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As discussed in the companion papér B. Witkoskie and J. S. Cao, J. Chem. Phi2l, 6361

(2004, preceding papérquantitative extraction of information from single molecule experiments

by several proposed indicators is difficult since the experiments only observe certain characteristics
of the system, even though the indicators can contain all available information. This paper shows
how one can circumvent the shortcomings of these indicators by combining information extracted

from indicators with a numerical Bayesian statistical approach. The Bayesian approach determines
the relative probability of various models reproducing the entire sequence of the single molecules
trajectory, instead of binning and averaging over the data, which removes much of this information.

© 2004 American Institute of Physic§DOI: 10.1063/1.1785784

I. INTRODUCTION TO APPLICATION models,P(M). After examining the data through the Baye-
OF BAYESIAN STATISTICS sian formula, we modify our guess about the possible model
parameters, which results in the new distributi®(i|D).

As discussed in a companion paper,formidable theo- . i : . L
retical obstacle facing single molecule analysis is the extrac! NiS guantity tells us about our certainty in predicting the

tion of pertinent information about stochastic chemical pro-values of parameters.

cesses from noisy data. Several authors have proposed As a demonstration of the philosophical approach to
simple indicators to attempt to reveal these proces&mn-  single molecule problems, we will apply the Bayesian
erally, these indicators give qualitative indications of devia-method to the simple four state model that we examine in the
tions from simple Poisson or renewal proces@es, simple  companion papérThe kinetic scheme is outlined in Fig. 1.
single waiting time processgsut quantitative extraction of The model has four states and the interconversion between
the characteristics of these processes is difficult if not imposhe states is governed by Poisson kinetics. Two states are
sible. The major obstacles to using these indicators are thebright” with labels “b1” and “b2” and two states are

data binning and data averaging that they require, which re€rgark” with labels “d1” and “d2.” Although we know that
move much of the available information. The indicators may, '

. . . the molecule is either bright or dark at any instant in time,
also be sensitive to instrument resolution and backgroundj 9 y

counts, whose effects may be difficult to incorporate in theVe do not know the exact state of the molecule, i.e., is it in

analysis. statebl or b2. This scenario is one of the simplest hidden
Despite these difficulties, these indicators can give valuMarkov processes, which we discuss to some extent in the

able qualitative insight into the behavior of the system andeompanion paper.The equation for the probability density

can be used to reduce the number of possible models th#t this simple four state model is given by the simple kinetic

describe the system. After developing this insight and reducequation,

ing the number of models, a more robust numerical routine

that does not require the reduction of information through

data binning or data averaging is required to move beyond a

qualitative description of the system. One candidate numeri-

cal routine that can perform a complete sequence analysis is

Markov Chain Monte Carlo with Bayesian statistfcs.

Markov Chain Monte Carlo with Bayesian statistics starts

bl

|
y
)

P(M’[D) ~ P(D[M")P(M")"

from the use of Bayes formula, which compares the relative kdl
probability that two modeldyl andM’, reproduce a data set,
P(M|D) _ P(DIM)P(M) " Y Y Yol | Yo,
k
b2

In this expressiorP(M|D) is the posterior probability of the
model given the date?(D|M) is the probability of the data

4_:_
given the model, an®(M) is thea priori probability of the k

model, which is often assumed to be uniform or log uniform dz

or a ?OnJUQate priot: "_1 other_words_, fr_om_ our previous g, 1. A diagrammatic depiction of the kinetic scheme analyzed in this
experience we start with a given distribution of possiblepaper and the companion pag&ef. 1.
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Pb1 = (¥p1t+Kp1) Vb2 Kd1 0 Pb1

