge. To overcome this difficulty we

propose another approach. First, we start with introducingwith distribution (37) the classical expression for the
additional variables to the classical expression of the nonlinsecond-order response function, as shown in Appendix C,
ear response functiof81) as shown in Appendix B: becomes
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R (ry,ry)= S, LM

TAA am(J3) an(J) a_m-_n(Jp)expimew(Js)( 71+ 1) +inw(Jy) 71)
n,m 122

3=+ A2
Jp=Jg+ A2+ A2
Jg=Jp+ (Ag—Ay(n/m))/2

—am(Jz)an(J) a—m-n(J)expimn(Js) (7t + m5) +inw(Jy) ) 3,0y A 02

Jy=Jp+A2— 402
J3=Jg— (A +A,(n/m))/2

—am(Jz)an(J)a—m-_p(Jy)expime(Jz)(7+ 72) +inw(Jy) ) 3,=0g+ Ay f2

Jy=Jp— A2+ A/2
Jg=3g+(Aq+A,(n/m))/2

Fam(Jz)an(J)a—m n(Jp)expimw(Js)(T1+ 75) +inw(Jy) ) (39

3,=3p— 4402
Jp=Jg—A,/2-A,/2
J3=Jg— (Ay—Ay(n/m))/2

Comparing classical resui88) with quantum result30) we can see that the forms of the two expressions are the same. As in
the case of the linear response function the arbitrariness of the size of the uncertainty volume for the classical nonlinear
response functioriFig. 2) is removed from the requirement of coincidence of quantum and classical expressions, i.e., for

A;=|n+m|A andA,=|m|A. With this, the final formula for the classical second-order response function takes the following
form:

R(cz)(Tl,Tz):E

NPTy am(J3)an(J2) @ m-n(J)explima(Jz) (71 + 1) +inw(Jz) 71)

J1=Jg+(n+m)f/2
Jy=Jg+ Mh+(nh/2)
J3=Jp+mh/2

_am(‘JS) an(Jz)afmfn(Jl)eXF(imw(JS)(Tl+ 72) + Inw(‘JZ) Tl) Jl:JO_(n+m)ﬁ/2

J,=Jo— Nhif2
Jg=Jo— N —(Mh/2)

- a’m(JS)a’n(\]Z)a—m—n(‘]l)equmw(‘]3)(7-l+ 7-2) + |nw(J2)Tl) 31230+(“+m)ﬁ'/2

J,=Jg+nhf2
Jg= g+ N+ (Mif2)

Fam(Jz)an(J)amn(J)expimw(Js)(T1+ 75) Finw(Jy) ) (39

J1=Jg— (n+m)#/2
Jy=Jg—mh—(nh/2)
Jg=Jg—mh/2

Careful comparison of quantum expressiof30) in Fig. 1(a), one should run three classical trajectofidsp}
and classical expressiort39) shows that again each with actionsJy+n#/2, Jo+nk+m#/2, Jo+ (n+m)%/2 and
quantum-mechanical propagatgi|e|u)exp((E,—E)t%)  find fundamental frequencies and spectral components of
is replaced with the Fourier component,_,(J) a(t) along these trajectories. One can check that formula
X exp((v—u) ()]s, +32 in the classical formula. There- (39) reproduces almost exact quantum result for the one-
fore, for instance, to calculate the classical seconddimensional Morse oscillator with quadratic polarizafian
order response of the 1D system in the process shows (b+b*)?, as shown in Ref. 6.
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B. nth-order response function mensional one. As an example, the second part of Appendix
for multidimensional systems B contains transformations for the second-order response
function of two-dimensional systems. The final formula for
The result(39) can be generalized for the system wNh  the N-dimensional system have the same result as for one-
degrees of freedom. As it was shown for the linear responsgimensional system but with vectors instead of scdleos-
function, by scaling and rotating multidimensional actionpare Eq.(15) with Eq. (26)]. The second-order classical re-
space we may reduceNrdimensional problem to a one di- sponse function for th&l-dimensional system reads

2 e e e . > 5, e,
RE(r1,m)=2 — { an(Jas(d)a_m-i(J)expima (o) (r+ m) +ind(d)m)| - .
nm f J,=Jg+(N+M)A/2
Jp=Jg+ M+ (/2)
Jg=Jg+ /2

—ai(J3) (o) a_ i i(J1)explima(Jz) (71 + ) +ina(Jy) 71) 3, =Jg—(R+rihi2
J,=3q—11hi2
Ja=Jg— it —(Mh/2)

—a(Jg) ai(Jo) @—m-a(J)eXpiMd(Is) 71+ 72) +ING(I2) 71)| 5 =5 & i+ ynz
Jy=Jg+ 112
3= 3o+ A+ (MA/2)

