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In this paper we explore the inherent structures(IS) approach to the dynamics of the East constrained kinetic
Ising model. The inherent structures do not capture the nature of the dynamics of many quantities, including
the spin autocorrelation function. Simply monitoring the quenched energy fluctuations, i.e., IS energy, results
in an oversimplified single order-parameter description of the system’s dynamics, but examining other features,
such as domain dynamics or normal modes, may give a more complete and useful picture of the dynamics. The
universality in the behavior of the IS energy of this model does not reveal nonuniversal features of the kinetics
that determine long-time relaxation of the system. As a result, popular functional forms, such as the stretched
exponential relaxation or Gaussian distribution of energies, may be a numerical fit to data with little physical
justification. Filtering data can be shown to erase features of the system and the resulting quantities resemble
more universal functional forms that lack physical insight. These results for the East model have implications
for IS simulations of realistic systems and suggest careful analysis including the examination of other potential
order parameters is necessary to evaluate the validity of applications of universal and scaling arguments to IS
simulations.
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I. INTRODUCTION

The original inherent structures(IS) concept advanced by
Stillinger and co-workers was intended to develop a method
of evaluating the partition function of liquids through the use
of computer simulations[1]. The goal was to use quenched
configurations discovered by simulation, the inherent struc-
tures, to partition phase space into basins, and calculate the
thermodynamics from these basins. Through the use of
clever simulation techniques, the inherent structures would
be representative of the most important features of the po-
tential energy landscape and make dominant contributions to
partition function. Recent work on IS attempts to extend the
IS concept to dynamics by determining the rates of intercon-
version between various structures or basins[2]. The total
rate of interconversion isOsNd, whereN is the number of
rearranging subunits which may be the inherent structures.
As a result, one needs to look at the smallest rearranging
structures, to capture the physics without having details
washed out by competition among subsystems and the IS can
play a key role in dynamics[2,3]. In terms of dynamics, the
evolution of large complex systems corresponds to motion
on a rough multidimensional energy surface with many hills
and valleys. Large scale motions on this surface involve
overcoming many barriers and require activated dynamics
[4]. The IS picture attempts to relate the dynamics of super-
cooled liquids and glasses to the underlying energy surface
and therefore thermodynamics.

The relation between glasses and the IS potential energy
landscape is based on the concept of locality. According to
Wolynes, on the time scale of experiments, the system can-
not find a global minimum of the free energy so the system
breaks up into smaller subsystems that minimize the free

energy locally. Since these structures are of finite size, the
barriers for local rearrangement are finite[5,6]. The objective
of many IS simulations is to determine these local structures
and the barriers to the local rearrangements[7–14]. The im-
portance of local structures and rearrangements is demon-
strated in colloidal systems by Weeks and Weitz and by Cui
and Rice[15,16].

The applications of IS to dynamics separate into two
groups. One group uses inherent structures to comprehen-
sively extract all information from the system, including the
geometry of IS structures and the connectivity, i.e., saddle
points between different IS structures[7–12]. The complete
information approach also includes determination of normal
modes, which have been applied to liquid simulations
[3,17–19]. The other applications analyze more universal
features in the IS of different systems, such as energy fluc-
tuations[13,14,20]. The latter group uses reduced informa-
tion to describe the system since universality depends on a
few features[13,14,20]. Our analysis of a simple model is an
example that the validity of these universal parameters is
difficult to establish since the appearance of universality in
certain features or quantities may not reflect other important
nonuniversal features. Although Stillinger’s original IS pro-
posal has profoundly influenced the energy landscape per-
spective of glass transitions, its connections to simple hop-
ping models, such as the Gaussian trapping model, must be
examined with caution.

Several authors recently proposed that the glass phenom-
enon does not necessarily require the rough potential energy
landscape proposed by Stillinger. Through the use of con-
strained models, such as the Fredrickson-Andersen(FA) con-
strained kinetic Ising model, they show that the apparent
universal features of glasses may be the result of kinetics
without any reference to the underlying potential energy
landscape[20–25]. Generally, these models have trivial ther-
modynamics, but complex dynamics. In order to justify the
kinetic constraint picture, the constrained models must give*Electronic address: jianshu@mit.edu
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results that are consistent with previous work on IS calcula-
tions of model glass forming liquids[26]. Garrahan and co-
workers recently performed such analysis[20]. Although
they indicate that the important dynamics of this system is
governed by large domains of down spins and that IS probes
short lived small domains, the relationship between IS dy-
namics and the domain picture is not conclusive and requires
more rigorous exploration.

