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A semiclassical study of wave packet dynamics in anharmonic potentials
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Classical and semiclassical methods are developed to calculate and invert the wave packet motion
measured in pump-probe experiments. With classical propagation of the Wigner distribution of the
initial wave packet created by the pump pulse, we predict the approximate probe signal with slightly
displaced recurrence peaks, and derive a set of first-order canonical perturbation expressions to
relate the temporal features of the signal to the characteristics of the potential surface. A reduced
dynamics scheme based on the Gaussian assumption leads to the correct center of mass motion but
does not describe the evolution of the shape of the wave packet accurately. To incorporate the
quantum interference into classical trajectories, we propose a final-value representation
semiclassical method, specifically designed for the purpose of computing pump-probe signals, and
demonstrate its efficiency and accuracy with a Morse oscillator and two kinetically coupled Morse
oscillators. For the case of one-color pump probe, a simple phase-space quantization scheme is
devised to reproduce the temporal profile at the left-turning point without actual wave packet
propagation, revealing a quantum mechanical perspective of the nearly classical pump-probe signal.
© 2004 American Institute of Physic§DOI: 10.1063/1.1791131

I. INTRODUCTION ther progress in pulse shaping and coherence control opens a
unigue frontier for manipulating molecules on extremely
Recent advances in ultrafast laser spectroscopy offer ghort time scales, and provides an elegant way to control the
great opportunity to study elementary chemical processes alnamics of the wave packet. Therefore, it is crucial to de-
the molecular level. With femtosecond laser pulses it is nowelop a quantitative understanding of the causal relationship
possible to create a coherent superposition of several vibrdetween specific features of the wave packet dynamics and
tional states. Among many femtochemistry techniques, theéne general features of the excited state potential.
pump-probe method is a key scheme to monitor molecular There have been extensive studies of wave packet dy-
dynamics'~*An ultrashort pump pulse promotes the groundnamics, including Gaussian wave packet dynamics, extended
state wave function onto the excited state ateapriori  Gaussian wave packet dynamics in complex phase space,
known position. Another ultrashort probe pulse at a latersemiclassical coherent state methods, cellular dynamics
time measures the population at the probe posifidn.ideal  methods, et¢>° These studies have greatly enhanced the
cases, the initial wave packet is an exact replica of thefficiency and accuracy of numerical calculations of wave-
ground state wave function, and the width is fully deter-packet dynamics in many different potentials, yet an analyti-
mined by the ground state potential for a short pump pulsecal relationship between the dynamics and the anharmonicity
Similarly, the internuclear distance sampled by the probe iss still not available. In this paper, we will derive analytical
selected by the wavelength of the probe pulse. A typical exexpressions for the general features of the time domain sig-
ample we consider here is a molecule in the vibrationahal, which are quantitatively related to the parameters of the
ground state of its electronic ground state. With an extremelyotential. The motivation of this paper and related studies is
short pulse, the ground state wave function is transferred t@ provide a potential inversion scheme for the excited state
the excited state as a wave packet, which is a superpositigsotential with a simple time domain measurement of wave-
of the vibrational states of the excited electronic state. As th@acket dynamics. Specifically, we study the Morse potential
center of wave packet oscillates between the inner and oute this paper. The recurrences in the time domain dynamics
turning points on the excited state potential, the wave packejre fully analyzed with canonical perturbation analysis, giv-
periodically spreads out and refocuses. However, such refang analytical relations to the Morse parameters: the funda-
cusing is not perfect due to the anharmonicity of the potenmental frequencys,, the anharmonicity3, and the internu-
tial. As a superposition of a discrete set of vibrational stateglear distanceq,. The quantitative expressions from the
with different frequencies, the wave packet experiences paglassical perturbation are employed to numerically invert the
tial revivals as the components of the wave packet dephas@me domain signal, yielding first-order estimates of the
Such dephasing and partial refocusing are vivid manifestamorse parameters.
tions of the anharmonicity and provide extremely useful in-  To simulate the pump-probe signals, a full quantum cal-
formation about the general properties of the potential. Furculation is usually expensive and practically impossible for
large systems. Often, the full quantum calculation is accurate
3Electronic mail: jianshu@mit.edu but gives little information about the underlying physics of
PElectronic mail: rwfield@mit.edu the wave packet dynamics, such as the breakup and the par-
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tial revival of the wave packet. On the other hand, the semiwhereqg is the displacement between the excitation position
classical method starts from the classical paths and their irend minimum of the excited state potential, angl is the
terferences to build up the complex amplitude, yieldingwidth of the wave packet. To proceed, we perform a Wigner
detailed trajectory information about the underlying quantunmtransform and calculate the distribution function in phase
dynamics. In this paper we adopt a revised version of thepace,

semiclassical initial-value representati(jlf'w/R),20 and take

advantage of the fixed probe position in pump-probe experi- .

