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As discussed in the companion paper@J. B. Witkoskie and J. S. Cao, J. Chem. Phys.121, 6361
~2004!, preceding paper#, quantitative extraction of information from single molecule experiments
by several proposed indicators is difficult since the experiments only observe certain characteristics
of the system, even though the indicators can contain all available information. This paper shows
how one can circumvent the shortcomings of these indicators by combining information extracted
from indicators with a numerical Bayesian statistical approach. The Bayesian approach determines
the relative probability of various models reproducing the entire sequence of the single molecules
trajectory, instead of binning and averaging over the data, which removes much of this information.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1785784#

I. INTRODUCTION TO APPLICATION
OF BAYESIAN STATISTICS

As discussed in a companion paper,1 a formidable theo-
retical obstacle facing single molecule analysis is the extrac-
tion of pertinent information about stochastic chemical pro-
cesses from noisy data. Several authors have proposed
simple indicators to attempt to reveal these processes.1 Gen-
erally, these indicators give qualitative indications of devia-
tions from simple Poisson or renewal processes~i.e., simple
single waiting time processes!, but quantitative extraction of
the characteristics of these processes is difficult if not impos-
sible. The major obstacles to using these indicators are the
data binning and data averaging that they require, which re-
move much of the available information. The indicators may
also be sensitive to instrument resolution and background
counts, whose effects may be difficult to incorporate in the
analysis.

Despite these difficulties, these indicators can give valu-
able qualitative insight into the behavior of the system and
can be used to reduce the number of possible models that
describe the system. After developing this insight and reduc-
ing the number of models, a more robust numerical routine
that does not require the reduction of information through
data binning or data averaging is required to move beyond a
qualitative description of the system. One candidate numeri-
cal routine that can perform a complete sequence analysis is
Markov Chain Monte Carlo with Bayesian statistics.2

Markov Chain Monte Carlo with Bayesian statistics starts
from the use of Bayes formula, which compares the relative
probability that two models,M andM 8, reproduce a data set,

P~M uD !

P~M 8uD !
5

P~DuM !P~M !

P~DuM 8!P~M 8!
. ~1!

In this expressionP(M uD) is the posterior probability of the
model given the data,P(DuM ) is the probability of the data
given the model, andP(M ) is thea priori probability of the
model, which is often assumed to be uniform or log uniform
or a conjugate prior.3,4 In other words, from our previous
experience we start with a given distribution of possible

models,P(M ). After examining the data through the Baye-
sian formula, we modify our guess about the possible model
parameters, which results in the new distributionP(M uD).
This quantity tells us about our certainty in predicting the
values of parameters.

As a demonstration of the philosophical approach to
single molecule problems, we will apply the Bayesian
method to the simple four state model that we examine in the
companion paper.1 The kinetic scheme is outlined in Fig. 1.
The model has four states and the interconversion between
the states is governed by Poisson kinetics. Two states are
‘‘bright’’ with labels ‘‘ b1’’ and ‘‘ b2,’’ and two states are
‘‘dark’’ with labels ‘‘ d1’’ and ‘‘ d2.’’ Although we know that
the molecule is either bright or dark at any instant in time,
we do not know the exact state of the molecule, i.e., is it in
stateb1 or b2. This scenario is one of the simplest hidden
Markov processes, which we discuss to some extent in the
companion paper.1 The equation for the probability density
in this simple four state model is given by the simple kinetic
equation,

FIG. 1. A diagrammatic depiction of the kinetic scheme analyzed in this
paper and the companion paper~Ref. 1!.
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For numerical calculations we use the constants,kb1

50.75 s21, kd150.50 s21, Kb1/b250.44, kb25kb1Kb1/b2

50.33 s21, kd25kd1Kb1/b250.22 s21, and gb15gb25gd1

5gd15g50.1 s21. The four parameters we examine are
kb1 , kd1 , Kb2/b1 , andg. The numerical values of these ki-
netic constants are chosen so that the waiting time distribu-
tion for both the bright and dark states are obviously not
monoexponential, which we determined from the indicators
presented in the companion paper,1 but the rate of modula-
tion between the two states does not cause apparent time
separation in any of the indicators. We also perform the
analysis with all of the parameters free, but this information
is difficult to present in a visual form so we concentrate on
the four parameter fit.