In this paper we examine the results for IS simulations of
the East kinetic Ising model and show that scaling effects as
well as the existence of fast and slow processes can explain
universal features and functional forms previously reported,
while missing important nonuniversal features of the system
[20]. These results show that the IS interpretation of this
model can be misleading. The fast processes correspond to
one and two spin flip events, which is a local rearrangement
like those explored by IS on real liquids, but capturing many
features of the system, such as the spin autocorrelation func-
tion, requires larger scale structures, the domains of down
spins[23,24]. Since the East kinetic Ising model has an ex-
ponential distribution of length scales with each scale con-
tributing to the overall dynamics, the failure of IS based
dynamics to describe the important properties of this model
is not surprising. IS generally depends on a well defined
length scale so that one can define the smallest structural
component or inherent structure of this system[1,3,27]. For
sufficiently low temperature liquids one hopes the IS will be
representative of the smallest cooperative rearranging re-
gions(CRRs), which dominates the dynamics of liquids[3].
For the kinetic Ising model, CRR is probably a more appro-
priate definition than IS. This difficulty may not be present in
other IS simulations. For example, the FA model dynamics
are governed by local structures since a single spin can fa-
cilitate its own relaxation so larger scale structures do not
influence dynamics as strongly as in the East model. The
hierarchy of length scales in the East model makes the simu-
lation sensitive to the choice of system size, temperature, and
data filtering. One particular result of the multilength and
time-scale nature of this system is that the inherent structures
only probe the fastest processes, which may not be the most
important features of the system. Choosing a small system
size makes the simulation only sensitive to these fast com-
ponents, while choosing a larger system size can cause trivial
scaling effects that obscure the IS physics. As discussed in
several references, these features may remain true for other
IS simulations since locality is a slightly subjective criterion
that can have some ambiguity in computer simulations,
which is why much attention has been dedicated to analyzing
size effects for these simulations[12]. As a result, the uni-
versality interpretation of IS calculations has some ambiguity
and requires caution. The universal features of quantities
may not reveal important physics and the functional forms
generally chosen to fit experimental data, such as the
stretched exponential, may not be the result of fundamental
physics, but instead result from the flexibility of the func-
tional form or the treatment of simulation data[14,20]. Simi-
lar caution about functional forms have been expressed else-
where [3]. Resolving these ambiguities requires the
examination of other potential order parameters.

In the following section, Sec. II, we introduce the East
kinetic Ising model and the simulation techniques. These

techniques are similar to those applied elsewhere to both the
East model and more realistic liquid simulations. This paper
uses a very simple model that can be well characterized to
better understand the methods applied to more complex sys-
tems. In Ref.[28] we use the East model to perform a similar
study on mode-coupling closures. After introducing these
computational methods, we analyze the fast fluctuations of
the East model in Sec. III and slower characteristics in Sec.
IV. We show that the fast fluctuations are not well approxi-
mated by the stretched exponential reported in other refer-
ences and that the methods and models used to characterize
longer time behaviors are not rigorous[14,20]. To better
characterize the system, we discuss a geometrical parameter,
the domain sizes, that captures the important properties of
the spin autocorrelation function in Sec. V.

II. EAST MODEL AND IS

The East facilitated kinetic Ising model is a chain of spins
that take on two values,ni =0,1 [25,26,29,30]. A spin at
position i is frozen if the spin to its right is in the down
position, ni+1=0, but if this spin is in the up position,ni+1
=1, spin i flips between the up and down position with ki-
netic rates ofk0→1=c and k1→0=s1−cd. The overall rate of
equilibration is unity. The dynamics require spins to move
collectively. Since the typical spacing between up spins is on
the order ofc−1, the system exhibits slow dynamics for small
values ofc.

The equilibrium distribution of the system is trivial, spins
are uncorrelated andni =1 with probabilityPup=c andni =0
with probability Pdown=s1−cd. The lack of correlations im-
plies that there are no interesting features on the potential
energy landscape. The thermodynamics correspond to nonin-
teracting spin1

2 particles in an external field. Forc,
1
2, we

can relate the equilibrium distribution to a temperature,
c/ s1−cd=e−1/T. The model has an ideal glass transition at
T=0 sc=0d and a mode-coupling transition temperature at
Tc=` sc= 1

2
d. Temperatures for 0,c,

1
2 correspond to the

energy landscape influenced regime discussed extensively in
the literature[13]. Although the thermodynamic landscape is
trivial, at any instant in time, the kinetic constraints create an
effective landscape by restricting the phase space that is
available for the system to explore in a finite observation
time. The constraints create valleys of accessible states. Al-
though the states that are not in the valleys are isolated by
kinetics, the behavior of the system will be similar to a sys-
tem with states that are not energetically accessible, i.e., iso-
lated by the potential energy surface. As a result, the effec-
tive landscape can resemble a potential energy landscape for
short times. From this effective landscape, we define the IS
as the lowest energy configuration that is accessible without
any activated up spin flipping processes. This configuration
corresponds to flipping down all up spins,ni =1, with the i
+1 neighbor in the up position,ni+1=1. The IS energy is the
sum of the remaining unflippable spins. This definition of IS
ensures uniqueness and avoids effects from the stochastic
processes of a zero temperature Monte Carlo simulation.

Figure 1 shows a portion of a time trace of a typical IS
trajectory for the East kinetic Ising spin chain withL=100
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spins andc=0.10 with periodic boundary conditions. For the
lengths chosen in this paper(similar to 5–10c−1), the simu-
lations show similar behavior for periodic and free boundary
conditions. The results for simulations for periodic and free
boundary conditions are also similar to monitoring only a
fraction of a longer chain, as long as the section of monitored
chain is of a comparable length. Monitoring a fraction of a
longer spin chain corresponds to having a bath, but since the
bath coupling is through a single spin, bath effects are weak.
Unfortunately, one cannot couple more realistic IS simula-
tions to a bath as easily. The simulation is performed with
kinetic Monte Carlo, where we calculate the rate for all pos-
sible flipping processes,kttl, determine the time of the next
transition,Pstd=kttle

−kttlt, and then choose a spin to flip. We
do not consider chains with all down states, so that we can
always definekttl. The omission of the all down state is im-
portant since the dynamics of this state is trivial and the state
is disconnected from the other states. This simulation method
scales with the number of flippable spins, instead of the size
of the lattice or time and avoids the effects of discretizing
time. These attributes are desirable for simulations with
small values ofc.

