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Classical and semiclassical methods are developed to calculate and invert the wave packet motion
measured in pump-probe experiments. With classical propagation of the Wigner distribution of the
initial wave packet created by the pump pulse, we predict the approximate probe signal with slightly
displaced recurrence peaks, and derive a set of first-order canonical perturbation expressions to
relate the temporal features of the signal to the characteristics of the potential surface. A reduced
dynamics scheme based on the Gaussian assumption leads to the correct center of mass motion but
does not describe the evolution of the shape of the wave packet accurately. To incorporate the
quantum interference into classical trajectories, we propose a final-value representation
semiclassical method, specifically designed for the purpose of computing pump-probe signals, and
demonstrate its efficiency and accuracy with a Morse oscillator and two kinetically coupled Morse
oscillators. For the case of one-color pump probe, a simple phase-space quantization scheme is
devised to reproduce the temporal profile at the left-turning point without actual wave packet
propagation, revealing a quantum mechanical perspective of the nearly classical pump-probe signal.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1791131#

I. INTRODUCTION

Recent advances in ultrafast laser spectroscopy offer a
great opportunity to study elementary chemical processes at
the molecular level. With femtosecond laser pulses it is now
possible to create a coherent superposition of several vibra-
tional states. Among many femtochemistry techniques, the
pump-probe method is a key scheme to monitor molecular
dynamics.1–14An ultrashort pump pulse promotes the ground
state wave function onto the excited state at ana priori
known position. Another ultrashort probe pulse at a later
time measures the population at the probe position.10 In ideal
cases, the initial wave packet is an exact replica of the
ground state wave function, and the width is fully deter-
mined by the ground state potential for a short pump pulse.
Similarly, the internuclear distance sampled by the probe is
selected by the wavelength of the probe pulse. A typical ex-
ample we consider here is a molecule in the vibrational
ground state of its electronic ground state. With an extremely
short pulse, the ground state wave function is transferred to
the excited state as a wave packet, which is a superposition
of the vibrational states of the excited electronic state. As the
center of wave packet oscillates between the inner and outer
turning points on the excited state potential, the wave packet
periodically spreads out and refocuses. However, such refo-
cusing is not perfect due to the anharmonicity of the poten-
tial. As a superposition of a discrete set of vibrational states
with different frequencies, the wave packet experiences par-
tial revivals as the components of the wave packet dephase.
Such dephasing and partial refocusing are vivid manifesta-
tions of the anharmonicity and provide extremely useful in-
formation about the general properties of the potential. Fur-

ther progress in pulse shaping and coherence control opens a
unique frontier for manipulating molecules on extremely
short time scales, and provides an elegant way to control the
dynamics of the wave packet. Therefore, it is crucial to de-
velop a quantitative understanding of the causal relationship
between specific features of the wave packet dynamics and
the general features of the excited state potential.

There have been extensive studies of wave packet dy-
namics, including Gaussian wave packet dynamics, extended
Gaussian wave packet dynamics in complex phase space,
semiclassical coherent state methods, cellular dynamics
methods, etc.15–19 These studies have greatly enhanced the
efficiency and accuracy of numerical calculations of wave-
packet dynamics in many different potentials, yet an analyti-
cal relationship between the dynamics and the anharmonicity
is still not available. In this paper, we will derive analytical
expressions for the general features of the time domain sig-
nal, which are quantitatively related to the parameters of the
potential. The motivation of this paper and related studies is
to provide a potential inversion scheme for the excited state
potential with a simple time domain measurement of wave-
packet dynamics. Specifically, we study the Morse potential
in this paper. The recurrences in the time domain dynamics
are fully analyzed with canonical perturbation analysis, giv-
ing analytical relations to the Morse parameters: the funda-
mental frequencyv0 , the anharmonicityb, and the internu-
clear distanceq0 . The quantitative expressions from the
classical perturbation are employed to numerically invert the
time domain signal, yielding first-order estimates of the
Morse parameters.

To simulate the pump-probe signals, a full quantum cal-
culation is usually expensive and practically impossible for
large systems. Often, the full quantum calculation is accurate
but gives little information about the underlying physics of
the wave packet dynamics, such as the breakup and the par-
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tial revival of the wave packet. On the other hand, the semi-
classical method starts from the classical paths and their in-
terferences to build up the complex amplitude, yielding
detailed trajectory information about the underlying quantum
dynamics. In this paper we adopt a revised version of the
semiclassical initial-value representation~IVR!,20 and take
advantage of the fixed probe position in pump-probe experi-
ments. In our approach, we switch from the initial-value rep-
resentation to the final-value representation, thus reducing
the integration to the final momentum only. This semiclassi-
cal final-value representation is specifically designed to cal-
culate pump-probe signals and has great potential advantages
in multidimensional systems. When both pump and probe
pulses are tuned to the left-turning point, we can further ap-
proximate the semiclassical final-value representation with a
simple phase-space quantization scheme, which yields accu-
rate information exclusively for the recurrences at the left
turning point. This phase-space quantization scheme is in-
spired by discussions of linear and nonlinear response func-
tions in anharmonic potentials addressed by Wu and Cao in
Ref. 21, where phase-space quantization and averaging is
employed to establish the classical-quantum correspondence
of linear and nonlinear response functions.