From the model system with the specified parameters,
we generate a sequence of bright and dark states for 25 mol-
ecules with a duration of 300 s, which allows about 150
observed turnover events per molecule and 7500 pieces of
data to determine the four parameters. The simulation details
used to generate this data are presented in part 1a of the
Appendix. These data sets are much smaller than the data
sets collected in the experiments by Lu, Xun, and Xie.5 By
applying the ‘‘event’’ correlation indicator discussed in the
companion paper1 to this data, one is able to deduce that the
bright and dark decays can both be fit with biexponentials
which suggests that they both contain two states. The event
density also indicates a memory effect, which is confirmed
by the characteristic function. This information allows one to
reasonably suggest the four state model as a candidate to
describe the system.

Given the kinetic scheme, we can simply calculate
P(DuM ) through iterative matrix multiplication. Given the
initial state of the system, bright or dark, and the times of the
transitions$t i% the probability of the data given the model is

P~D5$t i%uM !51TF)
i

Ke~Kd1G!t idti Gd~6 !req, ~3!

where the matrix definitions follow those used in the com-
panion paper and previous work.1,6–8 d (6) is determined by
the initial condition. Since we can calculate the relative prob-
abilities, we can perform Monte Carlo on the probabilities
to determine models that are consistent with the data. The
exact method of calculating the probabilities and performing
the Monte Carlo simulation are outlined in part 2 of the
Appendix.

The approach can also be extended to experiments with
more complex data, such as photon counting statistics dis-
cussed briefly in the companion paper,1,9 and can incorporate
data deficiencies or statistical fluctuations from sources other
than the system such as instrument resolution and
response.9,10 For most of the analysis we assume the switch-

ing between states is sufficiently fast so that these times are
sharp variables relative to the duration of the bright and dark
states, but generalizations can easily be made in this frame-
work since we do not require the system to have Poisson
kinetics.11 From our proposed model, we determine the prob-
ability of the initial condition and the probability of the tran-
sitions at the recorded times. The probability of the sequence
is the result of iterative matrix multiplication.

For many optimization applications, the Monte Carlo ap-
proach avoids difficulties associated with gradient based
likelihood maximization. Gradient based maximum likeli-
hood approaches successfully determined point estimates of
the most likely set of parameters for single membrane ion
channel experiments, but the calculation only determines the
best fitting parameters and the curvature of the likelihood
function,P(DuM ) at this point.12 The Monte Carlo approach
can show more detail in the probability distribution, such as
multiple minima with similar probabilities.11 The shot noise
in the data creates large uncertainties and make these maxi-
mum likelihood estimates inaccurate so a global estimation
of the parameter distribution becomes important. Often, if
the data are not sufficient or other difficulties arise that pre-
vent the system from finding the most likely parameters, the
probability density signals these difficulties.

II. APPLICATION OF BAYESIAN APPROACH

We applied the Bayesian algorithm outlined in part 2 of
the Appendix to the data set generated by the algorithm dis-
cussed in part 1a of the Appendix. Since the kinetic rates are
positive quantities and we do not initially know the magni-
tude of these rates a natural initial~a priori! distribution for
the kinetic rates is log-uniform,P(M )}1/M .3 As a result the
Monte Carlo jump sizes are proportional to the magnitude of
the kinetic rates. This log-uniform distribution is not normal-
izable ~improper!, but the likelihoodP(DuM ) will give the
necessary truncation to prevent any problems associated with
this normalization. Othera priori distributions are possible
based on the analysis with other indicators. From the multi-
exponential fit determined by the event correlations, one may
want to restrict the eigenvalues of the matrix to a small in-
terval around the fitted parameters.