l:)bz _ Vb1 —(Yb2+Kp2) 0 Kaz Pb2 @
Pd1 Kp1 0 = (Ya1tKa1) Yd2 Pa1 |

Pa2 0 Kp2 Yd1 —(vd2tKa2) | [ pa2

For numerical calculations we use the constarig; ing between states is sufficiently fast so that these times are
=0.75s %, kq;=0.50s !, Kpipo=0.44, kp,=kpKpipe  Sharp variables relative to the duration of the bright and dark
=0.3351, kgo=Kg1Kpip2=0.2251, and y,;=7v,,=741  States, but generalizations can easily be made in this frame-
=vyy=y=0.151. The four parameters we examine arework since we do not require the system to have Poisson
Kp1» Ka1, Kpomi, andy. The numerical values of these ki- kinetics!! From our proposed model, we determine the prob-
netic constants are chosen so that the waiting time distribuability of the initial condition and the probability of the tran-
tion for both the bright and dark states are obviously notsitions at the recorded times. The probability of the sequence
monoexponential, which we determined from the indicatords the result of iterative matrix multiplication.
presented in the companion papdnt the rate of modula- For many optimization applications, the Monte Carlo ap-
tion between the two states does not cause apparent tinpgoach avoids difficulties associated with gradient based
separation in any of the indicators. We also perform thdikelihood maximization. Gradient based maximum likeli-
analysis with all of the parameters free, but this informationhood approaches successfully determined point estimates of
is difficult to present in a visual form so we concentrate onthe most likely set of parameters for single membrane ion
the four parameter fit. channel experiments, but the calculation only determines the
From the model system with the specified parametershest fitting parameters and the curvature of the likelihood
we generate a sequence of bright and dark states for 25 mdknction, P(D|M) at this point:? The Monte Carlo approach
ecules with a duration of 300 s, which allows about 150can show more detail in the probability distribution, such as
observed turnover events per molecule and 7500 pieces afiultiple minima with similar probabilities! The shot noise
data to determine the four parameters. The simulation detaii® the data creates large uncertainties and make these maxi-
used to generate this data are presented in part 1a of tmeum likelihood estimates inaccurate so a global estimation
Appendix. These data sets are much smaller than the datd the parameter distribution becomes important. Often, if
sets collected in the experiments by Lu, Xun, and XBy  the data are not sufficient or other difficulties arise that pre-
applying the “event” correlation indicator discussed in the vent the system from finding the most likely parameters, the
companion papérto this data, one is able to deduce that theprobability density signals these difficulties.
bright and dark decays can both be fit with biexponentials
which suggests that they both contain two states. The event
density also indicates a memory effect, which is confirmed!- APPLICATION OF BAYESIAN APPROACH
by the characteristic function. This information allows one to e applied the Bayesian algorithm outlined in part 2 of
reasonably suggest the four state model as a candidate fge Appendix to the data set generated by the algorithm dis-
describe the system. cussed in part 1a of the Appendix. Since the kinetic rates are
Given the kinetic scheme, we can simply calculatepositive quantities and we do not initially know the magni-
P(D|M) through iterative matrix multiplication. Given the tyde of these rates a natural initi@ priori) distribution for
initial state of the system, bright or dark, and the times of thgne kinetic rates is log-uniformP(M)=1/M.% As a result the
transitions{t;} the probability of the data given the model is Monte Carlo jump sizes are proportional to the magnitude of
the kinetic rates. This log-uniform distribution is not normal-
PD={t}M)=1T| [T Ke®a*Dlidt;|6*)peq,  (3)  izable (improped, but the likelihoodP(D|M) will give the
' necessary truncation to prevent any problems associated with
where the matrix definitions follow those used in the com-this normalization. Othea priori distributions are possible
panion paper and previous worR8 8(*) is determined by based on the analysis with other indicators. From the multi-
the initial condition. Since we can calculate the relative prob-exponential fit determined by the event correlations, one may
abilities, we can perform Monte Carlo on the probabilitieswant to restrict the eigenvalues of the matrix to a small in-
to determine models that are consistent with the data. Theerval around the fitted parameters.
exact method of calculating the probabilities and performing  Figure 2 shows two-dimensional projections onto the
the Monte Carlo simulation are outlined in part 2 of theprincipal axes of the posterior probability density for the
Appendix. parameters determined from a data set, and Table | contains
The approach can also be extended to experiments witthe mean and covariance of these parameters. The predicted
more complex data, such as photon counting statistics disnean values for these constants are very accurate and the
cussed briefly in the companion papémnd can incorporate variances are fairly small, which shows that the data are
data deficiencies or statistical fluctuations from sources othesufficient to determine these parameters. We note that the
than the system such as instrument resolution andhaximum likelihood value is not necessarily in the center of
responsé&:!® For most of the analysis we assume the switchthe distribution, which shows that the distribution is not
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FIG. 3. Two-dimensional projections onto the principal hyperplane of the
FIG. 2. Contour plots of two-dimensional projections onto the principal vectors of the best fitting parameters encountered during a Monte Carlo
hyperplanes of the probability density generated by the Monte Carlo simusimulation for 500 different data sets. In comparison, Fig. 2 is the total
lation that determines the four parameters for the model if&qThe gray probability determined from a single data set, but this plot shows the peak
scale is measured in number of points febx 10° Monte Carlo Samples.  position for several data sets. The optimal parameters are distributed around
The black squares mark the positions of the parameters that generated tHie white squares that label the parameters that generated the data sets.
data. Each peak is pointed to by a two component label for that peak, suchifferent symbols are used for each projection to show the single outlier.
as[ y,kq1]. The first entry corresponds to the horizontal axis and the secondimilar to Fig. 2, each cluster is pointed to by a label suchyakg,]. The
entry corresponds to the vertical axi§,,,; has the largest uncertainty since first entry corresponds to the horizontal axis and the second entry corre-
it must adjust itself to fluctuations ik,; andkg; . sponds to the vertical axis.