The paper is organized as follows: In Sec. II, we discuss
the classical wave packet dynamics in a Morse potential and
derive quantitative relations between the wave packet reviv-
als and the parameters of the potential with canonical pertur-
bation analysis. In Sec. III, the semiclassical final-value rep-
resentation is used to calculate the pump-probe signal, and
compared with the exact quantum propagation. In Sec. IV,
we propose a simple quantization scheme to evaluate the
pump-probe signal at the left-turning point. As an example of
a multidimensional case, we apply the semiclassical methods
to two kinetically coupled Morse oscillators in Sec. V.

II. CLASSICAL WAVE-PACKET DYNAMICS

For simplicity, we consider a wave packet residing on
the excited electronic state potential. The initial wave func-
tion is a perfect replica of the ground state wave function and
is assumed to be in Gaussian form,

C~q!5~2pw0
2!21/4expF2

~q2q0!2

4w0
2 G , ~1!

whereq0 is the displacement between the excitation position
and minimum of the excited state potential, andw0 is the
width of the wave packet. To proceed, we perform a Wigner
transform and calculate the distribution function in phase
space,

rw~q,p!5
1

2p\ E ddqC* S q1
dq

2 D
3expF i

\
pdqGCS q2

dq

2 D
5

1

p\
expF2

~q2q0!2

2w0
2

2
2w0

2p2

\2 G , ~2!

which satisfies the minimum uncertainty condition
A^dq2&^dp2&5\/2. The wave packet then evolves on the
excited state potential energy surface.

Classically, each particle moves on the potential surface
following Newton’s equations of motion. For a Morse poten-
tial, we can take advantage of the well-known action-angle
variables, and express the position and momentum analyti-
cally as

q5
1

b
ln

12A12l2 cosf

l2
,

~3!

p5
mv0l

b

A12l2 sinf

12A12l2 cosf
,

where l is related to the action variableI as l512I /I b .
The fundamental frequencyv0 and the maximum actionI b

for the Morse potential arev05A2Db2/m and I b

5A2Dm/b2, respectively. The Hamiltonian is given by

H5
p2

2m
1D~12e2bq!25

v0

2 S 2I 2
I 2

I b
D , ~4!

and the time evolution of the angle variable is determined by
ḟ5]H/]I 5v0l. Through the action-angle variables, we
define the transformation between the initial coordinates
(qi ,pi) and the final coordinates (qt ,pt) at time t.

qt~qi ,pi !5
1

b
ln

12~12l2ebqi !cosv0lt1~mv0!21bpilebqi sinv0lt

l2
,

~5!

pt~qi ,pi !5
mv0l

b

~mv0!21bpilebqi cosv0lt1~12l2ebqi !sinv0lt

12~12l2ebqi !cosv0lt1~mv0!21bpilebqi sinv0lt
,

wherel is an implicit function ofqi andpi through the Hamiltonian in Eq.~4!. The Jacobian of the transformation is proved
to have a value of 1, which reflects conservation of phase-space volume. We can easily obtain the inverse transformqi(qt ,pt)
and pi(qt ,pt) by reversing the roles of (qi ,pi) and (qt ,pt) in Eq. ~5! and replacingt by 2t. The classical orbits are sharp
around the inner turning point where the repulsive potential is steep, and are flat around the outer turning point where the

6600 J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Yang, Cao, and Field

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



attractive potential is shallow. The frequency of the orbit
depends on the initial position due to anharmonicity; specifi-
cally, the orbits with higher energy have smaller frequency.
As a result, the wave packet generally becomes spread out
and twisted as it evolves.

To better illustrate the dephasing while the wave packet
refocuses, we look into the probability distribution in phase
space. Generally, the distribution at any timet can be written
formally as

rw~q,p,t !5E E rw~qi ,pi !d~qt~qi ,pi !2q!

3d~pt~qi ,pi !2p!dqidpi , ~6!

where the twod functions in the integration basically impose
the dynamic constraint on the final coordinate in phase
space. Applying the inverse transformation of Eq.~5!, the
phase-space distribution is given analytically as

rw~qt ,pt ,t !5rw@qi~qt ,pt!,pi~qt ,pt!#, ~7!

where the unity Jacobian is implicit. Initially the wave
packet resides near (q0,0) in phase space. Hence the center
of wave packet oscillates in the Morse potential with fre-
quency v0lc , where lc5A2e2bq02e22bq0 characterizes
the center energy of the wave packet. However, other regions
of the wave packet travel with different frequencies. Conse-
quently, the wave packet cannot completely refocus; instead,
it disperses in phase space. In Fig. 1, we show contour plots
of the distributionrw(qt ,pt) at the initial moment after ex-
citation and at the center-of-packet periodt52p/v0lc . The
contours are obviously stretched and twisted due to the fre-
quency mismatch, displaying rich phenomena in wave-
packet dynamics.