Figure 2 shows two-dimensional projections onto the
principal axes of the posterior probability density for the
parameters determined from a data set, and Table I contains
the mean and covariance of these parameters. The predicted
mean values for these constants are very accurate and the
variances are fairly small, which shows that the data are
sufficient to determine these parameters. We note that the
maximum likelihood value is not necessarily in the center of
the distribution, which shows that the distribution is not
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Gaussian. Because the eigenvalues and eigenvectors depend
on the parameters through an inherently nonlinear functional
form, the asymmetry is not surprising. The largest uncer-
tainty is in the constantKb2/b1 . This constant enters into the
determination of the eigenvalues through multiplication with
kb1 and kd1 so the additional uncertainty comes from com-
pensation for fluctuation in these other quantities.

The predicted maximum likelihood estimate is slightly
offset from the real parameters. Many sets of data examined
in simulations converge to a roughly Gaussian distribution
with a mean that is slightly offset from the actual parameters
although some simulations fail to converge and a few simu-
lations converged to a set of parameters that are far from the
actual set of parameters used to generate the data. Even for
data sets with as few as five molecules, many simulations
predict a maximum likelihood estimates around the actual

parameters, but more importantly, convergence to parameters
far removed from the actual parameters are rare.

The most likely point estimates encountered during a
Monte Carlo simulation for 500 different sets of data with 25
molecules and 300 s trajectories are plotted in Fig. 3. Al-
though the Bayesian philosophy concerns determining the
entire probability distribution, the point estimates give good
insight into the reproducibility of the simulation. From this
plot it is apparent that the predicted maximum likelihood
parameters are distributed around the actual parameters, ex-
cept for one outlying data point. The distribution of the
maximum likelihood estimates resemble the distributions of
the probability distribution of the parameters for a single set
of data. The stochastic nature of the underlying dynamics
causes these offsets. This noise makes the use of simple
maximum likelihood point estimates of the parameters statis-
tically uncertain unless other analysis is performed.

To help determine the offset caused by the noise in real
single molecule experiments, we can break a large data set
into several subsets and perform optimization of the param-
eters with these subsets and compare optimal parameters,
this is known as cross validation.13 For this application,
breaking data sets up by taking segments of single molecule
sequences or by performing the analysis on different single
molecule sequences has about the same effect on the cross
validation. In fact, future analysis concerns a data set that
contains a single long sequence.9 Mixing these subsets will
improve our predictions of offsets and allow us to understand
the sensitivity of parameters to the intrinsic noise in these
systems. Breaking the data up into smaller subsets will also
allow the simulation to search larger regions of parameters
space since the sensitivity of the Bayesian score scales lin-
early with the length of the sequence and number of mol-

FIG. 2. Contour plots of two-dimensional projections onto the principal
hyperplanes of the probability density generated by the Monte Carlo simu-
lation that determines the four parameters for the model in Eq.~2!. The gray
scale is measured in number of points for'53106 Monte Carlo Samples.
The black squares mark the positions of the parameters that generated the
data. Each peak is pointed to by a two component label for that peak, such
as@g,kd1#. The first entry corresponds to the horizontal axis and the second
entry corresponds to the vertical axis.Kb2/b1 has the largest uncertainty since
it must adjust itself to fluctuations inkb1 andkd1 .

TABLE I. Mean and covariance for the Monte Carlo simulation presented in
Fig. 2. Stability analysis determines normal modes with standard deviations
of 5.1, 2.1, 1.8, 1.331022.

Actual values
kb1 kd1 g Kb2/b1

0.75 0.50 0.10 0.44

Mean values
kb1 kd1 g Kb2/b1

0.77 0.50 0.10 0.43

Covariance3103

kb1 kd1 g Kb2/b1

kb1 0.86 0.33 0.42 20.73
kd1 0.39 0.27 20.50
g 0.89 20.74
Kb2/b1 1.4

FIG. 3. Two-dimensional projections onto the principal hyperplane of the
vectors of the best fitting parameters encountered during a Monte Carlo
simulation for 500 different data sets. In comparison, Fig. 2 is the total
probability determined from a single data set, but this plot shows the peak
position for several data sets. The optimal parameters are distributed around
the white squares that label the parameters that generated the data sets.
Different symbols are used for each projection to show the single outlier.
Similar to Fig. 2, each cluster is pointed to by a label such as@g,kd1#. The
first entry corresponds to the horizontal axis and the second entry corre-
sponds to the vertical axis.
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ecules. In many way, the length of the sequences corresponds
to a fictitious inverse Boltzmann temperature.