Figure 1 also shows the IS energy determined by using
the filtering algorithm designed by Heuer and coworkers
[13,14]. Following Heuer’s notation, the filtering algorithm
labels each distinct IS spin configuration(not energy) visited
by the simulation asji. By comparing configurations, the
times of the first occurrence of each IS structure,ti

* , and the
last occurrence of each IS structure,ti

†, are determined. Any
two configurationsji and j j with sti

* , tj
* , ti

†, tj
†d and sti

†

− tj
*d /maxsti

†− ti
* ,tj

†− tj
*d,

1
2 are cut by either settingti

†

=max(t ,jstd=ji) with t, tj
* or tj

* =min(t ,jstd=j j) with t. ti
†

(with equal probability). In this expressionjstd corresponds
to the IS configuration at timet. If the overlap is greater than
50%, fsti

†− tj
*d /maxsti

†− ti
* ,tj

†− tj
*d.

1
2
g the intervals are com-

bined into one IS structure. Ifti
* , tj

* , tj
†, ti

†, j j is deleted.
The remainingji do not overlap in time and define the IS

metabasins. The timeti
†− ti

† is the lifetime of the metabasin
and the lowest IS energy encountered during this time inter-
val is the IS energy.

The IS calculation in Fig. 1 resembles the metabasin pic-
ture that is seen in many IS calculations on realistic models.
The simulation shows fluctuations on many time scales. The
short time behavior shows the IS energy fluctuating ±1
around a fairly constant energy before jumping to some other
set of values. On the time scale shown in Fig. 1, the system
starts with nine up spins and undergoes fluctuations that re-
sult in many more up spins(up to 12). Due to the conforma-
tional fluctuation, the system is able to enter a different con-
figuration with nine up spins. The energy is the same, but the
filtering algorithm ensures that the configuration is different.

A standard interpretation of the time trace is that the fast-
est fluctuations come primarily from intrabasin motion,
while the longer lived fluctuations come from movement be-
tween metabasins, but the distinctions between intrabasin
and interbasin motion are not well defined for this model
since the energy landscape is relatively flat on long length
scales(i.e., no metabasins in the potential energy surface).
The only features on the landscape are short ranged one and
two spin flip barriers. Due to the constrained dynamics, the
system cannot explore large regions of the configurational
space in a finite time, and a finite simulation of the system
appears to have metabasins. As discussed in other references,
often Stillinger’s notion of a metabasin is replaced by the
notion of strongly correlated IS structures, which removes
the potential energy from the definition of a metabasin
[12,13]. Without large length and energy scale barriers sepa-
rating metabasins, the distinction of metabasins must be de-
fined relative to time instead of barrier energy. Generally, the
simulation time is used to determine the metabasins with the
implicit assumption that the time spent in the basins corre-
sponds to the free energy barriers between basins[13,14].

In the following sections we examine different statistics
of the East model’s IS trajectories, like those in Fig. 1. First
we examine the fast processes of the unfiltered data in Sec.
III. We find that the fast processes dominate the IS trajecto-
ries and most of the contributing processes can be explained
in terms of exponential components with possible stretching
of some processes attributed to distributions of rate constants
and extreme value arguments. It is apparent that the unfil-
tered data are strongly influenced by the simulation size,
which is in some respect arbitrary for this model since the
length scales are widely distributed for small values ofc. We
also show that the stretched exponential fitting of this model
in other references does not explain the fundamental physics
[20]. In Sec. IV, we explore the filtered data and the appear-
ance of asymptotic agreement with trapping models that
have been explored for other systems[14]. The agreement
with a model that may have no correspondence with a trap-
ping model may imply that the agreement of simulations
with the model may be the result of the filtering algorithm.
Section IV also discusses the stretched exponential and its
relation to both the filtered and unfiltered IS data. Finally,
Sec. V discusses domain dynamics and its ability to capture
the long-time dynamics of the East Ising model’s single spin
correlation function, which occurs on a completely different
time scale than the IS dynamics.

FIG. 1. Typical IS energy simulation forc=0.10 andL=100.
The solid line denotes all observed transitions and the dotted line
denotes the IS determined from the energy by filtering the transi-
tions according to the method described in Ref.[13].
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III. IS AND FAST PROCESSES

In this section, we examine the IS transition waiting time
distribution for the East model, which has also been exam-
ined elsewhere[20]. By examining the complete trajectory,
we can show that the dominant spin flip processes that
change the IS energy for small values ofc and L are (i)
flipping a down spin between two up spins to the up position,
↑↓ ↑ → ↑ ↑↑, with a corresponding IS trajectory of↑↓ ↑
→ ↓ ↓↑, and energy sequence ofeIS→eIS−1; (ii ) reversing
this flip ↑↑ ↑ → ↑ ↓↑, with IS trajectory↓↓ ↑ → ↑ ↓↑ and en-
ergy sequenceeIS→eIS+1; and(iii ) flipping the two spins to
the left of an up spin to the up position and then flipping the
middle spin down↓↓ ↑ ↔ ↓ ↑ ↑ ↔ ↑ ↑ ↑ → ↑ ↓↑ with IS tra-
jectory of↓↓ ↑ ↔ ↓ ↓ ↑ ↔ ↓ ↓ ↑ → ↑ ↓↑ and energy sequence
eIS↔eIS↔eIS→eIS+1. A two spin flip process where two up
spins separated by two down spins makes a transition to a
cluster of four up spins decreasing the inherent structures
energy is also observed,↑↓ ↓ ↑ → ↑ ↑ ↑↑ with corresponding
IS configurations of↑↓ ↓ ↑ → ↓ ↓ ↓↑ and energy sequence of
eIS→eIS−1, but it is still a process involving the flipping of
two spins. These one and two spin processes account for
.99% of all IS transitions. Processes that involve more spin
flips are rare for small values ofc since the fast one and two
spin flip processes interrupt these slower processes so that
only the final stage of the multiple spin process is recognized
as an IS transition. The last stage will be recorded as a
simple one or two spin flip process.