Experimentally, the population monitored at the Franck-
Condon excitation window is actually a specific integral
form of the phase-space distributionrw(qt ,pt ,t), giving

N~q0 ,t !5E E rw~qt ,pt ,t !d~qt2q0!dqtdpt

5E rw~q0 ,pt ,t !dpt . ~8!

For example, in the limit that the anharmonicity parameterb
approaches zero while keepingv0 constant, the Morse po-
tential in Eq. ~4! reduces to the harmonic potential. Then,
N(q0 ,t) reduces to

N~q0 ,t !5
1

A2pw~ t !
expF2

@q02qc~ t !#2

2w2~ t !
G , ~9!

where the center-of-packet motionqc(t) and the time depen-
dent widthw(t) are given, respectively, by

qc~ t !5q0 cosv0t,
~10!

w2~ t !5w0
2 cos2 v0t1

\2

4m2v0
2w0

2
sin2 v0t.

Hence the width of the wave packet oscillates at twice the
harmonic frequencyv0 , giving complete refocusing at both
turning points. The deviation from complete refocusing is an

explicit indication of the anharmonicity. To measure the an-
harmonicity, we examine the population signal in detail and
obtain analytical expressions for the width of the initial de-
cay, the recurrence time, and the recurrence amplitudes.

A. Dynamic features of the pump-probe signal
and inversion

To calibrate the pump-probe signal, we calculate the
width of the initial decay s0

252M0 /M2 with Mn

5] t
nu t50N(q0 ,t). From the definition, we obtain the mo-

mentsM05(2pw0
2)21/2, M150, and

M25~2pw0
2!21/2@2]q

2V~q0!2\2/~4m2w0
4!#

5~2pw0
2!21/2@v0

2~2e22bq02e2bq0!2\2/~4m2w0
4!#,

where the first term is2]q
2V(q0), corresponding to the local

curvature of the excited state potential at the center of wave
packet. Here we consider the scenario that the initial excita-
tion is a narrow wave packet so that the second term inM2

FIG. 1. The contour plots of the phase-space distribution at different times.
The wave packet is initially created at the left-turning pointq0521 with
width w051/A12 and is propagated classically in the one-dimensional
Morse potential withD530 andb50.08. The upper plot is the initial phase-
space distribution, and the lower plot is the phase-space distribution att
52p/v0lc , wherev0lc is the recurrence frequency for the center of the
packet.
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always dominates, resulting inM2,0. Thus the population
decreases at early times, giving the width of the initial decay

s0
25Fv0

2~e2bq022e22bq0!1
\2

4m2w0
4G21

. ~11!

In order to investigate the anharmonic effects, we per-
form a canonical perturbation with respect to the anharmonic
parameterb5(mv0 /I b)1/2. An important advantage of the
canonical perturbation results is that the procedure can be
generalized directly to other anharmonic potentials, for ex-
ample, cubic or quartic oscillators. To proceed, we first study
the frequency of the partial refocusing. The recurrence pe-
riod of each classical trajectory isv85v0l, with l related
to the initial position and momentum by Eq.~3!. Expansion
of v8 with respect tob yields the frequency for a given
(q,p) configuration

v8'v0F12
b2

2 S p2

m2v0
2

1q2D G1O~b3!. ~12!

Due to the initial spreading in phase space, the recurrence
frequency, as a function of (q,p), is no longer constant for
all trajectories. Instead,v8 has a distribution around its av-
erage,

^v8&'v0S 12
b2

2
q0

2D2v0

b2

2 F ^dp2&

m2v0
2

1^dq2&G
5v0S 12

b2

2
q0

2D2v0

b2

2 F \2

4m2v0
2w0

2
1w0

2G , ~13!

where the minimum uncertainty wave packet is applied in
the final expression. The first term inv8 comes naturally
from the center-of-packet motion while the second term is a
manifestation of the initial wave packet width. From the ex-
pression, an upper bound for the frequency can be obtained
using the Cauchy inequality, ^v8&<v0(12b2q0

2/2)
2b2\/2m<v0(12b2q0

2/2). Hence, the mean recurrence
time of the probe signal is

T5
2p

^v8&
>

2p

v0~12b2q0
2/2!2b2\/~2m!

>
2p

v0~12b2q0
2/2!

, ~14!

indicating that the real recurrence time is always greater than
the center-of-packet period, which is a consequence of the
uncertainty principle.