+ag(Js)ai(Jp)a—m-i(d)expima(Jg) (1 + 72) +iNw(Jp) 71) 3y=dg—(rrynrz | o (40)
Jy=3o— M — (Fh12)
Jg=3o— /2

where jk:(Jk ierodi), @m=amm. m and me  Wwith distribution density within the volume @) in three-
1'7K2 N 1M2 N i . .
=Mywy+Mywot+ +Mywy . dimensional spacg€l;,J,,¢q} given by
Basing on the results for the first- and second-order re-
sponse functions it becomes possible to find the classical
result for thenth order response function. As it was noticed
previously the difference between the results for the
N-dimensional system and for the one-dimensional system is  p(J;,J2)=
that all scalar parameters of the 1D system turn to the
N-component vectors. Therefore, for the purpose of simplic-
ity, we may consider only one-dimensional systems. The
classical expressiofl5) for the linear response function can
be rewritten in the form

1

1 ~
Emalnlﬁ(Jl_JO)a(JZ_‘]l)’ (42)

Where~6A(x)= 0(x+A/2)6(A/2—x) is a square function of
the width A. Comparing Eq(42) with Eq. (37) it becomes

i _
D)4y — _ inw(Jpt
Re'(t) ; h an(Jo)@-n(Jz)e J1=Jp—nh/2 clear, that in order to obtain the nondivergent classical ex-

T2 72 pression for thenth-order nonlinear response function, one
i should impose uncertainty within the volume70} around

=2 —ap(J)a_(Jpened / the trajectory in i+ 1)-dimensional phase space. The uncer-
v j;;jgiﬂz,ﬁ tainty volume is given for each sequence of transitifg$

—>|k0+kl>—>|ko+kl+k2>%'—>|k0+'+kn>—>|k0> by
(41)  the distribution density
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1 1 - - K,
p(Jlf‘]Z!---iJn+1)_ E |kl|hx|kl+ k2|h><|kl+ k2+ k3|ﬁ>< X e‘kllﬁ(‘]l_‘]O)x 0|kl+k2|ﬁ(‘]2_ k_l‘]l)

X0 - =2 3,m g ) In— ot J
ky+ky+kglfi| V3 ky+ K, 2 ky+ Ky 1 [ky+---+kplt| <n Kyt Kot +kn_q n—1
K 3,06l 3 n J Mk 43
_”'_kl+k2+"'+knfl 1 n+1_m T Kt kpr ik, 1]- (43)

Again, distribution functiong43) result in the replacement linear response function of the two coupled oscillators and
of the quantum mechanical matrix elemeqit$a|u) with the ~ compare its symmetrized spect(),(),) from quantum
Fourier coefficients ofa(t), evaluated along the classical and classical calculations. We consider Henon—Heiles
trajectory with average actionl(+J,)/2. The latter can be Hamiltoniarf?

verified by the detailed calculation of the third-order re-

sponse functioRE)( 7, , 7,,75) using the distribution density

iq Eg. (1_13). It is gseful to check that ?n the Iim'v_ﬁ—>0 the. H=4 p)2<+ p§+w2x2+w3yz)+)\(xyz+ 7-x3) (44)
distribution density(43) becomes a microcanonical density

in the form of the product ob-functions as in Eq(36).

with @3=0.7, wy=1.3,\=—0.1, 7=0.1.
The symmetrized spectrum of the second-order response
In this section we show how one can numerically imple-function is given by Eq(29). The Fourier—Laplace trans-
ment the above results. We compute the second-order noferm R(®)(%,,®,) of the quantum-mechanical res(®0) is

IV. NUMERICAL CALCULATIONS

- 1
R (@1,@,)=— ME % (g]a(0)|u)(u]a(0)|v){v|a(0)|g) 8(®1— (Eq—E, /%) (@, (Eq—E,)/h)

—6(w;—(Eg—E))/h)8(w— (Ey—E,)/h) — 6(w1— (E,— Eg)/h) (@, — (Ey—E, )/ 1)

+6(w1—(E,—Eg)/h)o(w,— (E,—Eg)/h)]. (45)

The Hamiltonian in Eq(44) is diagonalized in a local mode L
basis of 225 harmonic oscillator wave functions and the

600
guantum spectruni45) of the second-order response func-

tion is calculated. We consider the polarization operator in 500
the form
100
300
a=x>+y>. (46)

200

100

The symmetrized spectrur8y(£{2,,(),) is plotted in Fig.