For low temperatures and small windows,c=0.05 andL
=100, the IS energy probes the three distinct processes.
These are the fastest time processes observed and will not be
a good indicator of properties influenced by the global fea-
tures of the system, e.g. the single spin autocorrelation func-
tions. Forc=0.05 andL=100, we expect to have five fairly
isolated spins in the up position and most of the dynamics in
the IS energy will come from the spins just to the left of
these spins as the system jumps between three typical con-
figurations, an isolated spin(or two neighboring up spins), a
cluster of three up spins, and two up spins separated by a
down spin,↓↓ ↑ ↔ ↓ ↑ ↑ ↔ ↑ ↑ ↑ ↔ ↑ ↓↑. As a result, the five
spins whose flipping changes the IS energy the most often
account for 73% of the IS transitions, 22%, 19%, 15%, 11%,
and 7%, respectively, for simulations with 50 000 flipping
events,c=0.05 andL=100. It is important to note that ex-
tremely short simulations will be completely dominated by
these five spins and infinitely long simulations result in
equilibration with all spins contributing equally, but these
five spins dominate the IS energy for fairly long simulations.
The spins to the right of these hot spins rarely flip since they
correspond to the superspins discussed in other references
[29].

From Fig. 3, the two single spin processes,↑↑ ↑ ↔ ↑ ↓↑,
are easily fit with an exponential waiting time distribution.
The exponential form results from the exponential form for
the kinetics, the rarity of the starting configurations, and the
large time separation of the processes so that these processes
do not compete with each other, which would cause mixing
of these processes with each other or other slower processes.
For small values ofc andL the system rarely has more than
one single spin up-to-down flipping process available,↑↑ ↑

→ ↑ ↓↑. Specifically, the number of possible processes is ap-
proximately Poisson with parameterl=OsLc3d. Although
there is only a 50% chance that the IS transition will take
place since there are two possible spin flips(↑↑ ↑ → ↑ ↓↑
and↑↑ ↑ → ↓ ↑↑), the rate of this process is 2s1−cd, which is
much faster than the other spin processes. As a result the
single exponential waiting time dominates the waiting time
distribution for this process. As shown in Fig. 2, the kinetic
rate of this process is fairly independent of spin chain size
for fairly large spin chains,L!c−3.

Similar considerations apply for the single spin down-
to-up process,↑↓ ↑ → ↑ ↑↑. For small values ofc and L,
there are rarely more than one of these single spin configu-
rations, a Poisson withl=OsLc2d, and the distribution ap-
pears to be an exponential. The single spin down-to-up flip-
ping process,↑↓ ↑ → ↑ ↑↑, is more common than the single
spin up-to-down flipping process,↑↑ ↑ → ↑ ↓↑, and the time-
scale separation between the down-to-up process and the
fastest two spin processes is not large. As a result, the single
spin down-to-up flipping process is much more sensitive to
the chain lengthL. In fact, as shown in Fig. 3 even forc
=0.05 andL=100 there is a small shift in the peak maximum
from the expected 1.3 to approximately 1.1 and a slight de-
viation from an exponential waiting time distribution in the
long-time tail. Since the chain lengthL=100 is comparable
to c−2, the distortion is not surprising. As shown in Fig. 2,
increasing the chain length causes a significant shift in the
position of the single spin down-to-up flipping processes and
slightly increases deviations from the expected exponential
form. Of course in the long chain limit the distribution nar-
rows to a monoexponential again.

The multiple spin processes are multiexponential since
they correspond to multiple spin flips and multiple pathways.
The most common multiple spin flip transitions are↓↓ ↑
→ ↑ ↓↑, ↓↑ ↑ → ↑ ↓↑, and ↑↓ ↓ ↑ → ↑ ↑ ↑↑. The first two
processes have triexponential kinetics and the latter process
has biexponential kinetics. The processes generally require
two slow Osc−1d flips resulting in the multiexponential dis-
tribution for two spin processes that appear at long times in
Fig. 2. The processes are made even slower by the multiple
attempts to flip the second spin up before the first spin flips
down, forc=0.05 the expected time for this process is<800,
which gives a peak at log10t<2.9. The actual peak occurs at
a slightly faster time, log10t<2.2 because at any time the
fastest process(the extreme value) results in the IS transition.
Since we expect approximately five isolated up spins that can
contribute to this process, the kinetic rate should be five
times faster which gives a peak at log10t<2.2.

The distribution for the multiple spin processes deviates
from a sum of a triexponential and biexponential process
because of fluctuations in the number of possible two spin
processes. Since the number of possible two spin processes
will vary more widely than the number of single spin pro-
cesses, Poisson withl=OsLcd, the distribution will be made
wider than the expected multiexponential form. The wider
distribution of kinetic rates has been interpreted as stretching
[20]. As shown in Fig. 3 the two spin distribution does quali-
tatively resemble a stretched exponential with log10t<1.2
andbuwt<0.44[20]. The stretching of the entire distribution

J. B. WITKOSKIE AND J. CAO PHYSICAL REVIEW E69, 061108(2004)

061108-4



is shown in Fig. 4(d) for c=0.10 andL=100. The original
distribution can be fit with a stretched exponential with
stretching exponentbuwt<0.36. Depending on the criterion
of the fit, the uncertainty in the exponent can be large. The
superexponential falloff makes determination of the actual
asymptotics difficult so a more global fit was utilized. The fit
is never exceptional with systematic deviations on all inter-
vals, but the short time has the most obvious deviations from
the stretched exponential fit.