Gaussian. Because the eigenvalues and eigenvectors depgitameters, but more importantly, convergence to parameters
on the parameters through an inherently nonlinear functionar removed from the actual parameters are rare.
form, the asymmetry is not surprising. The largest uncer-  The most likely point estimates encountered during a
tainty is in the constariy,p; . This constant enters into the Monte Carlo simulation for 500 different sets of data with 25
determination of the eigenvalues through multiplication withmolecules and 300 s trajectories are plotted in Fig. 3. Al-
k1 andkgy; so the additional uncertainty comes from com-though the Bayesian philosophy concerns determining the
pensation for fluctuation in these other quantities. entire probability distribution, the point estimates give good

The predicted maximum likelihood estimate is slightly insight into the reproducibility of the simulation. From this
offset from the real parameters. Many sets of data examineglot it is apparent that the predicted maximum likelihood
in simulations converge to a roughly Gaussian distributionparameters are distributed around the actual parameters, ex-
with a mean that is slightly offset from the actual parametergept for one outlying data point. The distribution of the
although some simulations fail to converge and a few simumaximum likelihood estimates resemble the distributions of
lations converged to a set of parameters that are far from thgie probability distribution of the parameters for a single set
actual set of parameters used to generate the data. Even f6F data. The stochastic nature of the underlying dynamics
data sets with as few as five molecules, many simulationgauses these offsets. This noise makes the use of simple
predict a maximum likelihood estimates around the actuamaximum likelihood point estimates of the parameters statis-

tically uncertain unless other analysis is performed.
To help determine the offset caused by the noise in real

TABLE I M(_ef:m and co_variancefor the Monte Carlo simulation presen_teq i”single molecule experiments, we can break a large data set
Fig. 2. Stability analysis determines normal modes with standard deviations S
of 5.1 2.1, 1.8, 1.810 2. into seyeral subsets and perform optlmlzatlo'n of the param-
eters with these subsets and compare optimal parameters,

Actual values this is known as cross validatidA. For this application,
Koy Kay 4 Kbam1 breaking data sets up by taking segments of single molecule
0.75 0.50 0.10 0.44 sequences or by performing the analysis on different single
Mean values molecule sequences has about the same effect on the cross
K1 Ka1 2 Kb2m1 validation. In fact, future analysis concerns a data set that
0.77 050 0.10 043 contains a single long sequeritMixing these subsets will
Covariancex 10° improve our predictions of offsets and allow us to understand
Kp1 Ka1 2 Kb2m1 the sensitivity of parameters to the intrinsic noise in these
Koy 0.86 0.33 0.42 —0.73 systems. Breaking the data up into smaller subsets will also
Ky 0.39 8;; :8'32 allow the simulation to search larger regions of parameters
gbzm ' 14 space since the sensitivity of the Bayesian score scales lin-

early with the length of the sequence and number of mol-
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TABLE Il. Mean and covariance for the Monte Carlo simulation presented
in Fig. 4. Note that the data are generated from a model witmtaidut the

fit is performed with a single. Stability analysis determines normal modes
with standard deviations of 6.7, 4.2, 1.8, .60 2. Because the model with

a singley did not generate the data, there is a fairly large varianceyfor
relative to the other parameters.