Given the mean recurrence time, one can evaluate
N(q0 ,t5T), with q0 fixed at the Franck-Condon excitation
position, yielding

dv85v82^v8&

5v0F2
b2

2 S p2

m2v0
2
2

\2

4m2v0
2w0

2
2w0

2D G1O~b3!.

~15!

In Eq. ~15!, we approximated cosv8T as 1 and sinv8T as
dv8T, respectively. The inverse transform of Eq.~5! is esti-
mated to second order inb as qi'q02pt(mv0)21dv8T,
pi'pt1mv0dv8T, whereqt5q0 at t5T is applied implic-
itly. Consequently,

N~q0 ,T!5
mv0

p\ E
2zc

zc
exp@2h~z!#dz, ~16!

with the parameterszc , z0 , and functionh(z), defined as

zc5lc /b'b21@12b2q0
2/2#, z0

25
\2

4m2v0
2w0

2
1w0

2,

~17!

h~z!5
v0

2T2b4

8 Fw0
22z2~z22z0

2!21S \

2mv0w0
D 22

3q0
2S z22z0

22
2

bq0v0T
b21zD 2G .

Combining Eqs.~11!, ~13!, and~16!, we derive quantitative
relations between features of the time-domain pump-probe
signals and the Morse parametersv0 , b, and the internuclear
distance q0 , thereby constructing a possible inversion
scheme.

B. Numerical example: One-dimensional
Morse potential

The canonical perturbation analysis of wave packet dy-
namics gives quantitative expressions for the width of the
initial decays0 , the recurrence periodT, as well as the first
population recurrenceN(q0 ,T). However, the classical
phase-space propagation completely neglects quantum tun-
neling effects, hence it yields only a first-order estimate of
the true quantum propagation. As an illustration, we evaluate
the time domain pump-probe signal on the Morse potential
using both quantum mechanics and classical mechanics. For
the anharmonic potential, we use the same parameters,D
530 and b50.08, as in Refs. 16, 17. The initial narrow
Gaussian wave packet is created at the left turning pointq0

521 with the width w0
251/12. While the wave packet is

oscillating between the left and right turning points, the ex-
cited state populationN(q0 ,t) is probed at the left turning
point as a function of time. In Fig. 2,N(q0 ,t) from both
classical and quantum mechanical calculations are plotted.
The dynamic features,s0 , T, and N(q0 ,T), are calculated
with Eqs.~11!, ~13!, and~16! and compared with the quan-
tum propagation in Table I. Clearly, the canonical perturba-
tion analysis gives reasonable estimates of the width of the
initial decays0 , the recurrence periodT, and the first recur-
rence peakN(q0 ,T), but it is not able to provide quantita-
tively accurate information. In real experiments, population
signals are collected at the probe position. To simulate the
experiments, we use the temporal features calculated from
quantum propagation to invert the Morse parametersv0 , b,
and the internuclear distanceq0 . Here we adopt Powell’s
hybrid algorithm in the GNU Scientific Library and find the
roots of the nonlinear equations~11!, ~13!, and ~16!. The
derivative matrix is evaluated using the finite difference
method. The numerical results are summarized in Table I.
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Although derived from a classical analysis, the calculation
shows reasonable agreement with the exact parameters, giv-
ing a first-order inversion scheme.

C. Gaussian wave packet dynamics

The classical wave packet dynamics discussed in this
section is obtained propagating the Wigner distribution that
satisfies the minimum uncertainty condition. As an alterna-
tive, a reduced description is provided by the effective dy-
namics for the parameters of the wave packet instead of the
evolution of the full distribution function. The best known
example of this approach is Heller’s Gaussian wave packet
theory.15,16 Interestingly, the one-dimensional Gaussian wave
packet dynamics can be derived from the time-dependent
variational method and is shown to be equivalent to the clas-
sical dynamics on an extended two-dimensional
potential.22,23 This version of Gaussian dynamics has stimu-
lated recent studies24 and will be adopted here for computing
pump-probe signals. The difficulties of multidimensional ex-
tensions and the lack of convergence in the hierarchical con-
struction preclude practical applications of this approach.

We introduce now the second-order cumulant expansion,
and derive the equations of motion for the center and the
width of the wave packet

q̈c52^]qV&w , ~18!