Extreme value arguments suggest that the stretching will
initially increase withL or c since the variation in the num-
ber of competing processes increases, but eventually the dis-
tribution narrows towards an exponential extreme value dis-
tribution as the mean kinetic rate becomes much larger than
the width of its distribution. This narrowing results in an
approximately exponential distribution of the two spin pro-
cess for larger lattices as shown in the comparison of Figs.
2(a1) and 2(a2). Increasingc mixes processes and causes
deviations from an exponential for the single spin processes
as seen in the comparison of Figs. 2(b1) and 2(b2), but the
overall distribution narrows towards an exponential since all
processes are comparable and extreme value arguments can
be applied to the whole distribution. It is important to note
that the size of the CRR for the kinetic Ising model is
strongly temperature dependent, which is why we must

change the lattice sizes for simulations at different tempera-
tures. We have chosen our lattices to have 5 CRRs which is
similar to the number seen by Keyes in his simulations, 4.6
CRRs[3]. For the Ising model, the temperature dependence
of the size of CRRs is obvious, but the strength of the tem-
perature dependence of the size of CRRs is not clear for
more complicated simulations[3,12–14,19]. The narrowing
of the waiting time distribution is discussed by Stillinger
[1,27]. He argues that the average transition time is inversely
proportional to the number of CRRs, and one needs to
choose a simulation size that can solvate the IS but only have
one CRR. At sufficiently high temperatures, the CRRs may
be divorced from the IS so that one may observe an approach
to an extreme value or other distribution even though the
simulation appears to have a single IS[3].

Extreme value statistics does not completely determine
the distribution because of detailed balance. Although the
single up-to-down flip process is the fastest process,↑↑ ↑
→ ↑ ↓↑, the system cannot always choose this process be-
cause the number of flippable spins will be depleted. Even if
the process were available, there is only a 50% chance the
system flips this spin before it flips the other spin,↑↑ ↑
→ ↓ ↑↑. As a result the system must perform the single
down-to-up spin flips and two spin processes. The need to
perform these other processes to maintain detailed balance

FIG. 2. Log waiting time distribution with time bin size of 0.05 for(a1) c=0.05 andL=100,(a2) c=0.05 andL=2000,(b1) c=0.10 and
L=50, and(b2) c=0.30 andL=14. Solid curves are the total transition probability. The total transition probability can be broken up into three
different contributions, as shown by the dashed lines in the figures. The fastest contribution corresponds to a single spin flipping down,
↑↑ ↑ → ↑ ↓↑. The slowest contribution corresponds to processes where two spins flip,↓↓ ↑ ↔ ↓ ↑ ↑ ↔ ↑ ↑ ↑ → ↑ ↓↑ or ↑↓ ↓ ↑ → ↑ ↑ ↑↑. The
intermediate time contribution corresponds to a single spin flipping up,↑↓ ↑ → ↑ ↑↑. For c=0.05 andL=100, the two fastest contributions
can be fit with an exponential, and detailed analysis shows that the slowest contribution is close to multiexponential(see text).
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results in the additional peaks and the nonuniversal behavior
of this system.

The detailed balance is not rigorous since more complex
processes have a finite chance of occurring, but the predic-
tions are nearly correct for small spin chains. This can be

seen by examining the various contributions in Fig. 2. A spin
chain withc=0.05 andL=100 shows 48% of the IS transi-
tions corresponding to the single spin down-to-up flips re-
sulting in a cluster of three up spins,↑↓ ↑ → ↑ ↑↑, 27% of
the IS transitions corresponding to the reverse process↑↑ ↑
→ ↑ ↓↑, and 25% of the IS transitions correspond to two spin
processes. Most of the disparity for small values ofc can be
attributed to an isolated spin transforming to a three up spin
cluster just before a different cluster causes an IS transition,
↓↓ ↑ → ↑ ↑↑. If the middle spin of this configuration flips to
the down position,↑↑ ↑ → ↑ ↓↑, this process will be re-
corded as a fast single spin process. More complex spin pro-
cesses also make a small contribution to detailed balance
violations. As the length of the spin chain increases all of
these detailed balance violations from rare events become
more probable, which changes these percentages, but even
for theL=2000 spin chain the percentages changed by 5% as
seen by comparing areas in Fig. 2(a1) versus Fig. 2(a2).

The above analysis shows that IS calculations applied to
the East facilitated kinetic Ising model only probe the fastest
processes of the system. Many of the features of the IS wait-
ing time distribution can be rationalized by labeling different
processes. These processes are generally multiexponential.
Previous attempts to fit the unfiltered waiting time distribu-
tion to stretched exponentials are not very good and come
from the distribution of kinetic rates[20]. The size of the
simulation is somewhat subjective since the size of CRRs is
widely distributed. Choosing a large simulation sizeL@c−1

or large value ofc results in extreme value arguments deter-
mining most of the features of the IS waiting time distribu-
tion so that there is a universality caused by a large number
of arguments, which may not be important for the physics of

FIG. 3. Individual components of Fig. 2(a1) (solid curves) along
with fits to exponentials for the single spin contributions with
log10t<−0.3<f2s1−cdg−1 for the fastest peak, and log10t<1.1 for
the slower single spin process(intermediate peak). Both fits are
within expected binning errors, except for a small long-time tail in
the intermediate peak. The two component spin is qualitatively fit
with a stretched exponential withb<0.44 and log10t<1.2. The
multiple spin processes appear to be a sum of many exponentials
and the stretching is the result of declaring that the fit requires too
many exponentials.