ments. In our approach, we switch from the initial-value rep- pw(9,p) = 2mth déqw (q+ B3

resentation to the final-value representation, thus reducing

the integration to the final momentum only. This semiclassi- Xex;{l—péq}\lf( q— _)

cal final-value representation is specifically designed to cal- h 2

culate pump-probe signals and has great potential advantages 5 -

in multidimensional systems. When both pump and probe :iex{_ (d—0o)° 2wpp ©
pulses are tuned to the left-turning point, we can further ap- h ng 2|

proximate the semiclassical final-value representation with a

simple phase-space quantization scheme, which yields accighich satisfies the minimum uncertainty condition
rate information exclusively for the recurrences at the left /<§q2><5p2>:ﬁ/2_ The wave packet then evolves on the
turning point. This phase-space quantization scheme is iraxcited state potential energy surface.

spired by discussions of linear and nonlinear response func-  Classically, each particle moves on the potential surface
tions in anharmonic potentials addressed by Wu and Cao ifpliowing Newton’s equations of motion. For a Morse poten-
Ref. 21, where phase-space quantization and averaging {gl, we can take advantage of the well-known action-angle
employed to establish the classical-quantum correspondenggyriables, and express the position and momentum analyti-

of linear and nonlinear response functions. cally as
The paper is organized as follows: In Sec. Il, we discuss
the_classmal wave pack_et dynamics in a Morse potential a_nd 1 1-JI—N2cos "
derive quantitative relations between the wave packet reviv- g= —In—z,
als and the parameters of the potential with canonical pertur- B A
bation analysis. In Sec. I, the semiclassical final-value rep- (©)
resentation is used to calculate the pump-probe signal, and ook J1—A%sing

compared with the exact quantum propagation. In Sec. IV, P~ B 1 Wcosd)’
we propose a simple quantization scheme to evaluate the

pump-probe signal at the left-turning point. As an example o(Nhere)\ is related to the action variableasA=1—1/1.
a multidimensional case, we apply the semiclassical methodfhe fundamental frequenay, and the maximum actioh,
to two kinetically coupled Morse oscillators in Sec. V. for the Morse potential Oarewo= 2D08% . and I,

Il CLASSICAL WAVE-PACKET DYNAMICS =\/2D u/ B2, respectively. The Hamiltonian is given by

— - 2_
the excited electronic state potential. The initial wave func- H= 2u +D(1-e M) T2 2l - 1y
tion is a perfect replica of the ground state wave function and

is assumed to be in Gaussian form, and the time evolution of the angle variable is determined by

: 4

For simplicity, we consider a wave packet residing on p? w0< 12

(q— Q)2 ¢=0dH/Jl=woh. Through the action-angle variables, we
\P(q):(zwwg)‘lf“ex;{——; , (1)  define the transformation between the initial coordinates
4wy (g; ,p;) and the final coordinategy(,p;) at timet.

1 | 1—(1—N%ePl)coswoht+ (nwg) 1 BpiNePdi sinwoht
—In
B A2 ’

gi(di ,pi)=
(5)

pwooh  (nwg) " 1BpiNePdi coswoht+ (1—N2efd)sinwoht
B 1—(1—N\2eP%)coswoht+ (mwg) ~LBpinePd sinwoht

p(di,pi)=

where\ is an implicit function ofg; and p; through the Hamiltonian in Eq4). The Jacobian of the transformation is proved

to have a value of 1, which reflects conservation of phase-space volume. We can easily obtain the inverse trdasfprn
andp;(q;,p;) by reversing the roles ofg(,p;) and @;,p:) in Eqg. (5) and replacing by —t. The classical orbits are sharp
around the inner turning point where the repulsive potential is steep, and are flat around the outer turning point where the
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attractive potential is shallow. The frequency of the orbit
depends on the initial position due to anharmonicity; specifi-
cally, the orbits with higher energy have smaller frequency.
As a result, the wave packet generally becomes spread out
and twisted as it evolves.