ẅ52^]q
2V&w1

D

w3
,

where^¯&w represents the average over a Gaussian distri-
bution centered atqc with variancew2, D5\2/4 is a con-
stant of motion under the second-order cumulant expansion,
consistent with the minimum uncertainty condition. These
coupled expressions indicate that the center and the width are
both moving inside dressed potentials affected by wave-
packet spreading. This Gaussian approximation becomes ex-
act in the harmonic limit, recovering the results in Eq.~10!.
Once again, originating from the classical propagation of the
Wigner distribution, the coupled Hamiltonian equation fails
to capture the quantum interferences. This approach further
assumes a Gaussian wave packet and introduces the second-
order cumulant expansion, which allows us to propagate the
parameters of the wave packet rather than the whole distri-
bution. Although higher order cumulants can be included in
the coupled Hamiltonian equations, an increase in the num-
ber of cumulants dramatically increases the complexity of
the problem and does not provide a closed-form solution.
Figure 3 shows that the coupled Hamiltonian equations can
only reproduce the center-of-packet motion correctly but do
not give an accurate description of the width-of-packet mo-
tion. Consequently, they cannot reproduce the population
signal at the left-turning point. In comparison, the classical
wave packet dynamics agrees quite well with the quantum
solution for the center-of-packet motion, the width-of-packet
motion, and the population signal.

In summary, Eq.~18! is equivalent to the second-order
truncation of hierarchical Hamiltonian dynamics. Though in-
clusion of higher order moments improves the description of
the shape of the wave packet, the numerical implementation
is difficult for multidimensional systems. To incorporate
quantum effects, we adopt a semiclassical method in the fol-
lowing section to calculate pump-probe signals with explicit
interference effects.20,25,26

III. SEMICLASSICAL FINAL-VALUE REPRESENTATION

Classical wave packet propagation predicts the overall
profile of the pump-probe signal but fails to reproduce the
fine interference details. Obviously, classical propagation of
a wave packet in phase space violates the uncertainty prin-
ciple, and is fundamentally different from quantum mechan-
ics. The pump-probe signal calculated with classical mechan-
ics cannot fully reflect its intrinsically quantum nature. In

FIG. 2. Wave packet propagation on a one-dimensional potential with the
same parameters given in Fig. 1 and Table I. The solid line is quantum
propagation, and the dashed line is the classical propagation.

TABLE I. Comparison of the dynamic features of the pump-probe signal in the time domain. The initial wave
packet is created at the left-turning pointq0521 with w0

251/12, and propagated in a one-dimensional Morse
potential withD530 andb50.08. A numerical inversion of the quantum signal is performed with Eqs.~11!,
~13!, and~16! obtained from classical phase-space propagation.

Dynamic features Numerical inversion

Quantum Classical Exact Estimate

T1 (a.u.) 10.80 10.43 b ~a.u.! 0.08 0.089
s0

22 (a.u.) 35.02 35.51 v0 (a.u.) 0.619 0.605
N(q0 ,T1) (a.u.) 0.891 1.001 q0 (a.u.) 21.0 21.08
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general, the classical trajectories from different regions of
the wave packet are not independent, but carry phase factors
that interfere with each other. As a result, the pump-probe
signal cannot be represented as a linear superposition of real
populations, but a superposition of complex amplitudes. For-
mally, the pump-probe signal is well described by Feynman’s
path integral. To better illustrate the interference effects and
calculate the pump-probe signal, we adopt a modified form
of the IVR.20 The initial-value phase-space integral represen-
tation has been discussed extensively by Miller and
co-workers.20,25,26In the initial-value representation, the root
trajectories that satisfy the two-point boundary conditions are
replaced by an integration over the initial phase space area
from which the classical trajectories evolve. The phase term
in the initial-value representation is crucial for the trajectory
interference.

Given an initial wave function in momentum space, the
wave function at a later timet is formulated in coordinate
space as

C~qt ,t !5^qtue2 iHt /\uC~0!&

5E dpi^qtue2 iHt /\upi&C~pi ,0!, ~19!

where the propagator̂qtue2 iHt /\upi& is given20 by

^qtue2 iHt /\upi&5
1

~2p i\!N/2 (
qi5qi

~k!
Udet

]q~ t !

]qi
U21/2

3expH i

\
@S~qi ,pi ,t !1qipi #

2 i
p

2
n@qi ,t#J . ~20!

The indexn@qi ,t# is the usual Maslov index for a trajectory
crossing focal points and the summation is performed over
the classical trajectories that satisfy the two-point boundary
conditions. Obviously, the IVR expression involves both root
searching and integration over the initial momentum in order
to calculate the pump-probe signal for a given probe position
qt . So this approach is not numerically efficient and not
applicable to high-dimensional systems. Furthermore, the
Jacobian factor appears in the denominator of the semiclas-
sical expression, causing a divergence at the caustics. Since
classical mechanics has time-reversal symmetry, we can cal-
culate the contributions from all classical trajectories by re-
verse propagating the classical trajectories from the final po-
sition qt , yielding a ‘‘final-value representation,’’ which is
exactly analogous to the IVR. Rigorously, we change the
integration variable from the initial momentumpi to the final
momentumpt . By doing so, we introduce a Jacobian factor
u@]pi /]pt#qt

u, which is essentially the same as
u@]q(t)/]qi #pi

u. The Maslov index remains the same. Con-
sequently, we have the final-value representation expression
for the wave packet propagation,

C~qt ,t !5E dptUdet
]pi

]pt
U1/2

~2p i\!2N/2

3expH i

\
@S~qt ,pt ,t !1piqi #

1
p

2
n@pt ,t#J C~pi ,0!, ~21!

where the initial position and momentum,qi and pi , are
reverse propagations ofqt and pt from time t. The extra
Jacobian factor cancels the divergence at the caustics, thus
making the integration numerically stable. For multidimen-
sional cases, the integration overpt can be done efficiently
by a Monte Carlo scheme. The population monitored at the
probe position isN(qt ,t)5uC(qt ,t)u2.