FIG. 4. Contour plot of the
waiting time distribution for c
=0.10 andL=100. eIS is an inte-
ger and the time bin is 0.05.(a)
Shows the unfiltered result.(b)
Shows the result with the filtering
procedure suggested by Heuer
[13]. (c) Shows the resulting prob-
ability distribution for the energies
at any instant in time along with a
Gaussian fit(solid line) and the
exact equilibrium IS distribution
(dashed line) (h unfiltered,s fil-
tered). The filtering shifted the
distribution but did not change the
shape significantly.(d) Shows the
significant changes in the waiting
time distribution caused by the fil-
tering. The upper curves(which
were shifted for clarity) corre-
spond to the filtered data(solid
line) and the asymptotic Gaussian
trapping model fit(dashed line).
The lower curves correspond to
the unfiltered data(solid line) and
a stretched exponential fit(dashed
line).
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the system. In the following section, we discuss two other
apparent universalities that have implication for long-time
dynamics, the Gaussian distribution of energies and its rela-
tion to the trapping model and the stretched exponential that
is fit to many experiments.

IV. TRAPPING MODELS AND IS FILTERING
AND SLOW PROCESSES

Previous analysis addresses the role of extreme value ar-
guments on the dynamics of IS trajectories. We now focus on
the Gaussian statistics. Using similar arguments about having
cL approximately independent regions for short times, the
distribution of the IS energies of the system becomes very
close to Gaussian as shown in Fig. 4(c) even for fairly short
chain lengths,c=0.10 andL=100. This size avoids finite size
effects for the domain dynamics discussed in the following
section. Figure 4(a) shows a contour plot of the IS waiting
time distribution as a function of IS energy and Fig. 4(b)
shows the same information with filtering defined in Ref.
[13]. The plot in Fig. 4(a) clearly shows features such as a
double peak that would not be consistent with the predictions
of a Gaussian trapping model or exponential extreme value
statistics[14,31]. Reducing the information by calculating
the time independent IS energy probability results in a dis-
tribution that can be easily fit with a Gaussian as shown in
Fig. 4(c). The figure also shows that filtering changes the
peak position, but it does not significantly alter the width of
the distribution. Since the equilibrium IS energy results from
Bernoulli random variables, the Gaussian form is not entirely
surprising as shown by the exact unfiltered equilibrium IS
energy calculation also presented in Fig. 4(c).

Unlike the equilibrium properties, the dynamics of the
system are affected significantly by the filtering, as shown in
Fig. 4(d). The unfiltered IS waiting time distribution is mul-
tipeaked, but applying the filtering algorithm proposed by
Heuer and coworkers results in a distribution with a single
peak. As discussed earlier and demonstrated in Fig. 1, Heu-
er’s algorithm selects both long lived structures and quasi-
transition states that are stable against one or two spin flips.
If two structures differ by only a single spin flip and the
simulation spends a long time in either structure, the simu-
lation is likely to flip flop between them and the filtering
algorithm will consider them to be in the same metabasin.
Achieving a transition to another metabasin generally re-
quires the system to make several flips so that it is entropi-
cally difficult to return to the same basin, and the intermedi-
ate configurations will be recorded at short lived metabasins.

As shown in Fig. 4(d), the log waiting time distribution of
the longer lived structures asymptotically resembles the
Gaussian trapping model prediction in the long-time limit,
P(logstd),e−lnst / t0d2/D2

, whereD2=sbE0d2 whereE0 is sup-
posed to correspond to the width of the equilibrium distribu-

tion, PseISd~e−seIS−eIS
0 d2/E0

2
. Unfortunately, theD2 values from

P(logstd) is four times smaller than the prediction from the
measured equilibrium distribution. Similar disparities are re-
ported for simulations on Lennard-Jones systems[14]. The
Gaussian trapping model’s waiting time distribution can also

be approximated by a stretched exponential[31].
Generally, a stretched exponential that fits the data goes to

zero much faster than either the simulation data or the trap-
ping model. The deviation occurs asymptotically and the
function would be near zero at the point of deviation, so any
noise will hide the effect. The accuracy of the fit with the
trapping model to the asymptotics(long time) is high over
many orders of magnitude, but it is not clear why this system
should follow the Gaussian trapping model. It is important to
note that the asymptotics are independent of simulation
length for long simulations, but obviously not infinite simu-
lations since the system is ergodic and the space is finite
dimensional(one metabasin). Shorter simulations result in a
sharper cutoff. Possibly the filtering algorithm, which uses
coin flipping statistics to separate basins and combines ba-
sins based on an arbitrary 50% overlap criterion sufficiently
erases details to achieve this scaling law.