| L
4(a). The system is considered to be initially in the state 0 Wy Wy 20w, 20, 20y
l9)=11,D. B . .
he cl ical expression fa‘”(* ®,) arises from the FIG. 3. Spectral components af{(t)=x“+y~ in the region of the initial
T € class p w1,02 state|1,1). Representation of the spectral frequencies in terms of the funda-
Fourier—Laplace transform of E40), mental frequencie$w, ,w,} leads to decomposition given by EG).
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Rg)(al,a)z): 2 amxmy(JS)anxny(Jz)afmxfnx,7my7ny(\]1)5(?1‘)1_n—aé(JS)_ﬁé(Jz))

Ny Ny my . my 442

x5(702—n3£(33)) .. _amxmy(Jii)a’nxny(Jz)a—mx—nX,—my—ny(‘]l)a(a’l_rﬁ(:’(JS)_ *‘:’(JZ))
J1=Jgt (n+m)fi/2
J,= 3+ M+ (12)
Jg=Jg+ M2

Xo(wp— rﬁa—;(JB)) jlzjo—(ﬁ+ mki2 a'mxmy(JS) a’nxny(‘]z)a—mx—nx ,—my—ny(Jl) o(w,— rﬁ‘;(JS) - ﬁCB(JZ))
Jp=3q—hi2
3= o=k~ (Mh12)

Xo(@p— I’ﬁ(f)(.]3)) 31:50+(ﬁ+rﬁ)ﬁ/2 + a’mxmy(‘-]3) anxny(JZ)afmxan ,7myfny(J1) d(®1—ma(Jz) —Na(Jy))
Jp=dg+ /2
Jg=dg+ i+ (MA12)

X 8@y = M@(J33))| 55w | @7
Jy= o~ M~ (Ah12)

Jg=Jo— A2

where 5=(JX,Jy), o=(wyx,0y), m=(m,,m,), n shownin Ref. 22 that the semiclassical spectrum of Henon—
=(ny,ny). Given the spectrum ok(t) one can select non- Heiles system reasonably agrees with the quantum mechani-
vanishing terms in the above sum. The typical Fourier speceal one if the initial conditions were chosen by selectihg
trum of « in the vicinity of the initial statd1,1) is shown in ~ from the unperturbed Hamiltonian. Thus, we take mean
Fig. 3. It has 11 significant spectral componenigy, a1y,  quantum number$49) for unperturbed actiond,, J, and

@p0, @_13, Qpa, @13, X_10, (X_pq, QA1_p, Qg_3, run classical trajectories keeping track of coordinatéy,
a_1_,, for which “*nxfny:(“nxmy)*' Therefore the clas- Y(t) as well asa(x,y). Applying the Fourier transform to
sical expression47) will have only those values ofn  X(1), ¥(t), and a(t) evaluated on the same trajectory we

=(m,,m,), i=(n,,n,), which satisfy the equality select fundamental frequencié¢s, ,»,} from the spectrum
R of X(wy,wy), Y(w ,wy),l9 and find spectral components of
m+n=k, « that correspond to these fundamental frequenéieg.,
R Fig. 3. The results of classical simulations and correspond-
m,n,ke{(0,0),(1,0,(2,0,(—1,2,(0,2,(1,2,(—1,0, ing quantum mechanical results are presented in Table I. The
final symmetrized spectrurB:(Q4,Q,) from the classical
(=2,0,(1,-2),(0-2),(=1,-2)}- 48 calculations is shown in Fig.(8). Both Table | and Fig. 4

In total, there will be 73 such combinations. To calculate theShOW good agreement of quantum and classical results. The
contributions of all the terms in the expressi@) we need dlscrgpancy betv_veen guantum me_chamcal and classical cal-
to run 17 classical trajectories with action variablag ~culations may arise from the following three reasdiagthe
=#(N,+1/2), J,=#(N,+1/2), where the mean quantum semlclassmal' quantization does not result in the exact quan-
numbers N, ,N,) are tum mechanical 'spectrun(b) 'the mean-action tra]ect'ory
does not appropriately approximate the quantum matrix ele-

(0,1, (05,1, (1,1, (151, (2,1, (25,1, ment, (c) the classical initial conditions do not lead to the
desired quantized actior{§). The main error of the present
(0,2, (052, (1,2, (152, (22, (252, calculations results from the fact, that in classical simulations
(49 we have used initial conditions of the unperturbed Hamil-
(03, (053, (1.3, (153, (23. tonian. The latter can be improved by selecting better initial

The above 17 trajectories are sufficient for calculating®@nditions.

the complete two-dimensional classical spectrum for the sys-
tem (44) with polarization(46). To run the above trajectories V. CONCLUSIONS AND DISCUSSIONS

we need to find proper initial conditions, which will result in In the present paper we have found that the replacement
guantum numberg49) according to formula(6). It was  of the microcanonical distribution density with the uniform
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TABLE I. Quantum matrix elements and corresponding classical Fourier components for the two-dimensional Henon—Heiles system.