As a numerical example, Eq.~21! is calculated for sev-
eral probe positions in the one-dimensional Morse potential.
Probing at the left-turning point corresponds to the one-color
pump-probe scheme where the probe pulse is tuned to the
same wavelength as the pump pulse. Probing at the right
turning point corresponds to a two-color pump-probe scheme
where the probe pulse has a center frequency different from
that of the pump pulse. The parameters of the potential as
well as the initial wave packet are taken to be the same as in
the preceding section. The results are compared with exact
quantum calculations in Fig. 4. As shown in the plot, the
final-value representation gives excellent agreement with the
quantum results for both pump-probe schemes. All partial

FIG. 3. ~a! The population at the left-turning point,~b! the center of packet,
and ~c! the width of packet. Quantum results are plotted by solid lines,
classical propagation results of the Wigner distribution are plotted by dashed
lines, and the calculations of the coupled Hamilton dynamics are shown in
dot-dashed lines. The parameters of the potential are the same as in Fig. 1.
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revivals of the population and interference patterns are repro-
duced with excellent convergence. The small discrepancies
between semiclassical calculations and the quantum calcula-
tions are due to the stationary phase approximation that un-
derlies semiclassical dynamics.

IV. PHASE SPACE QUANTIZATION
FOR THE LEFT-TURNING POINT SIGNAL

The final-value representation expression profits from
the fixed probe position and the time-reversal symmetry of
classical mechanics, providing an accurate and efficient way
to calculate pump-probe signals. For pump-probe experi-
ments where pump and probe positions are tuned to the same
internuclear distance, we can further derive an approximation
scheme from the semiclassical expression.

The integration over momentum space can be quantized
as a summation over the discretized orbits which satisfy the
Bohr or Einstein-Brillouin-Keller~EBK! quantization condi-
tions. When the wave packet refocuses at the left turning
point, the action term is approximately 2p\(n11/2)2Ent.
The Jacobian factor isu]pi /]ptu;1, giving the simple
phase-space quantization expression

C~qt ,t !'(
n
E

Vn

~2p i\!21/2C~pi ,0!dpie
ipiqt /\e2 ivnt,

~22!

whereVn is the volume where the action variable satisfies
n\<I ,(n11)\. It can be inferred from the above expres-
sion that the partial refocusing at the left turning point is
mainly induced by anharmonic effects and the resultant dis-
persion in frequenciesvn . From this point of view, the clas-
sical phase-space quantization scheme agrees with the quan-
tum mechanical picture. The simple quantization scheme is a
direct extension of phase space quantization and the averag-
ing scheme of Ref. 21, where linear and nonlinear response
functions are evaluated by a phase-space average around the
quantized actions to establish the classical-quantum corre-
spondence. Here we generalize this scheme to the evolution
of the wave function at the left-turning point. This simple
quantization scheme provides an easy way to estimate the
signal at the left-turning point since the integration overVn

can be calculated straightforwardly given the quantization
conditions. The coefficients then evolve with the eigenfre-
quency.

As shown in Fig. 4, numerical results demonstrate that
the phase-space quantization method gives good approxima-
tions to the signals close to the revival periods, yielding cor-
rect peak positions as well as temporal widths. On the other
hand, the approximation is compromised by the neglect of
the Jacobian factor and crude estimation of the phase terms.
Because it does not provide accurate information at probe
positions other than the left-turning point, this approach can-
not be applied to the two-color pump-probe scheme.

V. KINETICALLY COUPLED MORSE POTENTIAL

As an example of a well-characterized multidimensional
problem, we apply the semiclassical final-value representa-
tion and the simple quantization scheme to the wave packet
dynamics of two kinetically coupled Morse oscillators. Ki-
netically coupled Morse oscillators have been widely used to
study the vibrational dynamics forABA molecules, such as
H2O.27–31 The generic Hamiltonian for these systems is

H5 (
j 51,2

F1

2
G11pj

21V~xj !G1G12p1p2 , ~23!

whereV(x)5D@12exp(2bx)#2 is the Morse potential of a
single O-H stretch,G11

215MOMH /(MO1MH) is the reduced
mass for the O-H bond, and both bonds are dynamically
coupled through the Wilson G-matrix elementG12