A. Variations of the simulation

The Monte Carlo simulation generally failed to converge
to any value when the data sets are not consistent with any
parametrization of the model. We tested this property by try-
ing to fit the simple four parameter model to a sequence
created from a stretched exponential waiting time distribu-
tion. Both the bright and dark waiting time distributions are
given by 9/8e2@(9)/4t#1/2

, which has a characteristic time of
8/3, which is comparable tokb1

211kb2
21/2 in Eq.~2!. When the

model tried to fit this data, it would either set many of its
parameters to zero~large negative values for the log of the
parameters! or wander through the parameter space without
converging.

For situations where the difference between the proposed
model and the actual kinetics is not as great as the stretched
exponential, the manifestation of errors are more subtle. We
demonstrate the subtlety by attempting to fit data generated
from a five parameter model with the original four parameter
model. The five parameter model is also a four state model
with the samekb1 , kd1 , andKb2/b1 , but two different values
for the g’s. For this demonstration, we setgb15gd1

50.1 s21 andgb25gd250.2 s21. Figure 4 and Table II sum-
marize the results of one of the best fits of this optimization.
Although all of the parameters are shifted relative to the true
parameters, the greatest uncertainty appears in the singleg
since this quantity is not well defined in the model that gen-
erated the data.

As with all parametrizations, the data requirements scale
with the number of parameters. For more complex models,
more data may be needed. Since the amount of data serves

the role of temperature in the sampling of a partition func-
tion, large amounts of data correspond to a very low tem-
perature and can result in a failure to explore the relevant
parameters space due to trapping in local minima. This trap-
ping phenomenon is analogous to diffusion on a rough po-
tential energy surface.14 We found that the use of 250 or
more molecules with a trajectory length of 300 s leads to
trapping in local minimum. This trapping shows that the sur-
face is generally not monotonically decreasing to the global
minimum. One should use standard approaches such as an-
nealing to help the system find the global minimum.15 One
method of incorporating annealing is the addition and mixing
of data during the simulation, i.e., exchanges data used in the
optimization with unused data during the simulation. The
mixing is important to avoid certain pieces of data from
dominating the optimization and preventing convergence to
parameters that are consistent with all of the data.

The effects of excessive data, such as trapping in local
minima, are not a consideration even if we perform the op-
timization of all eight parameters with no constraints. Using
50 molecules, instead of 25, we generated data with the four
parameter model, but let all eight parameters vary indepen-
dently and then imposedkb1.kb2 at the end of each Monte
Carlo iteration. Most of the simulations are able to locate a
global minimum that is near the actual parameters. The re-
sults for one of these simulations is presented in Table III.
The largest standard deviation in a mode is;8.5%, which is
a typical value for most simulations. For 25 molecules, the
largest standard deviation of one of the normal modes was
around;15%–20%, which shows that the certainty in the
parameters improve roughly as the expected 1/An scaling as
more data are added.

B. Four state model and the fluctuating bottleneck

The four state model is often compared with the fluctu-
ating bottleneck model~i.e., the diffusion controlled reac-
tion! in the literature.6–8,16–18 The fluctuating bottleneck

FIG. 4. Contour plots of two-dimensional projections of the probability
density generated by the Monte Carlo simulation that determined the four
parameter fit to the five parameter model discussed in Sec. II. The black
squares mark the positions of the parameters that generated the data. The
distribution of g is much wider than the distribution presented in Fig. 2,
which reflects the fact that this parameter is not defined for the model that
generated the data. Similar to Fig. 2, each cluster is pointed to by a label
such as@g,kd1#. The first entry corresponds to the horizontal axis and the
second entry corresponds to the vertical axis.

TABLE II. Mean and covariance for the Monte Carlo simulation presented
in Fig. 4. Note that the data are generated from a model with twog’s, but the
fit is performed with a singleg. Stability analysis determines normal modes
with standard deviations of 6.7, 4.2, 1.8, 1.631022. Because the model with
a singleg did not generate the data, there is a fairly large variance forg
relative to the other parameters.