<uxuy‘a(o)|vxvy>a |<Uxuy|a(0)|vxvy>|a wQ:|Eu_Eu|/ﬁb anx.ny(erNy)c |an><.ny('\l><v|\ly)|C wC:‘nxwx"'nywy'd

(0,1¢/0,1) 2.00 0 ag(0,1) 2.08 0

(0,0¢/0,2 0.54 2.552 ap(0,1) 0.62 2.558
(0,1¢/0,3 0.93 2.526 apA0,2) 1.03 2.527
<0,21a|0,2) 2.94 0 ag¢(0,2) 3.12 0

(0,3¢/0,3 3.98 0 a0(0,3) 4.32 0

(0,2¢0,4) 1.32 2.498 aA0,3) 1.36 2.497
(0,0¢/1,2 0.100 3.221 a;(0.5,1) 0.102 3.225
(0,4¢/1,1) 0.62 0.680 a;(0.5,1) 0.59 0.679
(0,2¢|1,0) 0.12 1.861 a;(0.5,1) 0.12 1.868
(0,4¢/1,3 0.18 3.182 a;(0.5,2) 0.16 3.175
<0,21a|l,2) 0.98 0.668 a;(0.5,2) 0.79 0.663
(1,1¢/0,3 0.22 1.846 a; (0.5,2) 0.23 1.848
(0,34/1,3 1.36 0.655 a;(0.5,3) 1.38 0.652
(0,2a|1,% 0.27 3.140 a;(0.5,3) 0.22 3.137
(0,4a1,2 0.32 1.830 a;(0.5,3) 0.31 1.833
(l,lla/|l,1) 3.55 0 ago(1,1) 3.60 0

(0,4¢)2,1) 1.03 1.357 ao(1,1) 0.82 1.354
<l,lla|l,3) 0.88 2.501 apA1,2) 0.91 2.504
(1,24/1,2 4.59 0 ago(1,2) 4.65 0

(0,2¢)2,2) 1.04 1.332 a(1,2) 0.98 1.327
(1,34/1,3 5.72 0 ago(1,3) 5.87 0

(1,24|1,% 1.24 2.472 apA1,3) 0.94 2.474
<0,3a|2,3) 1.06 1.306 a(1,3) 0.96 1.300
(1,4¢)2,1) 1.08 0.676 a;(1.5,1) 0.89 0.675
(1,4¢)2,3 0.25 3.152 a; (1.5,2) 0.24 3.154
(2,14/1,3 0.30 1.825 a_;/1.5,2) 0.21 1.830
(1,2¢)2,2) 1.61 0.664 a;(1.5,2) 1.25 0.662
(1,34)2,3 2.18 0.650 a;(1.5,3) 2.12 0.648
(1,2a)2,4 0.38 3.107 a; (1.5,3) 0.32 3.106
<2,2‘a|l,4) 0.43 1.808 a;(1.5,3) 0.46 1.810
(1,443, 1.78 1.349 ao(2,1) 1.65 1.346
(2,1¢)2,1) 5.15 0 ag(2,1) 5.18 0

(2,20)2,2) 6.27 0 apo(2,2) 6.30 0

(1,34)3,3 1.83 1.295 a(2,3) 1.47 1.292
(2,30)2,3 7.52 0 apo(2,3) 7.61 0

(2,2a|2,% 1.16 2.443 apA2,3) 1.03 2.447
<2,lla|3,1) 1.59 0.672 a;(2.5,1) 1.24 0.669
(2,2¢3,2 2.26 0.659 a;(2.5,2) 2.06 0.658
(2,1¢)3,3 0.31 3.120 a;(2.5,2) 0.30 3.123
(3,4¢)2,3 0.35 1.803 a;(2.5,2) 0.34 1.808

aMatrix elements of the polarization operator in the eigenbasig4)t

PFrequencies of transition between quantum states in the first column.