5cosue/MO. ue is the angle between the two O-H bonds. In
the absence of the coupling, the two Morse oscillators are
independent, and thus the local mode description is exact.
With the coupling, normal mode behavior dominates over a
significant range of energy. However, due to anharmonic ef-
fects, there are many interesting dynamical features associ-
ated with the evolution from the normal mode to the local
mode limit, which has been a central subject in vibrational
spectroscopy. Extensive discussions of the normal to local
mode transition can be found in papers by Brumer and
co-workers.27–29,31–33

FIG. 4. The probe signals in a one-dimensional Morse potential are calcu-
lated using semi classical propagation and the quantum propagation~a! at
the left-turning and~b! at the right-turning point. Quantum results are plot-
ted in solid lines, the semiclassical results are plotted by dashed lines, and
the results of the simple phase-space quantization approximation are plotted
by dot-dashed line in~a!. The parameters of the potential are the same as in
Fig. 1.
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To calculate the wave packet dynamics on the two-
dimensional potential surface, we launch a Gaussian wave
packet of the formC(q,0)5(2pw0

2)21/2exp@2(q2q0)2/
(2w0

2)# at the left-turning point and calculate the time-
domain signal at another probe positionqt . Although the
semiclassical expression in Eq.~21! represents a consider-
able simplification of the original IVR formula, the integrand
is an oscillatory function of the final momentumpt and the
integration in higher dimensions is generally a nontrivial cal-
culation. Therefore one must introduce a positive definite
weight function such that the Monte Carlo integration will be
sampled only in those regions that dominate the integral.
Other regions barely contribute to the integral due to phase
cancellations. For example, the stationary phase Monte Carlo
method has been widely applied to quantum mechanical path
integral simulations. Since our main focus here is the semi-
classical final-value representation, we simply apply a plain
grid integration scheme to the two-dimensional case without
invoking the stationary phase Monte Carlo method.

As a numerical example, the population at the left-
turning point is calculated and plotted as a function of time
in Fig. 5. The parameters are given in reduced units in Table
II. Despite the small discrepancies, good agreement with the
exact quantum results is achieved for a wide temporal range.

All of the partial revivals and decays, as well as detailed
interference patterns, are accurately reproduced with excel-
lent convergence. We believe the slight deviation from the
quantum calculation is introduced by the underlying station-
ary phase approximation in the semiclassical approach. The
final-value representation method, based on the IVR ap-
proach, is a promising candidate for calculations of the tem-
poral trajectories of pump-probe signals. Furthermore, the
semiclassical final-value representation contains all of the
detailed information of classical trajectories and their inter-
ference effects, and is useful for studying the classical-
quantum correspondence.

To test the accuracy of the simple quantization scheme in
Sec. IV for the pump-probe signal at the left-turning point,
we approximately quantize the phase space according to Si-
bert, Reinhardt, and Hynes. This approximate Hamiltonian is
only necessary for the phase-space quantization scheme. In
contrast, the full quantum calculation and the semiclassical
propagation can be performed with the full Hamiltonian in
Eq. ~23!. To proceed, we adopt a first-order approximation in
the coupling term,29,30 and write the full Hamiltonian
in terms of the uncoupled action-angle variables,
H(I 1 ,I 2 ,u1 ,u2) 5 ( i 51

2 (v0I i2v0
2I i

2/4D)1 V(I 1 ,I 2 ,u1 ,u2).
V(I 1 ,I 2 ,u1 ,u2) is the coupling term for which exact Fourier
analysis was performed by Jaffe´ and Brumer.27 The leading
order term is the 1-1 resonance termV11(I 1 ,I 2)cos(u12u2).
When the Fourier coefficientV11 is approximately evaluated
at the center of the resonance zone, one obtains

V11'2V0~E!5
4DuG12u

G11
S 12

E

2D DU12~12E/2D !1/2

11~12E/2D !1/2U .
~24!

Performing the canonical transform,I 11I 25P, u11u2

52f, andI 12I 25p, u12u252c, the Hamiltonian can be
approximated as

H'v0P2
v0

2P2

8D
2

v0
2p2

8D
2V0~E!cos 2c, ~25!

with V0(E) given in Eq. ~24!. The approximation breaks
down outside the resonance zone where the 1-1 resonance
term is no longer the dominant contribution to the dynamics.
Bohr quantization requires

I f5
1

2p E Pdf5P5~nf11!\,

I c5
1

2p E pdc

'
1

2p E dcA8D

v0
2 Fv0P2

v0
2P2

8D
2E2V0~E!cos 2cG

5nc\, ~26!

wherenf andnc are integers.
For a given pair of quantum numbers, the eigenenergy

E(nf ,nc) is determined from the quantization requirements,
hence the spectrum for the approximate Hamiltonian is fully
resolved numerically. Given a phase-space point, the action-
angle variables (I 1 ,I 2 ,u1 ,u2), hence (P,p,f,c), are well

FIG. 5. Comparison of the phase-space quantization scheme, the semiclas-
sical wave packet propagation, and the exact quantum calculation for two
kinetically coupled Morse oscillators. The wave packet is initially created at
~20.1,20.1! with width w05AG11\/2v0/2, and the parameters for H2O are
given in Table II. The probe signal is collected at the left-turning point. The
quantum and semiclassical calculations are done with the full Hamiltonian
in Eq. ~23! while the phase-space quantization is done with the approximate
Hamiltonian in Eq.~25!. The inset~b! shows the first two recurrences.
Quantum results are plotted by solid lines, the semiclassical results are plot-
ted by dashed lines, and the results of the simple phase-space quantization
approximation are plotted by dot-dashed lines.