Actual values
kb1 kd1 g Kb2/b1

0.75 0.50 0.10/0.20 0.44

Mean values
kb1 kd1 g Kb2/b1

0.82 0.57 0.22 0.47

Covariance3103

kb1 kd1 g Kb2/b1

kb1 0.88 0.33 0.52 20.82
kd1 0.42 0.35 20.56
g 4.0 20.9
Kb2/b1 1.5
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model describes a one-dimensional diffusion process in a
harmonic well with a reaction rate that depends harmonically
on the coordinate,

] tP6~ t !5D¹2P6~ t !1“@kxP6~ t !#

2k6x2P6~ t !1k7x2P7 . ~4!

In the companion paper,1 it was demonstrated that the differ-
ence between the characteristic function of the fluctuating
bottleneck model withD5k5k151 andk215Keqk152,
and a four state model withgb15gd150.289 706, gb2

5gd251.710 29, kb151/2kd150.417 953, kb251/2kd2

54.436 15 is small with the maximum deviation in the char-
acteristic function of'5%, which is smaller than the ap-
proximate noise levels for the reasonable amounts of data.

We consider the time traces of 25 molecules for 100 time
units generated from both the fluctuating bottleneck and the
four state model. For the given model parameters, each mol-
ecule performs'150 turn-overs. From this data, we attempt
to find a four state model that optimizes the fit to both sets of
data. Applications of Bayesian statistics to a continuous dif-

fusion model will be discussed in applications to single pho-
ton experiments.9 Table IV compares the means and covari-
ances for a typical run~typical average value and variance!.
The first important observation is that the optimal fitting pa-
rameters to the fluctuating bottleneck model are different
from the parameters suggested by Brown’s procedure~even
if the amount of data is increased!.16 Maximizing statistical
overlap of the sequences between two models is actually a
nontrivial problem, and Brown’s parametrization only
matches correlation functions, which does not necessarily
maximize the overlap of probability.

From the covariance matrices it is apparent thatkb2 and
Keq have comparable variances for both data sets, but the
variances ofkb1 , gb1 , andgb2 are over twice as large for the
fits to the fluctuating bottleneck model. The larger uncer-
tainty in the parameters can be used as a flag to suggest the
exploration of other models, which can then be compared
through the use of the Bayesian score. Similar to the choice
of optimal parameters, one can use Bayesian statistics to
choose from models with different physical features or com-
plexity. Comparison of seemingly disjoint models has a rich
history with several aspects including determination of when
to increase the number of parameters, so this step is omitted
here for brevity, but several references address model com-
parison through Bayesian methods.19 Many of these com-
parisons use the Bayesian score that we calculate to perform
our Monte Carlo simulations.

III. CONCLUSION

Single molecule experiments offer an opportunity to gain
significant insight into the physics of glasses, biomolecules,
and other complex systems. The insight is limited by both
the amount of collected data and the analysis performed on
the data. Previously proposed indicators and other quantities
used in the analysis of single molecule experiments contain
useful information that give qualitative insight into the phys-
ics of the system, as demonstrated in previous
references.1,6–8The useful information includes various time

TABLE III. Mean and covariance for the Monte Carlo simulation with eight
parameters. Stability analysis determines the normal modes with standard
deviations of 8.5, 5.8, 4.8, 3.4, 2.1, 1.7, 1.1, 0.931022.

Actual values
kb1 kb2 kd1 kd2 gb1 gb2 gd1 gd2

0.75 0.33 0.50 0.22 0.10 0.10 0.10 0.10

Mean values
kb1 kb2 kd1 kd2 gb1 gb2 gd1 gd2

0.75 0.32 0.50 0.19 0.12 0.09 0.11 0.14

Covariance3103

kb1 kb2 kd1 kd2 gb1 gb2 gd1 gd2

kb1 3.0 1.0 1.1 0.3 1.8 0.25 0.88 21.4
kb2 1.5 0.85 0.75 0.78 20.80 0.37 0.83
kd1 1.0 0.46 0.85 20.22 6.7 20.46
kd2 0.87 0.61 20.19 0.36 20.92
gb1 2.7 1.2 0.11 20.97
gb2 2.1 0.27 20.01
gd1 1.6 0.55
gd2 2.1