“Fourier components ofx(t) calculated along the classical trajectorigs=#(N,+1/2), J,=#(N,+1/2) [each quantum mechanical matrix element
(vx.vy|a|vx+ ny,vy+ny) corresponds to Fourier coefﬁciem1an evaluated on the classical trajectaly=17 (v,+(n,/2)+1/2), I, = (v,+(n,/2)+1/2)].
YFrequencies of the Fourier components in the fourth colu?fn,rx},y=anX(NX Ny +nyo (N, Ny).

density within volume Ok") in the expanded multidimen- quantum formula. Setting these coefficients to be equal, we
sional phase space removes the inherent time divergence @€fine the size of uncertainty volume and, in particular, jus-
the classical linear and nonlinear response functions. Eadify the proposed phase-space quantization condition found
set of transitions, which corresponds to one term in quanturempirically in Ref. 6. As a result, we arrive at Heisenberg's
mechanical formula, defines a particular quantized phasesorrespondence principle, where each matrix element
space uncertainty volume in the classical formula. The form{u|a(t)|v) in the quantum formula corresponds to the clas-
of uncertainty volume is determined by the requirement ofsical Fourier (1—v)th coefficient ofa(t). The same corre-
nondivergence of classical response function, which restrictspondence principle was used in the spectral analysis tech-
the class of distribution functions and their arguments, andiique proposed in Ref. 17 and showed good numerical
the requirement of a discrete spectrum, which selects onlpgreement between classical and quantum results. At the
theta and delta functions in the expression for distributionrsame time, for the nonlinear response, we arrive at the mul-
density. The resulting classical response function is of thdiple trajectories approach, which avoids the divergent inter-
same form as the quantum response function for a giveference of classical trajectories.

initial eigenstate. Classical and quantum expressions have One may speculate on the possible reasons for the con-
well-defined one-to-one correspondence if the coefficients o$truction of the uncertainty principle in classical response
the terms in the classical series are the same as those in ttieeory. We present a simple physical explanation below. The
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ing in the expanded phase space then the Boltzmann averag-
(a) ing, which is intrinsically an averaging within the original
A phase space, fails to converge the classical nonlinear re-
S(wlaw2) ‘ S sponse function for the constant-energy system with quasip-
: : eriodic motion. The concept of configurational or thermal
averaging has been invoked in several classical and quasi-
classical approximations of quantum dynamics, including
wave-packet dynamics, nonadiabatic dynamics and centroid
dynamics®~?°In the current context, phase space quantiza-
tion can be generally established for quasiperiodic systems
and leads to exact quantum mechanical results for a class of
integrable Hamiltonians.
The results of this paper raise a conceptual question of
whether the classical expression for the response funjon
is an appropriate limit of the quantum expressiah Indeed,
the theory of semiclassical quantization of the Poisson
(b) brackets’>! establishes the relation between quantum com-

i mutator and Poisson brackets in the fo[rfn@]=iﬁ{f/,§}
+O(#?), where the remainders ®f) are power series i
whose coefficients are bidifferential operators actind and
g. The quantization paramet&iis considered to be small but
finite, thus O¢:2) can be neglected as long as the prefactor of
#2 is finite. However, this is not the case in response theory.
The expression for quantum response function contains com-
mutatorq «(t,),«(t1)] of the same dynamical operate(t)
taken at different times. Thus the differential operators in
O(h?) will result in classical divergent derivatives
3"y (t)/9x;(t;)" (nth order stability matricgs which be-
come infinitely large at timets,— o and elimination of these
terms is not justified. We usually do not face the above prob-
FIG. 4. Symmetrized 2D spectrum &{,w,). (8 Quantum mechanical |em since most applications of classical mechanics contain
result[using formula(45)]; (b) classical resulfusing formula(47)]. Poisson brackets of the functions evaluated at the same mo-
ment of time (for example, commutator of the dynamical
energy of an isolated quantum mechanical system will no_{unction with Hamilto_niam and therefore we can always take
increase, i.e., a system will not respond to the external influlnStantaneous coordinates and momenta as system variables
ence, unless a quantum transition occurs. And if it occurs, th@voiding stability matrices. The @) is thus finite and can
actionJ, as pointed out by Bohr, changes discontinuously byP€ omitted in the limit ofi—0, resulting in the correspon-
AJ=n# for allowedn-photon transition. Our primary goal is dence principlg f,g]—i#%{f,g}. Yet, we cannot do the same
to describe quantum mechanical response with classic&br the response function and the correct account of the
dynamics. Yet, in classical mechanics there is nohigher order terms i is also impossible. In the present
discontinuity—the influence of any force will result in an paper we show that the classical response function can still
immediate continuous response of the system, therefore thze calculated as a limit of a quantum expression from the
smallest response of a classical system is zero. How is ttorrespondence principldf,g]—i#{f,g} if we change mi-
possible to describe quantum dynamics, in which the smallerocanonical -functions to square-functions of the width
est response of the system &J=n#%, with continuous O(%), (1ink)6((J—Jy) +nk/2)0(nk/2—(I—Jy)). Surpris-
theory (classical dynamigs in which the smallest response ingly as it may seem, while the replacement of the distribu-
of the system isAJ=0? One possible solution is to intro- tion functions lies within the error of @), which is intro-
duce theuncertainty i to the latter. This is exactly what we duced as a result of eliminating higher order terms in the
have obtained in the present paper—to descrilmephoton  Plank constant, the classical response function changes dras-
transition in the response function we need to introduce thé&cally and becomes very close to quantum result once phase
uncertaintyn# for the classical action. Multiple independent space is quantized.
transitions(in the case of nonlinear responseed multiple The elucidation of the classical-quantum correspondence
independent uncertainties, which results in uncertainty volof response functions has both conceptual and practical im-
ume in theexpandedaction space. Therefore the expandedplications: (1) Spectroscopic measurements are often inter-
action space introduced in our approach is not just a result gfreted in terms of classical dynamics. For example, an effec-
algebraic manipulations, but is also based on intuitive physitive Hamiltonian has been used to describe the bending
cal argument. The latter also turns out to be in agreemerdgpectrum of acetene at high excitation energy from high-
with the results mentioned in the Introduction. Indeed, sinceesolution spectroscop§:>3 Through classical or semiclassi-
the nonlinear response function needs a phase space averggt approximations, the measured spectrum can then be