To better illustrate the dephasing while the wave packet
refocuses, we look into the probability distribution in phase
space. Generally, the distribution at any titrean be written
formally as

pW(qvp!t)zf f Pw(qi !pi)ﬁ(qt(qi !pi)_q)

X o(p(di,pi)) —p)dgdp;, (6)

where the twas functions in the integration basically impose
the dynamic constraint on the final coordinate in phase
space. Applying the inverse transformation of E§), the
phase-space distribution is given analytically as

Pw(i, P, 1) =pulQi(de,Pr), Pi (At , P ], (7)

where the unity Jacobian is implicit. Initially the wave
packet resides neang,0) in phase space. Hence the center
of wave packet oscillates in the Morse potential with fre-
quency woh., Where \.=+2e Pdo—e~2P% characterizes
the center energy of the wave packet. However, other regions
of the wave packet travel with different frequencies. Conse-
guently, the wave packet cannot completely refocus; instead,
it disperses in phase space. In Fig. 1, we show contour plots
of the distributionp,,(q;,p;) at the initial moment after ex-
citation and at the center-of-packet pertee2 7w/ wg\ .. The
contours are obviously stretched and twisted due to the fre-
quency mismatch, displaying rich phenomena in wave- -1.5 -1 -0.5 0 0.5
packet dynamics.

Experimentally, the population monitored at the Franck-FIG. 1. The contour pl_o_ts of the phase-space distripution_at differer_lt times.
Condon excitation window is actually a specific integral The wave packet is initially created at the left-turning pajgt —1 with

L . L. width WO=1/\/1—2 and is propagated classically in the one-dimensional
form of the phase-space dlsmbu“@m'(% P 't)' giving Morse potential wittD =30 andB=0.08. The upper plot is the initial phase-

space distribution, and the lower plot is the phase-space distributibn at

N(qo 1= f f PW(Qt Pt 1) 5(Qt_ QO)thd o =2mlwoh:, Wherewgh; is the recurrence frequency for the center of the
packet.
= L lt d " 8 . . . . . . -
f Pu(Go.Pr.t)dpy ® explicit indication of the anharmonicity. To measure the an-

harmonicity, we examine the population signal in detail and
obtain analytical expressions for the width of the initial de-
cay, the recurrence time, and the recurrence amplitudes.

For example, in the limit that the anharmonicity paramgter
approaches zero while keeping, constant, the Morse po-
tential in Eq.(4) reduces to the harmonic potential. Then,

N(gg,t) reduces to
A. Dynamic features of the pump-probe signal
[do— qc(t)]zl and inversion

1
N(Go.t)= V27w(t) exr{ 2wA(1) ©

where the center-of-packet motigg(t) and the time depen-
dent widthw(t) are given, respectively, by

To calibrate the pump-probe signal, we calculate the
width of the initial decay a§=—MO/M2 with M,
=d7li=oN(do,t). From the definition, we obtain the mo-
mentsM o= (27w3) "2, M;=0, and
gc(t) =0 Coswot, _

ST 10 Me=(@mwg) M- V(ag) A% (4p*w)]

sin? wot. = (27wd) "V wi(2e~ %P9 — e Al) — 2/ (AuPwl)],

where the first term is- ﬁéV(qo), corresponding to the local
Hence the width of the wave packet oscillates at twice thecurvature of the excited state potential at the center of wave
harmonic frequency,, giving complete refocusing at both packet. Here we consider the scenario that the initial excita-
turning points. The deviation from complete refocusing is artion is a narrow wave packet so that the second termal jn

2

2 2
w2(t)=w§ cog wot+ ————
0 4,u2wgwg
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always dominates, resulting i ,<0. Thus the population In Eq. (15), we approximated cas’'T as 1 and sim'T as
decreases at early times, giving the width of the initial decaydw’T, respectively. The inverse transform of Ef) is esti-
mated to second order i as g;~qo— pPy(nwe) 1éw'T,

2 -1 . . . .
=Sl —+ 4 = = -
Ug: wﬁ(e‘BQO—Ze‘ZﬁqO)Jr — (11) Ipt)l, gtongg)ouﬁea:]t;r, whereq;=qg att=T is applied implic
4,LL WO y q y1
In order to investigate the anharmonic effects, we per- N(qo,T)= Mo [ exf —h(z)]dz, (16)
form a canonical perturbation with respect to the anharmonic mh )z

parameter=(uwo/lp) "% An important advantage of the it the parameters, , z,, and functionh(z), defined as
canonical perturbation results is that the procedure can be

generalized directly to other anharmonic potentials, for ex- . 2 2 ) h? )
ample, cubic or quartic oscillators. To proceed, we first study ~ Ze=Me/B=B""11=BA/2], ZOZ4M2 22 T~ Wor