TABLE IV. Mean and covariance for the Monte Carlo simulations attempting to fit the four state model to data
generated by a four state model and by the fluctuating bottleneck model. Stability analysis determines the
normal modes with standard deviations of 40, 21, 14, 8.6, 4.131022 for fitting the four state model to itself and
standard deviations of 44, 23, 20, 8.1, 5.831022 for fitting the four state model to the fluctuating bottleneck.

Actual values for four state
kb1 kb2 Keq gb1 gb2

0.42 4.4 2.0 0.29 1.7

Mean values~four state/bottleneck!
kb1 kb2 Keq gb1 gb2

0.44/0.41 4.6/4.1 2.0/2.0 0.26/0.43 1.7/2.2

Covariance3103 ~four state/bottleneck!
kb1 kb2 Keq gb1 gb2

kb1 0.39/0.82 1.9/4.9 20.67/20.57 20.20/20.95 20.18/20.21
kb2 43./51. 28.4/27.2 21.0/24.0 8.4/17
Keq 6.4/6.6 1.0•1022/2.0•1022 20.81/20.45
gb1 0.55/2.3 1.8/4.5
gb2 20./40.
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constants for the relaxation of the system and connectivity
between these relaxation times~i.e., memory effects!, but the
extraction of quantitative information from these indicators
is difficult because the indicators require data binning and
data averaging which remove large amounts of useful infor-
mation.

To move beyond indicator analysis requires a numerical
method that does not require ill-conditioned data inversion or
averages out information contained in the data. Bayesian
analysis with Monte Carlo optimization is one strong candi-
date. Implementing Bayesian analysis still requires the use of
the previous indicators to determine constraints on possible
models, such as the number of states or restrictions on eigen-
values, but the Bayesian approach gives quantitative esti-
mates of the parameters and uncertainties in these param-
eters. By incorporating the constraints discovered through
the indicators into thea priori distribution of possible mod-
els, one can use Monte Carlo with the Bayesian score as the
Boltzmann energy to optimize the parameters. Applications
of this approach to a simple four state model demonstrate its
capabilities to reproduce the correct parametrization from a
limited data sets and give uncertainties in these parameters.
The Bayesian approach also has the ability to distinguish
different models as shown by the comparison of the fluctu-
ating bottleneck and four state models.

Many other scenarios exist and should be explored, such
as the role of photon statistics and continuous distributions of
states. The Bayesian approach performed well in our tests of
some of these other scenarios, but additional analysis re-
quires motivation from applications to real systems so we
will not go into detail about other simulations with computer
generated data. Preliminary results from the analysis of
single photon emission events from fluorescence quenching
experiment are very promising.9,20 Of all the existing ap-
proaches, the Bayesian approach is the most reliable and
robust method of numerically analyzing single molecule
data, and we encourage experimentalists to explore the ap-
plication of this approach to their single molecule data. The
Bayesian approach will become a standard method of single
molecule analysis in the future.
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APPENDIX: SIMULATION DETAILS

1. Generation of data

a. Four state model

The four state numerical example that we examine in
this paper is depicted in Fig. 1 and discussed in the compan-
ion paper.1 The kinetics for the system are given by the ki-
netic matrix equation, Eq.~2!. From the kinetic rates the
steady state solution,req can be determined. For each of the
25 molecular trajectories the initial state is randomly

sampled from this steady state. After choosing the initial
state, the time of a transition from this state to either the
other connected states is drawn from an exponential distri-
bution with characteristic time (gs1ks)

21, where s5b1,
b2, d1, d2 denotes the current state. Once this time is cho-
sen, the new state is chosen. The probability of making an
unseen ‘‘bright-bright’’ or ‘‘dark-dark’’ transition is given by
gs /(gs1ks), and one minus this quantity is the probability
of making a visible transition. If a visible transition is ob-
served, the transition time is recorded as part of the single
molecule trajectory. After the new state is chosen, the simu-
lation is continued until 300 s has elapsed, but it is possible
to incorporate photo-bleaching events. Although we assume
that the transitions are sharp in this paper, we can easily
simulate systems with broader transition regions by adding
the uncertainty in the transition time.

b. Fluctuating bottleneck model

A similar simulation method is used to generate the data
for the fluctuating bottleneck model. The equilibrium distri-
bution is given by

~req!65
k7

k61k7

1

A2pk/D
e2~k/2D !x2

, ~A1!