For c=0.10 andL=100 in Fig. 4, the unfiltered data can
also be fit with a stretched exponential as discussed above,
but the fit is not asymptotically as accurate as the Gaussian
trapping model fit to filtered data[20]. The best fit to the
asymptotics of the unfiltered waiting time distribution is with
stretched exponentbuwt<0.36, but there is a large uncer-
tainty caused by the definition of the asymptotic regime since
this function goes to zero quickly on a logarithmic scale.
This unfiltered waiting time exponentbuwt is close to the
stretching exponent determined by fitting the unfiltered IS
correlation function, fkeISstdeISs0dl−keISs0dl2g / fkeIS

2 s0dl
−keISs0dl2g. The fit to the correlation function with exponent
bucf=0.39 is good as long as one ignores systematic devia-
tion in the residuals[20]. Other simulations on realistic
simulations have reported fits with no systematic deviations
in the residuals so the stretched exponential may still be
valid for other systems but not the East model[3]. The IS
correlation function and fit are shown in Fig. 5. In fact, the fit
to the waiting time distribution withbucf=0.39 is compa-
rable to the fit withbuwt=0.36. Similarly, the Gaussian trap-
ping model’s prediction for approximate stretching with ex-
ponent bgwt=f1+ 1

2D2g1/2=0.43 is close to the asymptotic
stretching of the filtered correlation functionb fcf=0.47. The
D value is determined from the asymptotics of the waiting
time distribution instead of the energy distribution,
P(logstd),e−lnst / td2/D2

[14,31]. Once again there is a dispar-
ity between the prediction withD=bE0 and the IS energy
correlation function. The filtered IS correlation function ex-
ponentb fcf is measured from the dashed line in Fig. 5. The
fit is only in the last two decades that can be calculated
accurately, because a small correlation function will make
the lnf−ln(Cstd)g sensitive to fluctuations inCstd. In this re-
gime, there are no systematic deviations in the residuals of
the fit. As always, fits on lnf−ln(Cstd)g versus lnstd plots
should be suspect since many variations will be washed out.

The agreement between the exponents for the waiting
time distribution and the correlation function is possible
since the long-time relaxation in the correlation function
should be dominated by the slowest IS jumps, which are
determined by the tail of the waiting time distribution. Since
there is no reason for the trapping model to be valid for the
East model, the resulting disparity between the static IS en-
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ergy distribution and both the IS energy correlation function
and the IS waiting time distribution is not surprising. The
fact that the trapping model can be used at all is much more
surprising, and shows that the result may come from the
filtering algorithm and not the physics of the system[14].

Figure 5 shows that both the unfiltered and filtered corre-
lation functions asymptotically approach the stretched expo-
nential with bucf=0.47. This asymptotic approach results in
the systematic deviations in the fit of the unfiltered data to
the stretched exponential with exponentbucf=0.39. As men-
tioned above, the escape from apparent metabasins should
dominate long-time relaxation of both filtered and unfiltered
simulations so the long-time agreement is expected. At short
times, the unfiltered data decay more quickly since fast fluc-
tuations are not removed. The IS energy correlation function
has a small tail at times that are much longer than the filtered
IS waiting time distribution. This tail would not be present in
the trapping model since all correlations are lost once an IS
transition occurs.

The Gaussian trapping model’s log waiting time distribu-
tion only resembles a Gaussian asymptotically,
lnfPslog10tdg~ log10t

2, as shown by the Gaussian trapping
model fit in Fig. 4(d). The fit performed in this figure is an
exact numerical calculation, but the asymptotics are consis-
tent with the Gaussian form reported in several references
[14,31]. The distribution of traps must asymptotically behave
as a Gaussian to get the asymptotic behavior in the waiting
time. In fact, the central region of the waiting time distribu-
tion of this model does not resemble a Gaussian. Most sums
of random variables deviate from a Gaussian in the tails of
the distribution not the center. This phenomenon has been
observed in the experiments of Sakurai and coworkers,

where an exponential tail in the distribution of trapped elec-
trons in thermoluminescence studies was hidden by a
broader Gaussian distribution before cleaning the surface
[32,33].

V. DOMAINS AND DYNAMICS

Since the IS picture of East model is very sensitive to
temperature and size effects and the apparent fits to various
functional forms are questionable in some respects, a more
complete picture is necessary. As has been suggested, but not
fully explored in some of the references, a possible strong
measure of the dynamics of this system, or dynamical het-
erogeneity, is the lifetimes of clusters of down spins
[23,24,29]. Below we will show that the dynamics of the
single spin correlation function is very well approximated by
domain dynamics.

Domains have been defined as the size of a cluster of
adjacent down spins, or the distance between the nearest two
up spins. For small values ofc, the domains can be quite
large. Since eliminating a domain requires a process that
must flip each down spin to the up position for a short period
of time, larger domains are generally much longer lived than
smaller domains. The domain picture is also supported by the
superspins discussed above[29]. We define the lifetime of a
domain as the time when the spin on the left side of the
domain flips to the down position. This spin can only flip
when the domain to its right has vanished. Figure 6 shows
two-dimensional plots of the lifetimes of domains. The ver-
tical axis corresponds to the size of the domain att=0. This
initial probability follows the trivial equilibrium initial con-
ditions, Psnd=cs1−cdn. The horizontal axis refers to log10t.
The high peaks at short times correspond to disappearance of
small domains. These peaks are sharp because there is a
dominant sequence of spin flips to remove these spins. Asn
increases, more paths become available resulting in a broader
and more smeared distribution of lifetimes. Asc decreases,
the number of domains that have a dominant path determin-
ing their lifetime increases, resulting in more peaks. The
small c picture is consistent with the analysis of Sollich and
Evans, who assume a time-scale separation in domain life-
times [29]. The fluctuations in the smallest domains were
sampled by the IS calculations presented above. As shown in
Fig. 6, increasingc significantly shortens the lifetimes of
domains. For domains of sizen!c−1, the average domain
lifetimes follow the predictions of Sollich and Evans,tn
,n1/T ln 2, but the lifetimes are much faster forn<c−1. This
result has been discussed by Sollich and Evans. For suffi-
ciently long domains, an entropic consideration does not re-
quire the use of the lowest path, which was originally as-
sumed in their derivation[29].