W
the frequency of the partial refocusing. The recurrence pe- @o'o 17
riod of each classical trajectory 8’ = wg\, with \ related ngZ 4 s s _, (
to the initial position and momentum by E(). Expansion h(z)= A Wy 22222 — )%+ T
of o' with respect tog yields the frequency for a given i
(g,p) configuration _

Xdo| 725~ ,BQO‘UOT'B 7] |

+0(B3). (12 Combining Eqgs(11), (13), and(16), we derive quantitative
relations between features of the time-domain pump-probe

Due to the initial spreading in phase space, the recurrencaidnals and the Morse parameters, 5, and the internuclear

frequency, as a function ofy(p), is no longer constant for distance qq, thereby constructing a possible inversion

all trajectories. Insteady’ has a distribution around its av- SCheme.

erage,

o' ~wg

B ( p
1-— +0?
2\ pwj

B. Numerical example: One-dimensional
Morse potential

, B B%|(8p?)
(@ )%w(,( 1- 7q§) _w07[,u2wg +(569°%)

The canonical perturbation analysis of wave packet dy-

B2 52 52 namics gives quantitative expressions for the width of the
:wo( 1— 7q§) —wgy ﬁ—{—wg , (13 initial decayog, the recurrence period, as well as the first
4 wgWo population recurrenceN(qg,T). However, the classical

- . . ., . phase-space propagation completely neglects quantum tun-
where the minimum uncertainty wave packet is applied InneIing effects, hence it yields only a first-order estimate of

) . X -,
the final expression. The flrs_t term_m comes naturally_ the true quantum propagation. As an illustration, we evaluate
from the center-of-packet motion while the second term is g, . i« domain pump-probe signal on the Morse potential

manifgstation of the initial wave packet width. From the eXy ing both quantum mechanics and classical mechanics. For
pression, an upper bound for the frequency can be obtain ﬂse anharmonic potential, we use the same paramelers,
=30 and 8=0.08, as in Refs. 16, 17. The initial narrow
Gaussian wave packet is created at the left turning ppjnt
=—1 with the widthw3=1/12. While the wave packet is

using the Cauchy inequality, (w’)<wo(1— B%q5/2)
— B?hl2u<wo(1- B%g5/2). Hence, the mean recurrence
time of the probe signal is

o o oscillating between the left and right turning points, the ex-
=—r= cited state populatioN(qg,t) is probed at the left turning
(@) wo(1- B2q3/2) - B2l (2p) point as a function of time. In Fig. 2(qy,t) from both
classical and quantum mechanical calculations are plotted.
= 27 , (14) The dynamic featuresry, T, andN(qg,T), are calculated
wo(l—ﬁqu/Z) with Egs.(11), (13), and(16) and compared with the quan-

o o tum propagation in Table I. Clearly, the canonical perturba-
indicating that the real recurrence time is always greater thagg, analysis gives reasonable estimates of the width of the

the center-of-packet period, which is a consequence of thgitia| decayo,, the recurrence period, and the first recur-
uncertainty principle. _ rence peakN(q,T), but it is not able to provide quantita-
Given the mean recurrence time, one can evaluatgyely accurate information. In real experiments, population
N(do,t=T), with qo fixed at the Franck-Condon excitation gjgnals are collected at the probe position. To simulate the
position, yielding experiments, we use the temporal features calculated from
S0’ =w'— (o) guantum propagation to invert the Morse parameigys 3,
and the internuclear distanag. Here we adopt Powell’s
hybrid algorithm in the GNU Scientific Library and find the
+0(B%). roots of the nonlinear equatiorid1), (13), and (16). The
derivative matrix is evaluated using the finite difference
(15 method. The numerical results are summarized in Table |I.