1

0.5
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mapped to normal-mode or local-mode motions solved from  R2)(7, 7,)=({{a(t,),a(t;)},a(0)})
the effective Hamiltonian. Heisenberg’s correspondence rela-
tion and its generalization to nonlinear response functions =Tr({{a(ty),a(ty)},a(0)}p). (A1)
provide the theoretical basis for such mappit®. The dy-  Using identity Tf{A,B}C]=Tr[A{B,C}] we find
namics of polyatomic molecules has stimulated topics such,z)
: o o o &(T1,72)
as intramolecular vibrational relaxation, isomerization, an

energy localizatiort*~*3A fundamental question is the mani- = Tr({a(ty), a(t)},{(0),p})

festation of classical chaos in quantum dynamics and pos-

sible spectroscopic signaig®=*°To address this question, :j dezwd (fm(tz) da(ty) da(ty) da(ty)
we need to extend our formalism for quasiperiodic systems 0 o deg dJd ad deq

to a larger class of dynamic systen3) Of particular inter-
est is the solute—solvent system, where the solvent must be > ( da(0) ‘9_”_ da(0) ‘9_’)) (A2)
treated classically and solute quantum mechanié4tiP dpg 93 I deqg)

The treatment usually leads to the inconsistency of mixedf p does not depend og, then

guantum-classical dynamics. Since the phase-space averggr

)
ing introduces quantum dynamics through the initial condi- ¢ (11,72)
tions, we can in principle treat the solute and solvent on the =Tr({a(t,),a(ty)},{a(0),p})
same footing and thus avoid the difficulty of inconsistency.
Yet, the implementation of this idea remains a challeridpe. :f dez’Td(P <0a(t2) da(ty)  da(ty) da(ty)
Another important direction to explore is the possibility of 0 o deq ad dd deg
developing classical pictures of quantum concepts, such as
phase coherence and relaxation. These pictures will advance da(0) ’9_’3' (A3)
our theoretical understanding of quantum coherence deg 9
controf®=1and vibrational line shapé o8 Another approach used in the text is
R (r1,7)
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APPENDIX A: SIMPLIFICATION OF CLASSICAL da(ty) 9 [da(0) dp
RESPONSE FUNCTIONS T3 9o\ dwe 33 (A4)

In this Appendix we simplify the expression for the clas- which is obtained by successive applications of identity
sical response function Tr[{A,B}C]=Tr{ A{B,C}].

APPENDIX B: EXPANDED PHASE SPACE
1. One-dimensional system

In this Appendix we introduce additional variables into the expression for the classical second-order response function and
thus effectively increase the dimensionality of phase space. Using iderftity) = [ «(J,) 5(J,—J;)dJ, we introduce vari-
ablesJ, andJ; into the expressiofi31),

1
RE (11, 72)= f {{a(31.00.t2), @31, ¢0.t1)}, (31,00.0)} 5— 831~ Jo)dJ depg

_f (5(fas(33)5(33_J1)dJ3) ([ az(J2) (32— 31)dJy)
- deg dJy

([ az(J3) 8(I3—31)dI3) 9(f an(Ip) 8(I,—J1)dd,) 1
_dlJag 3(9313 1)0J3 a; 2&%2 1 2),al(\]l)]%ﬂJl—Jo)dJld(po

das(Js) 98(35—J1) 98(33—J1) dax(dy)
- | {( e 8U3am 1) (3 T ag(Jg) T 6<JZ—J1)),a1<Jl>]

1
XE 5(J1_J0)dJ1dJ2dJ3 dQDo. (Bl)
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Using 96(J,—J1)/dJ1=—096(J,—J1)/dJ, and integrating IA [ 9 9 d
by parts overd; andJ, the terms in Eq(B1), we obtain {A, }3— 73, R ﬁz+ 935

R(CZ)(TlaTZ) JB ( J J J )
- ——+ ——+ —]A.