The time scales of the lifetimes of the domains are sig-
nificantly longer than the time scales for the inherent struc-
ture calculations. The differences in the time scales are dem-
onstrated in Figs. 6(a2) and 6(b2), which compares the
lifetime of a single domain with the unfiltered IS waiting
time distribution. The filtering algorithm does not increase
the waiting time distribution enough to become comparable
to the domain lifetime[see Fig. 4(d)], but the IS correlation

FIG. 5. The IS correlation function,keISstdeISs0dl−keISs0dl2/
keISs0d2l−keISs0dl2, for both the filtered data(lower solid curve) and
the unfiltered data(upper solid curve). The two distributions ap-
proach each other at long times. The lower dashed curve shows the
long-time stretched exponential fit to the filtered data withb fcf

=0.47, which is close to the prediction based on the waiting time
distribution in Fig. 4,bgwt=0.43. The upper dashed curve shows a
short time fit to the unfiltered data withbucf=0.39, which is in close
agreement to the fit in Fig. 4,buwt=0.36. As always, one must view
double log vs log plotted data with incredulity.
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function has a small tail that has a time scale that is similar to
the domain dynamics time scale(see Fig. 5). No functional
relationship between domain dynamics and this small tail in
the IS energy correlation function is apparent, but the similar
time scales are not surprising since the relaxation of super-
spins will play a role in the relaxation of IS energy.

For small values ofc, one expects the single spin corre-
lation function to be primarily determined by the lifetime of
the domain to the right of that spin. This result can be un-
derstood because once a spin’s right neighbor is in the up
position, it will equilibrate with a unit rate. For small values
of c, the equilibration with unit rate is a much faster process
than the time of the domain dynamics so domain dynamics
are the rate limiting steps. Figure 7 shows the single spin
correlation function,Cstd=fknistdnis0dl−c2g / sc−c2d, versus
the integrated domain lifetime probability function, 1
−ol edtPst u ldPsld. The single spin correlation function has
recently been calculated by combining mode-coupling and
asymptotic analysis[28]. Forc.0.20, the domain lifetime is
sufficiently short that the time scales for equilibration and the
domain lifetime are of the same order so that the comparison
is not satisfactory for short times although the two quantities
agree asymptotically since there is always a small contribu-
tion from larger domains. For smaller values ofc=0.10 and
0.05, the required time separation between the disappearance
of the domain and the equilibration of a spin with a neighbor
are sufficiently large so that the approximation is very accu-
rate, even for small values of time. Cicerone and Ediger ex-
perimentally studied similar time separation of global and
local relaxation[34]. The agreement between these predic-
tions for the spin relaxation shows that spatial considerations
are necessary in the analysis of this model. These spatial

considerations are not well captured by the inherent structure
energy calculations.

VI. CONCLUSION

The East model and other related kinetically constrained
models have stimulated interest in the theoretical community
because of the simple construction and rich dynamics. These

FIG. 6. The domain lifetimes
as a function of size for(a1) c
=0.10 and(b1) c=0.40. The time
bin size is 0.05.(a2) and (b2)
compare the waiting time distribu-
tion determined from the domain
lifetimes (dashed curves) against
IS calculations presented in Fig. 2
(solid curves) with (a2) c=0.10
and L=50 and (b2) c=0.40 and
L=13. These quantities capture
different physics of the system.

FIG. 7. The single spin correlation function,fknistdnis0dl
−c2g / sc−c2d (solid curve), vs the prediction for the domain life-
time, 1−ol edtPst u ldPsld (dashed curve). The corresponding values
of c in order from bottom to top arec=0.40 (bottom curve), c
=0.20,c=0.10, andc=0.05(top curve). Slight discrepancies at long
times are the artifact of the time binning interval 0.05.
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models’ explicit connection to realistic systems and predic-
tive power remain elusive. In this paper we used the East
model as a simple example to calibrate IS dynamics. We also
investigate mode-coupling closures of this model in Ref.
[28]. The insight gained from this research helps us to un-
derstand the tools that are applied to the study of dynamic
slow-down and glass phenomenology. These studies identify
strengths and weaknesses of these methods, which can help
us to improve them, but the specific scaling relations and
mode-coupling closures are not directly transferable to real-
istic systems.

Studies of IS dynamics show that landscapes and possibly
configurational entropy concepts need to be defined with re-
spect to a time scale or characteristic energy or temperature
since an important quantity in defining dynamics is the free
volume in phase space that is currently available to the sys-
tem. Including time allows us to treat kinetic constraints and
energetic considerations on the same footing so that we can
examine the IS dynamics of the East model. Scaling laws or
other standard functional forms can be misleading as shown
by both the apparent stretched exponential and universal
forms displayed by the East model. Although these concepts
are important for systems with universality, the existence of

the universality for the model needs to be more rigorously
established.

Apparent universality may be the result of the examined
quantities failing to be good order parameters because the
description of the system with these order parameters is
overreduced. The universality of a particular parameter may
not reflect a universality in the interesting physics of the
system or can result from simulation details that have no
physical meaning, such as filtering. The filtering causes the
observed transitions to correspond to the sum of many pro-
cesses, which improves the legitimacy of a large number of
arguments, but does not help to reveal the underlying physics
in this model. For the East kinetic Ising model, the IS energy
was too reduced of a description, but including the domain
size and—to a lesser extent–examining IS configurations,
which are geometrical parameters, captures the important
long-time physics. Although the results and methods will be
system specific, rigorous methods and detailed analysis of IS
is necessary to validate any universality conclusions from IS
based dynamic methods.
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