p2 ﬁZ
2 2

2
W
2 2,2 0
pnewy  AufwoWy
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2 : , ‘

o 2
Quantum calculation ] W= — < ﬁqV>W + 3
— — Classical wavepacket w

L51 1 where(---),, represents the average over a Gaussian distri-
bution centered af), with variancew?, A=#2/4 is a con-
stant of motion under the second-order cumulant expansion,
. consistent with the minimum uncertainty condition. These
I ] coupled expressions indicate that the center and the width are
both moving inside dressed potentials affected by wave-
= packet spreading. This Gaussian approximation becomes ex-
[ \ i act in the harmonic limit, recovering the results in Et0).
,.//AV Once again, originating from the classical propagation of the
05 : = 2'0 — Wigner distribution, the coupled Hamiltonian equation fails
t to capture the quantum interferences. This approach further
FIG. 2. Wave packet propagation on a one-dimensional potential with theassuwn-:‘S a Gaussian W.ave pa_cket and introduces the second-
same parameters given in Fig. 1 and Table I. The solid line is quanturrprder cumulant expansion, which allows us to propagate_ th?
propagation, and the dashed line is the classical propagation. parameters of the wave packet rather than the whole distri-
bution. Although higher order cumulants can be included in
the coupled Hamiltonian equations, an increase in the num-
ber of cumulants dramatically increases the complexity of
"he problem and does not provide a closed-form solution.
gllf\-li'gure 3 shows that the coupled Hamiltonian equations can
only reproduce the center-of-packet motion correctly but do
not give an accurate description of the width-of-packet mo-
tion. Consequently, they cannot reproduce the population
C. Gaussian wave packet dynamics signal at the left-turning point. In comparison, the classical

The classical wave packet dynamics discussed in thiave packet dynamics agrees quite well with the quantum
section is obtained propagating the Wigner distribution thagolution for the center-of-packet motion, the width-of-packet
satisfies the minimum uncertainty condition. As an alterna/notion, and the population signal.
tive, a reduced description is provided by the effective dy-  In summary, Eq(18) is equivalent to the second-order
namics for the parameters of the wave packet instead of thiguncation of hierarchical Hamiltonian dynamics. Though in-
evolution of the full distribution function. The best known clusion of higher order moments improves the description of
example of this approach is Heller's Gaussian wave packdhe shape of the wave packet, the numerical implementation
theory*>8Interestingly, the one-dimensional Gaussian wavds difficult for multidimensional systems. To incorporate
packet dynamics can be derived from the time-dependerftu@ntum effects, we adopt a semiclassical method in the fol-
variational method and is shown to be equivalent to the clasloWing section to calculate pump-probe signals with explicit
sical dynamics on an extended two-dimensionalinterference effect&?>2°
potential?>?3 This version of Gaussian dynamics has stimu-
lated recent studiésand will be adopted here for computing 1ll. SEMICLASSICAL FINAL-VALUE REPRESENTATION
pump-probe signals. The difficulties of multidimensional ex-

tensions and the lack of convergence in the hierarchical con- Classical wave packet propagation predicts the overall
. . genc . profile of the pump-probe signal but fails to reproduce the
struction preclude practical applications of this approach.

fine interference details. Obviously, classical propagation of

We introduce now the second-order cumulant expansion, | ave packet in phase space violates the uncertainty prin-

ar_1d derive the equations of motion for the center and th%iple, and is fundamentally different from quantum mechan-
width of the wave packet . . . .
ics. The pump-probe signal calculated with classical mechan-

Ac=—(IqV)w (18  ics cannot fully reflect its intrinsically quantum nature. In

N(g, t)

e —

0.5

Although derived from a classical analysis, the calculatio
shows reasonable agreement with the exact parameters,
ing a first-order inversion scheme.

TABLE I. Comparison of the dynamic features of the pump-probe signal in the time domain. The initial wave
packet is created at the left-turning pomqy= — 1 with W§= 1/12, and propagated in a one-dimensional Morse
potential withD =30 andB=0.08. A numerical inversion of the quantum signal is performed with Eds,

(13), and(16) obtained from classical phase-space propagation.

Dynamic features Numerical inversion
Quantum Classical Exact Estimate
T, (a.u.) 10.80 10.43 B (a.u) 0.08 0.089
ao% (au) 35.02 35.51 wg (a.u.) 0.619 0.605
N(qo,Ty) (a.u.) 0.891 1.001 go (a.u.) -1.0 —1.08
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1 -1/2

99(t)
(2mifi)N? S

e IHUA| 5y — e
<qt| |pl> aql

Xexﬁ{;i_[S(inpiat)'*’qipi]

i gv[qi ,t]]. (20)

The indexv[ q; ,t] is the usual Maslov index for a trajectory
crossing focal points and the summation is performed over
the classical trajectories that satisfy the two-point boundary
conditions. Obviously, the IVR expression involves both root
searching and integration over the initial momentum in order
to calculate the pump-probe signal for a given probe position
g;. So this approach is not numerically efficient and not
applicable to high-dimensional systems. Furthermore, the
Jacobian factor appears in the denominator of the semiclas-
sical expression, causing a divergence at the caustics. Since
classical mechanics has time-reversal symmetry, we can cal-
culate the contributions from all classical trajectories by re-
verse propagating the classical trajectories from the final po-
sition q;, yielding a “final-value representation,” which is
exactly analogous to the IVR. Rigorously, we change the
integration variable from the initial momentup to the final
momentump, . By doing so, we introduce a Jacobian factor