:f (i(ﬁaaua) day(Jz)  daz(Iz) 3“2(\]2)) dpo\ddy  dJ; 93
deo | deg dJ3 dJ3 deo
001(31) J 9\ [ das(Iz) dax(dy) 2. Two-dimensional system  (two degrees of freedom )
9, (ﬁz * ﬁs) ( dpg  ddy Repeating the same stef®1)—(B2) for the system with
two degrees of freedofd, ,Jy , ¢4, ¢y} We will get the same
_ das(Jy) MZ(‘JZ)) ‘9“1(‘]1)]_ 531~ Jo) expression agB2) but with vectorsJ=(J,,J,) and ¢,
9J3 d¢o d¢o =(¢ox.®oy) instead of scalard and ¢,. Substituting Fou-
X 8(J5— 1) 8(I5—J1)dI; dJ, dJs deg (B2) rier decomposition ofr

which is equivalent to

() (1)
R(z) a; ( |J v‘PJ) E a(J) e |(n)< 4 +nyw J ) t+|(nx¢0x+ny¢0y))
(7 )
C 1,72

1 »
:J Has(33),a2(32) 3, @1(31)}3 E&Jl_Jo) Ezn “%J)v (B4)

X 8(J2731) 8(J5=J1)dJy dJ dJs depo, B3 the classical second-order response function for the system

where with two degrees of freedom takes the form

R&(ry,70)= 2, 39 g + Ny | 32— 132 gyt My 73 +Np) ? o (ngn )i
(71,72 ey X, 3x(7~32x 3y(?J2 A, lanz 2X(9J3x 2y93 A, (Ngx+Nyy N +( 3y T Nyy ale
Xa(l)—la» (N3t Ng)| o3~ + i +(Ngy+Nyy) +—ia¥|n i +n 2
BT Az Y TN a3y, 03y Mg | 935 Py
@_i~@|, 9 I |l L o S T s dd o di d
Xaﬁz —Iaﬁz nZX&J nzyﬁ a~3 m5(‘]1_‘]0)5(‘]2_‘11)6(‘]3_‘Jl)d‘Jl sz dJ3 d@o, (BS)
|
where we have used the conditiop+n,+n;=0 for non- 9 J J 9 J
vanishing value of the integral over,. Now we make trans- 75~ Nax EJFE +ngy EJFE : (B6)
formations in six-dimensional spacéJlX,le,JZX,Jzy, 2 X X Y Y
Jax,Jgy} and introduce new vanableig—f (Jl J2 3)
=1, 2, 3. For the particular case nf,n,, # nyns, we take P P P P P
~ — [ —_
such variableg; that aJSX_n2X<(9J2X+ E N TNy 532y+ (;ng)-

J J
—~—=(Ngx+Nyy) =+ (Ngy+Nyy) 4,
NI 0y N With this, expressioriB5) becomes

i O i i O d d O N ieimr @ i i O
R®(ry,m)= > i 2@ 32— 3@ (3) S ) (A | N A M-I
Ty 30do 2 2<9J3X 303y 1 119y dday 39doy 2 293, 3

-

1 s = - . o= = - 0J
X——8(31(J1) = Jo) 6(32(J2,d3) ~3,3, ))5(33(32: 3) 3.0 %

dJl d\]2 dJs d(,DO (B?)
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which after integrating outl;,, J,,, J3y has the same @

form as the one-dimensional expressitB2). The cases Re (71'72):J a(Jz,e3){a(Jz, ¢2) {a(J1,¢0),
N3xNy=NyN3y can be considered separately as well. Thus,

each set of transitions|g;,ds,...,gn)—|Ug,Us,...,UN) p(J1,32,33)}3}3dJ1dJr dJzdeg.  (C2)

—|v1,02,...,un)—]91,92,...,0n) Can be described by the _ _ ] )
appropriate series of transitions in the one-dimensional sys- ©ur goal is to find such functiop(J,,J;,J3), that will

tem|[G;)—[Uy)—[01)—[Ts). not result in divergent derivativega(t)/3J;, and at the
same time will not have derivatived’p/3dJ" higher than

APPENDIX C: UNCERTAINTY DISTRIBUTION first-order ones. The latter is necessary to have discrete spec-

DENSITY FOR TWO-TIME RESPONSE trum of R(CZ)(Ql,QZ), i.e., in the form ofé&functions. One