0.9r

08 %
K, k1o H

b2/b1’ b1
0.7

0.6 @ % @ Actual values
B Kp1 Ka1 Y Kbam1
T 03 0.75 0.50 0.10/0.20 0.44
0ab Wy kd,l [72 Kyl [sz’m K] Ky Kyl Mean values
G Kps Kz 4 Kbam1
0.82 0.57 0.22 0.47
02 i, —>
Kot Kot = Covariancex 10
0.1 Koo 141 = LA B - Kp1 Ka1 Y Kb2m1
Koy 0.88 0.33 0.52 -0.82
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FIG. 4. Contour plots of two-dimensional projections of the probability
density generated by the Monte Carlo simulation that determined the four
parameter fit to the five parameter model discussed in Sec. Il. The black
squares mark the positions of the parameters that generated the data. The

distribution of y is much wider than the distribution presented in Fig. 2,
which reflects the fact that this parameter is not defined for the model thathe role of temperature in the sampling of a partition func-
generated the data. Similar to Fig. 2, each cluster is pointed to by a labdion, large amounts of data correspond to a very low tem-

such ag y,kq1]. The first entry corresponds to the horizontal axis and theperature and can result in a failure to explore the relevant
second entry corresponds to the vertical axis. parameters space due to trapping in local minima. This trap-
ping phenomenon is analogous to diffusion on a rough po-

ecules. In many way, the length of the sequences corresponi1tial energy surface’. We found that the use of 250 or
to a fictitious inverse Boltzmann temperature. more molecules with a trajectory length of 300 s leads to
trapping in local minimum. This trapping shows that the sur-
face is generally not monotonically decreasing to the global
minimum. One should use standard approaches such as an-

The Monte Carlo simulation generally failed to convergenealing to help the system find the global minimihOne
to any value when the data sets are not consistent with anyiethod of incorporating annealing is the addition and mixing
parametrization of the model. We tested this property by tryof data during the simulation, i.e., exchanges data used in the
ing to fit the simple four parameter model to a sequenceptimization with unused data during the simulation. The
created from a stretched exponential waiting time distribumixing is important to avoid certain pieces of data from
tion. Both the brlght and dark waiting time distributions are dominating the optimization and preventing convergence to
given by 9/& (941" \which has a characteristic time of parameters that are consistent with all of the data.
8/3, which is comparable te,;' + k,, /2 in Eq.(2). When the The effects of excessive data, such as trapping in local
model tried to fit this data, it would either set many of its minima, are not a consideration even if we perform the op-
parameters to zer@large negative values for the log of the timization of all eight parameters with no constraints. Using
parametensor wander through the parameter space without0 molecules, instead of 25, we generated data with the four
converging. parameter model, but let all eight parameters vary indepen-

For situations where the difference between the proposedently and then imposekl,; >k, at the end of each Monte
model and the actual kinetics is not as great as the stretchdgarlo iteration. Most of the simulations are able to locate a
exponential, the manifestation of errors are more subtle. Wglobal minimum that is near the actual parameters. The re-
demonstrate the subtlety by attempting to fit data generatesults for one of these simulations is presented in Table III.
from a five parameter model with the original four parameterThe largest standard deviation in a mode-i8.5%, which is
model. The five parameter model is also a four state moded typical value for most simulations. For 25 molecules, the
with the samek,;, Kq;, andK ., but two different values largest standard deviation of one of the normal modes was
for the ys. For this demonstration, we sef,; =174,  around~15%-20%, which shows that the certainty in the
=0.1s Yandyy,=y4,=0.2s L. Figure 4 and Table Il sum- parameters improve roughly as the expecte¢hldcaling as
marize the results of one of the best fits of this optimizationmore data are added.
Although all of the parameters are shifted relative to the true
parameters, the greatest uncertainty appears in the sjngle
since this quantity is not well defined in the model that gen-
erated the data.

As with all parametrizations, the data requirements scale  The four state model is often compared with the fluctu-
with the number of parameters. For more complex modelsating bottleneck modeli.e., the diffusion controlled reac-
more data may be needed. Since the amount of data servéien) in the literaturé®=815-1 The fluctuating bottleneck

A. Variations of the simulation

B. Four state model and the fluctuating bottleneck
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TABLE Ill. Mean and covariance for the Monte Carlo simulation with eight fusion model will be discussed in applications to single pho-
parameters. Stability analysis determines the normal modes with standartqm experiment§ Table IV compares the means and covari-
deviations of 8.5, 5.8, 4.8, 3.4, 2.1, 1.7, 1.1, 080 2. o . .