FIG. 3. (a) The population at the left-turning point) the center of packet, Lopi /&pt]qu which is essentially the same as

and (c) the width of packet. Quantum results are plotted by solid Iines,uaq(t)/aqi]pJ_ The Maslov index remains the same. Con-

classical propagation results of the Wigner distribution are plotted by dashe | h he final | . .
lines, and the calculations of the coupled Hamilton dynamics are shown ir?equem y, we have the final-value representation expression

dot-dashed lines. The parameters of the potential are the same as in Fig. for the wave packet propagation,

1/2
(2mif) N2

— H
\P(qt,t)—j dp; det&pt

general, the classical trajectories from different regions of )

the wave packet are not independent, but carry phase factors :

that interfere with each other. As a result, the pump-probe xexp{%[S(qt PO TPG]

signal cannot be represented as a linear superposition of real

populations, but a superposition of complex amplitudes. For- + T [Py ,t]} W(p;,0), (21)
mally, the pump-probe signal is well described by Feynman’s 2

path integral. To better illustrate the interference effects ang\ere the initial position and momenturg, and p;, are
calculate the pump-probe signal, we adopt a modified formgarse propagations af, and p, from time t. The extra
of the IVR*The initial-value phase-space integral represenacopian factor cancels the divergence at the caustics, thus
tation has been discussed extensively by Miller andnaking the integration numerically stable. For multidimen-
co-workers2®?>?In the initial-value representation, the root ¢jona cases, the integration ovey can be done efficiently

trajectories that satisfy the two-point boundary conditions gy a Monte Carlo scheme. The population monitored at the
replaced by an integration over the initial phase space ar&fobe position iN(q, ,t)=|¥(q,,t)|2.

from V\_/h_iqh the classical traje(_:tori_es evo_lve. The pha_se term  aAg a numerical example, Eq21) is calculated for sev-

in the initial-value representation is crucial for the trajectory o, probe positions in the one-dimensional Morse potential.
interference. o Probing at the left-turning point corresponds to the one-color
Given an initial wave function in momentum space, the ,,mp probe scheme where the probe pulse is tuned to the
wave function at a later time is formulated in coordinate  g5me wavelength as the pump pulse. Probing at the right
Space as turning point corresponds to a two-color pump-probe scheme
where the probe pulse has a center frequency different from
W (q;,t)=(q|e """ ¥ (0)) that of the pump pulse. The parameters of the potential as
well as the initial wave packet are taken to be the same as in
:J dpi(a./e " p)y W (p;,0), (19)  the preceding section. The results are compared with exact

quantum calculations in Fig. 4. As shown in the plot, the

final-value representation gives excellent agreement with the

where the propagatdqt|e‘iH“ﬁ|pi> is giverf® by guantum results for both pump-probe schemes. All partial
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2 . , | | |
| | qf(qt!t)~2 f (27Tiﬁ)_llz\l’(pi,o)dpiemiqt/ﬁe—lwnt’
b | > .

(a) o

1L5F n
whereV,, is the volume where the action variable satisfies

nh<I<(n+1)#A. It can be inferred from the above expres-
sion that the partial refocusing at the left turning point is
mainly induced by anharmonic effects and the resultant dis-
persion in frequencies,,. From this point of view, the clas-
sical phase-space quantization scheme agrees with the quan-
tum mechanical picture. The simple quantization scheme is a
direct extension of phase space quantization and the averag-
ing scheme of Ref. 21, where linear and nonlinear response
functions are evaluated by a phase-space average around the
quantized actions to establish the classical-quantum corre-
spondence. Here we generalize this scheme to the evolution
of the wave function at the left-turning point. This simple
quantization scheme provides an easy way to estimate the
signal at the left-turning point since the integration ovegr

can be calculated straightforwardly given the quantization
conditions. The coefficients then evolve with the eigenfre-
guency.