: . . - , may notice that the derivative[(d/dJ;)+ (9/dJ,)
In this Appendix we derive an explicit expression for the+(¢9/aJ3)] in brackets{A,B}, does not influence a multi-

distribution densityp(J;,J,,J3) that does not lead to the lier of the formf(ad, +bd,+cJs), if a+b+c=0. There-
divergence of the classical expression for the second-ordgf . it is reasonable to look for the expression  of
nonlinear response function p(31,3,,33) in the form

R(CZ)(Tl ' TZ) = f {{a(J3!¢3)ia(J2'§D2)}3Y P(\]l ,Jz ,\]3) = fl(Jl)fz(alJl+ lez)
Ol(Jl,(Po)}gp(Jl,Jz,Jg,)dJl dJZ ng d(Po. Xf3(azJ1+b2J2+C2\]3), (C3)

(€D wherea; +b;=0, a,+b,+c,=0. Substituting this into Eq.
Performing integration by parts we get (C2) we get

(2) 0"(12 J (90[1
RE(71,72)= agy - 1(31) fa(aydi+byd;)fa(azdi+byda+cods)
()DO (9\]
day 9? al
_a3o7J f1(J)fa(a1d;1+0b135)f5(axd1+bydo+cpd3) | [dIydI,dIzdeg

day day d Pay
= —az— —f1(3; ) (fz(alJl+ b1J2) (@1 +bods+Cod3)) + aga,— 1(J3q)
deo deo I¢3

J
0\] (f (a1J1+ lez)f3(32J1+ b2J2+ Cng))) dJl dJZ ng d(Po, (C4)

where in the last step integration by parts was used. After substituting Fourier decompa@jotpj):Enan(Jj)ei“%‘ and
integrating outp,, the last expression ifC4) becomes

2) _ o , d d
RE(r1,7) =3 | 03,03, 03 2 (Ja) an(Jo)a—m-n(30)(~M=mFi(3p)| | 03—+ (m+n) o3

X (fz(alJ1+ bl\]z)f3(a2Jl+ b2J2+ Cst)) eX[Z(imw(Jg)tz-i- |nw(J2)t1) (CS)

We now find such coefficienta,, b,, ¢, anda;, b; thatna,+(n+m)b,=0. These coefficients can be chosenaas
=—(n+m), b,=n, c,=m, a;=—1, b;=1. Finally the distribution density and the response function take the following
form:

p(J1,Jd2,d3) =F1(J1)f2(I— ) fs(MIz+nd—(n+m)Jy), (Co)

R§><rl,rz>=2wn2m dJy dJy dJz ap(Js) an(Jz) @ m-n(I))(—m—n)mfi(I;)f5(I—Jp)
Xfa(mIz+ndr—(n+m)J)expimo(Iz)t, +inw(Jy)ty). (C7)
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For the microcanonical distribution densig(J,J,,J3),
functionsf;(J4) andf,(J,—J;) would be 5functions 6(J;

J. Chem. Phys. 122, 024109 (2005)

tion since no derivatives of thé-function appears RE:Z)

X(7,72). The normalized uncertainty distribution density

—Jp) and 5(J,—J;) correspondingly, which lead to the di- then has the following form:

vergence of the classical response functi@v). Yet, we
may impose two uncertainties to the functiohgJ;) and

f»(J,—J4) replacing &-functions with the step functions of

the width A,

1
f1(J)= A, 0((J1—Jo) +A4/2)0(A1/2— (31~ o)),

1
p(Jd1,32,33)= m 0((J1—Jg) +A1/2) 0((A41/2)

—(J1—J)) X 6((I—Jy)
+A,/2) 0((An/2) — (I, J1))

1 €8 xol 3gt Lg,- My C9
falJz=02) = 3 0((3p=30) + 8512 0(A5/2= (3= ). Tl Ty €9
This removes the divergence of the classical response funend the classical response functi@@i7) becomes

2 -y —(m+n)m _ _
R¢ (71’72)_n,m TAL, am(J3)@n(J2) @ m-n(J1)explima(Jz)ta+inw(Jz)ty) 3,=0gt A 02
Jy=dg+A 2+ A2
J3=Jg+ (A= Ay(n/m))/2
—am(Jz)an(Jz)a—m-p(J)expime(Jz)t, +inw(J)t) 3y =3g—A,02
Jp=Jg+A,2—A,/2
J3=Jy— (A +A,(n/m))/2
—an(Jg)an(dp)a-m-a(Jepimo(Ito+inw(I)t)| L,
Jp=Jg— A2+ A4 12
J3=Jg+ (A +A,(n/m))/2
Fan(Jg) an(Jg)a-m-n(Jexpime(Ja)t Hine(It)| ;4 (C10
Jp=Jg—Ayl2—A4 12
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