ances for a typical rufitypical average value and variance

Actual values The first important observation is that the optimal fitting pa-
kpt  kpp ket ke  vm Vb2 Ya1 Yd2 rameters to the fluctuating bottleneck model are different
075 033 050 022 010 010 010 010 from the parameters suggested by Brown’s procedeven
Mean values if the amount of data is increase® Maximizing statistical
Kot koo kai Ka2  ve1 Vo2 Y1 Yz overlap of the sequences between two models is actually a
075 032 050 019 012 009 011 014 npontrivial problem, and Brown's parametrization only
Covariancex 10° matches correlation functions, which does not necessarily
kot Koo Kot Kaz  Yor Va2 Yar  Yaz maximize the overlap of probability.
K, 30 10 11 03 18 025 088 —14 From the covariance matrices it is apparent thgtand
K2 1.5 08 075 078 -080 037 083 K . have comparable variances for both data sets, but the
ka1 10 046 085 -022 6.7 046 variances ok, vp1, andy,, are over twice as large for the
Kz 087 061 -019 036 -0.92 . ;
Yor 27 12 011 -og7 fits to the fluctuating bottleneck model. The larger uncer-
Vo2 21 027 -0.01 tainty in the parameters can be used as a flag to suggest the
Ya1 16 055 exploration of other models, which can then be compared
Y2 21 through the use of the Bayesian score. Similar to the choice

of optimal parameters, one can use Bayesian statistics to
choose from models with different physical features or com-

model describes a one-dimensional diffusion process in Rlexity. Comparison of seemingly disjoint models has a rich

harmonic well with a reaction rate that depends harmonicallyistory with several aspects including determination of when
on the coordinate, to increase the number of parameters, so this step is omitted

) here for brevity, but several references address model com-
9P (1)=DVP.(t)+ V[kxP.(1)] parison through Bayesian methddsMany of these com-
— ko X2P. (1) + ko X2P . (4) parisons use the Bayesian score that we calculate to perform

) ) ) our Monte Carlo simulations.
In the companion papérit was demonstrated that the differ-

ence between the characteristic function of the fluctuating

bottleneck model wittD=k=x, =1 andx_;=Kgg, =2,

and a four state model withyy,;=v4;=0.289706, y,»  |II. CONCLUSION

:’yd2:1.710 29, kbj_:l/Z(dl:OA-l? 953, kbzzl/Z(dz

=4.436 15 is small with the maximum deviation in the char-  Single molecule experiments offer an opportunity to gain

acteristic function of=5%, which is smaller than the ap- significant insight into the physics of glasses, biomolecules,

proximate noise levels for the reasonable amounts of data.and other complex systems. The insight is limited by both
We consider the time traces of 25 molecules for 100 timehe amount of collected data and the analysis performed on

units generated from both the fluctuating bottleneck and théhe data. Previously proposed indicators and other quantities

four state model. For the given model parameters, each moiised in the analysis of single molecule experiments contain

ecule performs=150 turn-overs. From this data, we attempt useful information that give qualitative insight into the phys-

to find a four state model that optimizes the fit to both sets ofcs of the system, as demonstrated in previous

data. Applications of Bayesian statistics to a continuous difreference$:*~8The useful information includes various time

TABLE IV. Mean and covariance for the Monte Carlo simulations attempting to fit the four state model to data
generated by a four state model and by the fluctuating bottleneck model. Stability analysis determines the
normal modes with standard deviations of 40, 21, 14, 8.6x4( 2 for fitting the four state model to itself and
standard deviations of 44, 23, 20, 8.1, 880 2 for fitting the four state model to the fluctuating bottleneck.

Actual values for four state

Kp1 Kp2 Keq Vb1 Vb2
0.42 4.4 2.0 0.29 1.7
Mean valuedfour state/bottlenegk
Kp1 Kp2 Keg Vb1 Vo2
0.44/0.41 4.6/4.1 2.0/2.0 0.26/0.43 1.7/2.2
Covariancex 10° (four state/bottlenegk