As shown in Fig. 4, numerical results demonstrate that
the phase-space quantization method gives good approxima-
tions to the signals close to the revival periods, yielding cor-
rect peak positions as well as temporal widths. On the other
hand, the approximation is compromised by the neglect of
the Jacobian factor and crude estimation of the phase terms.

t(au) Because it does not provide accurate information at probe
FIG. 4. The probe signals in a one-dimensional Morse potential are calcupOSitionS other than the left-turning point, this approach can-

lated using semi classical propagation and the quantum propagdalian not be applied to the two-color pump-probe scheme.
the left-turning andb) at the right-turning point. Quantum results are plot-

ted in solid lines, the semiclassical results are plotted by dashed lines, and

the results of the simple phase-space quantization approximation are plottevl KINETICALLY COUPLED MORSE POTENTIAL

by dot-dashed line iffia). The parameters of the potential are the same as in"*
Fig. 1.

As an example of a well-characterized multidimensional
problem, we apply the semiclassical final-value representa-
revivals of the population and interference patterns are reprc}lopla?gs: sthc?f Stmpﬁnilsiig::zaéfl? ngel\;lnoerstg E)Zii\lllv;\cl)(raspi?(et
duced with excellent convergence. The small discrepancie%y y b '

: : : netically coupled Morse oscillators have been widely used to
between semiclassical calculations and the quantum calcula; y b y

tions are due to the stationary phase approximation that ur]S_|-t ug%}[]«fl .}_/Lberatg):;liCd{'n;rm:tcsnifﬁ%g Eﬂgguslezéesrﬁgrilsas
derlies semiclassical dynamics. 2> 9 y

H= >
=12

whereV(x)=D[1—exp(—Bx)]? is the Morse potential of a
The final-value representation expression profits fromsingle O-H stretchG[11=MoMH/(Mo+MH) is the reduced
the fixed probe position and the time-reversal symmetry ofmass for the O-H bond, and both bonds are dynamically

classical mechanics, providing an accurate and efficient wagoupled through the Wilson G-matrix elemen®;,
to calculate pump-probe signals. For pump-probe experi=cosf.,/Mg. 6, is the angle between the two O-H bonds. In
ments where pump and probe positions are tuned to the santige absence of the coupling, the two Morse oscillators are
internuclear distance, we can further derive an approximatioindependent, and thus the local mode description is exact.
scheme from the semiclassical expression. With the coupling, normal mode behavior dominates over a
The integration over momentum space can be quantizesignificant range of energy. However, due to anharmonic ef-
as a summation over the discretized orbits which satisfy théects, there are many interesting dynamical features associ-
Bohr or Einstein-Brillouin-KellelEBK) quantization condi- ated with the evolution from the normal mode to the local
tions. When the wave packet refocuses at the left turningnode limit, which has been a central subject in vibrational
point, the action term is approximatelyrz (n+ 1/2)— Et. spectroscopy. Extensive discussions of the normal to local
The Jacobian factor igdp;/dp;|~1, giving the simple mode transition can be found in papers by Brumer and
phase-space quantization expression co-workers?/~29:31-33

1
EGllpj2+V(Xj) +G1Pp1P2, (23

IV. PHASE SPACE QUANTIZATION
FOR THE LEFT-TURNING POINT SIGNAL
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30 T T - T T All of the partial revivals and decays, as well as detailed
(a) ' ' 1 1 interference patterns, are accurately reproduced with excel-
25} P (b) 14 lent convergence. We believe the slight deviation from the

guantum calculation is introduced by the underlying station-
ary phase approximation in the semiclassical approach. The
final-value representation method, based on the IVR ap-
proach, is a promising candidate for calculations of the tem-
poral trajectories of pump-probe signals. Furthermore, the
semiclassical final-value representation contains all of the
detailed information of classical trajectories and their inter-
ference effects, and is useful for studying the classical-
guantum correspondence.

3 To test the accuracy of the simple quantization scheme in
t(au.) Sec. |V for the pump-probe signal at the left-turning point,
we approximately quantize the phase space according to Si-

FIG. 5. Comparison of the phase-space quantization scheme, the semiclaﬁ—ert Reinhardt. and Hynes. This approximate Hamiltonian is
sical wave packet propagation, and the exact quantum calculation for two _ ’

kinetically coupled Morse oscillators. The wave packet is initially created atonly necessary for the phase-spage quantization S_Chem_G' In
(—0.1-0.1) with width wy= \/G12/2w¢/2, and the parameters fop,8 are  contrast, the full quantum calculation and the semiclassical
given in Table II. The probe signal is collected at the left-turning point. The propagation can be performed with the full Hamiltonian in
quantum and semiclassical calculations are done with the full Ham|Iton|arEq_ (23). To proceed, we adopt a first-order approximation in

in Eq. (23) while the phase-space quantization is done with the approximat . 9,30 . . .
Hamiltonian in Eq.(25). The inset(b) shows the first two recurrences. ?he COUp“ng tem{ and write the full Hamiltonian