TABLE II. Parameters of H2O.

SI unit Reduced unit

G11 6.3533 1026 kg21 1
G12 29.4273 1024 kg21 20.01484
\ 1.05463 10234 kg m s22 1
D 8.843 10217 J 1
b 2.1753 10210 n21 1
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defined. The approximate Hamiltonian in Eq.~25! provides a
self-consistent way to solve for the energyE. With the en-
ergy term, the quantum numbersnf andnc can be numeri-
cally determined with Eq.~26!, giving the EBK quantized
torus. Accordingly, we evaluate the phase-space quantization
integrals used in the phase-space quantization scheme.

The pump-probe signal at the left-turning point is calcu-
lated and shown in Fig. 5. The quantum and semiclassical
calculations are performed for the full Hamiltonian while the
calculation with simple phase-space quantization is done for
the approximate Hamiltonian in Eq.~25!. Once again the
phase-space quantization scheme correctly predicts the reviv-
als as well as their widths, demonstrating reasonably good
agreement with both quantum and semiclassical calculations.
The shoulders on either side of the revival are mainly due to
the Jacobian factor, which is reproduced by the simple quan-
tization scheme.

VI. CONCLUDING REMARKS

To summarize, a quantitative analysis of the pump-probe
signal in the Morse potential is performed with classical
wave packet dynamics, relating the temporal features to
characteristics of the potential surface. The quantitative rela-
tions, although derived completely from classical mechanics,
provide a way to calculate the fundamental frequencyv0 ,
the anharmonicityb, and the initial internuclear distanceq0 .
An alternative classical wave packet method, coupled Hamil-
tonian dynamics, predicts the center-of-packet motion cor-
rectly but fails to give an accurate description of the width-
of-packet motion. The interference effects neglected in
classical wave packet propagation are incorporated using a
semiclassical final-value representation~a variant of IVR!,
which is specifically designed to calculate pump-probe sig-
nals. Originating from the semiclassical initial-value repre-
sentation, the final-value representation propagates classical
trajectories by the reverse evolution of Newton’s equations.
In this way, the final-value representation reduces the initial
phase-space integration to the final momentum and removes
the divergences at the caustics, resulting in a numerically
stable method that can be easily generalized to multidimen-
sional systems. We demonstrate the efficiency and accuracy
of the semiclassical final-value representation in examples of
a one-dimensional Morse potential and two kinetically
coupled Morse oscillators. In the case when the probe posi-
tion coincides with the initial pump position, we make a
further approximation at the left-turning point and derive a
simple phase-space quantization scheme for the wave packet
dynamics. In this approximation, the initial wave function is
decomposed into segments according to phase-space quanti-
zation, and each segment evolves with the eigenfrequency of
the corresponding orbit or torus. This simple quantization
scheme gives excellent agreement at the left-turning point,
predicting the correct recurrence time and revival width as

well. Based solely on the approximation at the left-turning
point, the simple quantization scheme does not provide ac-
curate information at positions other than the left-turning
point. Calculating wave packet dynamics with classical and
semiclassical dynamics provides powerful tools to interpret
experimental measurements and quantum mechanical calcu-
lations. Further efforts will be devoted to coupled oscillators
and dissipative anharmonic systems.
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27C. Jafféand P. Brumer, J. Chem. Phys.73, 5646~1980!.
28R. T. Lawton and M. S. Child, Mol. Phys.37, 1799~1979!.
29E. L. Sibert III, W. P. Reinhardt, and J. T. Hynes, J. Chem. Phys.77, 3583

~1982!.
30E. L. Sibert III, J. T. Hynes, and W. P. Reinhardt, J. Chem. Phys.77, 3595

~1982!.
31L. Xiao and M. E. Kellman, J. Chem. Phys.90, 6086~1989!.
32M. P. Jacobson, R. J. Silbey, and R. W. Field, J. Chem. Phys.110, 845

~1999!.
33M. P. Jacobson, C. Jung, H. S. Taylor, and R. W. Field, J. Chem. Phys.

111, 600 ~1999!.

6607J. Chem. Phys., Vol. 121, No. 14, 8 October 2004 Dynamics in anharmonic potentials

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