This distribution can be easily sampled. Given the current
position x, we choose a small time stepdt'D31026. We
calculate the probability that the system reacts 12e2k6x2dt.
If the system reacts we record the time of the event. Then we
propagate the system under normal Brownian motion in a
harmonic oscillator to choose a newx value, so that our
temporal resolution in'1026D, which is much smaller that
the kinetic rates;4.5D.

2. The Monte Carlo algorithm

Given the data generated in part 1a of the Appendix, we
attempt to determine the relative likelihood of various pos-
sible parameters through a standard Metropolis Monte Carlo
algorithm. More complex algorithms may be necessary, de-
pending on the amount and complexity of the data, as well as
the model being considered. The probability of a specific
sequence is easily written in matrix notation as

P~DuM !51TF)
i

Ke~Kd1G!t idti Gd6req , ~A2!

where the definitions of the matrices follows the previous
paper and thed6 selects the initial condition.1 dti are the
small widths of the time bins, which will generally be deter-
mined by instrument concerns as well as the photon emission
rates from the bright and dark states as discussed in the com-
panion paper.1 If dti is large relative to the kinetic constants,
the appropriate binning needs to be considered. Note that the
elements ofe(Kd1G)t i must be evaluated through standard
eigenmode analysis. Since we care about relative probabili-
ties of different kinetic matrices, we can neglect the bin sizes
dti . For a long sequence the matrix products quickly go to
zero. To prevent difficulties associated with zeroing out of
the matrix products after each multiplication ofKe(Kd1G)t i
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we renormalize the resulting vector,r i5h iKe(Kd1G)t ir i 21 .
The constanth i is chosen so that( j (r i) j 51. Herei denotes
the number of matrix multiplications. The sum of the logs of
all of the renormalization constants is the Bayesian score,
B52( ln(hi). Except for a constant correction of( ln(dti),
the Bayesian score is the log ofP(DuM ) which is necessary
to apply Bayes formula. The Bayesian score plays the same
role as the Boltzmann factor,bE($t i%) in statistical
mechanics.

The Bayesian score allows us to perform Monte Carlo
importance sampling to sample the posterior distribution of
parameters that represent the data. We start the simulation at
a random parameterization. At iterationj we have a set of
parameters with Bayesian scoreBj . We sample a new set of
parametersj 11 by multiplying the current parameters byer ,
wherer is a uniform random number symmetric around the
origin with step sizeD, i.e., 2D,r ,D. This step corre-
sponds to a Markov Chain Monte Carlo importance sampling
with an improper log-uniform a priori distribution,
P(M )dM}1/MdM. This distribution is improper since it is
not normalizable, but as can be seen from the numerical
examples in this paper, the prior does not play a large role in
the final distribution for these models. We choose this impor-
tance sampling since the kinetic constants must be positive
and we cannota priori set their magnitude so a log-uniform
distribution ~Jeffrey’s prior! is the most appropriate choice.3

If we are imposing an ordering to preserve uniqueness, i.e.,
kb1.kb2 , then after we choose the new values, we relabel
the states to maintain this ordering. Once the new parameters
j 11 are chosen we calculate the Bayesian score for these
parameters. Following standard importance sampling in
Monte Carlo if Bj 11.Bj we accept the new set of param-

eters, else we conditionally accept the new parameters with
probability eBj 112Bj .

For a short sequence and a small number of states, we
can readily evaluate the Bayesian score for every possible
choice of parameters. For larger sets of states, more
complicated models or data a more intelligent methods of
sampling is required, which we will discuss in a paper where
we apply Bayesian methods to data from single molecule
experiments.9
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