Kp1 Kp2 Keq Vb1 Vb2
Kp1 0.39/0.82 1.9/4.9 -0.67~0.57 —0.20/~0.95 -0.18/~-0.21
Ko 43./51. —-8.4/-7.2 —-1.0/-4.0 8.4/17
Keq 6.4/6.6 1.0107%/2.0-10 2 —0.81/-0.45
Vo1 0.55/2.3 1.8/4.5
Vb2 20./40.
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constants for the relaxation of the system and connectivitpampled from this steady state. After choosing the initial
between these relaxation tim@®., memory effects but the  state, the time of a transition from this state to either the
extraction of quantitative information from these indicatorsother connected states is drawn from an exponential distri-
is difficult because the indicators require data binning andution with characteristic time y+ks) !, where s=b1,
data averaging which remove large amounts of useful inforb2, d1, d2 denotes the current state. Once this time is cho-
mation. sen, the new state is chosen. The probability of making an
To move beyond indicator analysis requires a numericalinseen “bright-bright” or “dark-dark” transition is given by
method that does not require ill-conditioned data inversion orys/(ys+Ks), and one minus this quantity is the probability
averages out information contained in the data. Bayesianf making a visible transition. If a visible transition is ob-
analysis with Monte Carlo optimization is one strong candi-served, the transition time is recorded as part of the single
date. Implementing Bayesian analysis still requires the use aholecule trajectory. After the new state is chosen, the simu-
the previous indicators to determine constraints on possiblition is continued until 300 s has elapsed, but it is possible
models, such as the number of states or restrictions on eigeto incorporate photo-bleaching events. Although we assume
values, but the Bayesian approach gives quantitative estthat the transitions are sharp in this paper, we can easily
mates of the parameters and uncertainties in these pararsimulate systems with broader transition regions by adding
eters. By incorporating the constraints discovered througlhe uncertainty in the transition time.
the indicators into tha priori distribution of possible mod-
els, one can use Monte (;ar_lo with the Bayesian score as the Fluctuating bottleneck model
Boltzmann energy to optimize the parameters. Applications o ) ] )
of this approach to a simple four state model demonstrate its A Similar simulation method is used to generate the data

capabilities to reproduce the correct parametrization from 40F the fluctuating bottieneck model. The equilibrium distri-
limited data sets and give uncertainties in these parameter@ution is given by

The Bayesian approach also has the ability to distinguish K 1 ,
different models as shown by the comparison of the fluctu-  (peq) . =—— g~ (W2DX* (A1)
ating bottleneck and four state models. Ke+ks J2mk/D

Many other scenarios exist and should be explored, sucithis distribution can be easily sampled. Given the current
as the role of photon statistics and continuous distributions ofosition x, we choose a small time stefi~D x 10 °. We

states. The Bayesian approach performed well in our tests %falculate the probability that the system reactsel k=0

some of these other scenarios, but additional analysis ¢y system reacts we record the time of the event. Then we

quires motivation from applications to real systems so Wepropagate the system under normal Brownian motion in a
will not go into detail about other simulations with computer harmonic oscillator to choose a newvalue. so that our

generated data. Preliminary results from the analysis O{emporal resolution ir=10-®D, which is much smaller that
single photon emission events from fluorescence quenchinﬁ;1e kinetic rates—4.5D

experiment are very promisirfg° Of all the existing ap-
proaches, the Bayesian approach is the most reliable and _
robust method of numerically analyzing single molecule2- The Monte Carlo algorithm

data, and we encourage experimentalists to explore the ap-  Given the data generated in part 1a of the Appendix, we
plication of this approach to their single molecule data. Theattempt to determine the relative likelihood of various pos-
Bayesian approach will become a standard method of singlgiple parameters through a standard Metropolis Monte Carlo

molecule analysis in the future. algorithm. More complex algorithms may be necessary, de-
pending on the amount and complexity of the data, as well as
ACKNOWLEDGMENTS the model being considered. The probability of a specific
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Scholar award. paper and thes. selects the initial conditioh.dt; are the
small widths of the time bins, which will generally be deter-
APPENDIX: SIMULATION DETAILS mined by instrument concerns as well as the photon emission

rates from the bright and dark states as discussed in the com-
panion papet.If dt; is large relative to the kinetic constants,
a. Four state model the appropriate binning needs to be considered. Note that the
The four state numerical example that we examine irelements ofeKa*M% must be evaluated through standard
this paper is depicted in Fig. 1 and discussed in the compareigenmode analysis. Since we care about relative probabili-
ion paper: The kinetics for the system are given by the ki- ties of different kinetic matrices, we can neglect the bin sizes
netic matrix equation, Eq(2). From the kinetic rates the dt;. For a long sequence the matrix products quickly go to
steady state solutiom,q can be determined. For each of the zero. To prevent difficulties associated with zeroing out of
25 molecular trajectories the initial state is randomlythe matrix products after each multiplication kie(Ka* Dt

1. Generation of data
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we renormalize the resulting vectgr,= 7;KeKatDtip, eters, else we conditionally accept the new parameters with

The constanty; is chosen so that;(p;)j = 1. Herei denotes probability €%i+175.
the number of matrix multiplications. The sum of the logs of ~ For a short sequence and a small number of states, we
all of the renormalization constants is the Bayesian scorean readily evaluate the Bayesian score for every possible
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