Quantum results are plotted by solid lines, the semiclassical results are plotn  terms  of the uncoupled action-angle variables,

ted by dashed lines, and the results of the simple phase-space quantizatiph(1,,1,, 6, ,6,) = Ei2:1(w0| i— a)gl i2/4D) +V(l1,15,61,6,).

approximation are plotted by dot-dashed lines. V(I1,1,,61,6,) is the coupling term for which exact Fourier
analysis was performed by Jafémd Brumef’ The leading

. order term is the 1-1 resonance te I1,1,)cos@,—6,).

To calculate the wave packet dynamics on the twos W(11,12) coSy ~ 6)

. . . . When the Fourier coefficient,; is approximately evaluated
dimensional potential surface, we launch a Gaussian wav

h f th i
packet of the form (q,0)=(27w2)~“2ext — (q— o)/ &t the center of the resonance zone, one obtains

(2w3)] at the left-turning point and calculate the time- 4D|Gy E \|l1-(1-E/2D)Y?
domain signal at another probe positigp. Although the Vi1~ ~Vo(E)= —c—| 1= 55 || ———— .

. ) S . 11 1+(1—-E/2D)
semiclassical expression in E(R1) represents a consider- (24

able simplification of the original IVR formula, the integrand ) )

is an oscillatory function of the final momentup and the ~ Performing the canonical transformy+1,=P, 6,+6,

integration in higher dimensions is generally a nontrivial cal-=2¢, andly—l>=p, 61— 6,=24, the Hamiltonian can be

culation. Therefore one must introduce a positive definite2PProximated as

weight function such that the Monte Carlo integration will be wgpz w(Z)pz

sampled only in those regions that dominate the integral. H~woP—8—D— D

Other regions barely contribute to the integral due to phase

cancellations. For example, the stationary phase Monte Carlgith Vo(E) given in Eq. (24). The approximation breaks

method has been widely applied to quantum mechanical pattiown outside the resonance zone where the 1-1 resonance

integral simulations. Since our main focus here is the semiterm is no longer the dominant contribution to the dynamics.

classical final-value representation, we simply apply a plairBohr quantization requires

grid integration scheme to the two-dimensional case without

invoking the stationary phase Monte Carlo method. I
As a numerical example, the population at the left-

turning point is calculated and plotted as a function of time 1

in Fig. 5. The parameters are given in reduced units in Tabldzy,:ﬂf pdy

II. Despite the small discrepancies, good agreement with the

—Vo(E)cos 2/, (25

Pdgp="P=(n,+1)%,

T 2w

exact quantum results is achieved for a wide temporal range. 4 8D w2P?
%EJ dzp\/w—g woP— 8D —E—Vy(E)cos 24
TABLE Il. Parameters of KO. _ n,/ﬁ, 26)
Sl unit Reduced unit .
wheren, andn,, are integers.
Gu 6.353% 10°°kg™* 1 For a given pair of quantum numbers, the eigenenergy
Gy —9.427X 10%kg™! ~0.01484  E(n,,n,) is determined from the quantization requirements,
g 1‘%?32? 18,1759 ms i hence the spectrum for the approximate Hamiltonian is fully
B 2 175% 10~ 011 1 resolved numerically. Given a phase-space point, the action-

angle variables|@,l,,6;,65), hence P,p,¢,y), are well
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defined. The approximate Hamiltonian in E@5) provides a  well. Based solely on the approximation at the left-turning
self-consistent way to solve for the energy With the en-  point, the simple quantization scheme does not provide ac-
ergy term, the quantum numbenmg andn, can be numeri- curate information at positions other than the left-turning
cally determined with Eq(26), giving the EBK quantized point. Calculating wave packet dynamics with classical and
torus. Accordingly, we evaluate the phase-space quantizatiosemiclassical dynamics provides powerful tools to interpret
integrals used in the phase-space quantization scheme. experimental measurements and quantum mechanical calcu-
The pump-probe signal at the left-turning point is calcu-lations. Further efforts will be devoted to coupled oscillators
lated and shown in Fig. 5. The quantum and semiclassicand dissipative anharmonic systems.
calculations are performed for the full Hamiltonian while the
calculation with simple phase-space quantization is done fopCKNOWLEDGMENTS
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