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Single molecule experiments reveal intriguing phenomenon in chemical and biological systems.
Several indicators of complex dynamics, including ‘‘intensity’’ correlations, ‘‘event’’ correlations,
and characteristic functions have been proposed, but extraction of information from these indicators
can be difficult since these indicators only observe certain characteristics of the system. Generally,
for systems that follow Poisson kinetics, all of these indicators contain similar information about the
relaxation times of the system and the connections between different relaxation times, but the
information is convoluted in different ways so the strength of various indicators is system specific.
The paper discusses the theoretical implications and information content of various data analysis
methods for single molecule experiments and demonstrates the relationships between indicators.
Under certain conditions, common indicators contain all available information about systems with
Poisson kinetics between degenerate states, but extraction of this information is generally not
numerically feasible. The paper also discusses practical issues associated with these analyses, which
motivates a numerical study based on Bayes’ formula in the companion paper@J. Witkoskie and J.
S. Cao, J. Chem. Phys.121, 6373~2004!, following paper#. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1785783#

I. INTRODUCTION

Over the last few years, many scientists used single mol-
ecule experiments to reveal the nature of dynamic systems.
The first elegant single molecule experiment by Moerner and
Orrit explored low temperature glasses, where the spectral
diffusion of a single chromophore probes the environment.
Recent experiments extend the single molecule technique to
probe complex biological systems at room temperature. The
systems studied with single molecule techniques have be-
come much more complex, which makes interpretation of
data more difficult.1,2 Experiments by Chu, by Xie, and by
other groups reveal the mechanisms of chemical reactions in
biomolecular systems and the associated time scales of these
reactions.3–14 Other experiments demonstrate single mol-
ecule spectroscopy’s ability to distinguish between heteroge-
neous and homogeneous relaxation in glassy systems.15–17

All of these analyses require the determination of character-
istic times and pertinent configurations or states from the
frequency and count of the photons emitted during the ex-
periment. The switching between configurations and the pho-
ton statistics are stochastic processes that create large uncer-
tainties in the data retrieved from experiments on these
systems. Considering these uncertainties, analysis of these
experiments requires the use of robust statistical methods.

The stochastic fluctuations in single molecule systems
stimulated interest in the statistical mechanics
community.18–30These single molecule experiments give ex-
citing insight into microscopic systems including the role of
system bath-interactions and fluctuations. For bulk experi-
ments one is generally only able to measure ‘‘intensity’’ cor-
relations in the system, but these single molecule experi-
ments allowed theorists to propose several new indicators of
various dynamics in these systems, including the event-
averaged quantities, ‘‘two-event echo,’’ and number density,

which we discuss in recent papers.26–28 A more recent pro-
posal suggests the use of a generating function to examine
blinking sequences.29 Most of these analyses depend on large
amounts of data to remove uncertainties and accurately mea-
sure indicators. Since the typical experiment is on the order
of seconds to minutes, these large data requirements may be
experimentally impossible to obtain.

The paper is an elaboration of previous work and a dem-
onstration of the role of recently proposed indicators in the
framework of single molecule kinetics.21,22,26–29,31,32The re-
sults in this paper are important in order for us to properly
assess how to combine indicators to reveal the physics of the
system. In this paper we introduce a standard single mol-
ecule model using Poisson kinetics in Sec. II. We simulate
data with a specific kinetic scheme in order to give a numeri-
cal example of the application of these indicators to single
molecule experiments. Through both analytical work and ap-
plications to the simulated data, we demonstrate the informa-
tion content of each indicator and discuss both strengths and
possible difficulties related to these indicators. We show that
the indicators contain similar information about connections
between relaxation times in complementary forms, and this
information may be easier to extract from one indicator or
another. Understanding the relationships between the signa-
tures of various indicators is important in unambiguously
determining possible kinetic schemes.

Under common conditions the indicators can theoreti-
cally contain all the available information of the system, but
extraction of this information may not be numerically fea-
sible. We also discuss that nonuniqueness of the underlying
kinetics prevent determination of the exact kinetic scheme,
but the degeneracy of the different schemes come from linear
transformations. In the companion paper33 we introduce a
computational approach based on Bayesian statistics to ana-
lyze data from single molecule experiments, which can over-

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 13 1 OCTOBER 2004

63610021-9606/2004/121(13)/6361/12/$22.00 © 2004 American Institute of Physics

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1785783


come the deficiencies in the indicators. This paper along with
the companion paper concentrates on combining the insight
from indicators with numerical methods to approach single
molecule problems.33

After discussing the standard four state Poisson model in
Sec. II, including the important role of initial conditions, we
will examine the three common indicators, intensity correla-
tion, ‘‘event’’ correlation, and characteristic function, in
Secs. III, IV, and V, respectively. Our analysis will include
discussions of the information about relaxation times and
connectivity contained in each indicator. For each indicator,
we will also discuss situations where a limited number of
moments of each indicator can theoretically contain all avail-
able information, but this information does not uniquely de-
termine the kinetic schemes. The paper also examines nu-
merical examples of each indicator, which demonstrates
several difficulties with the use of indicators.

II. SYSTEM OF INTEREST

Our analysis will primarily focus on the blinking model
that appears extensively in the literature.20–29,31,32The model
views the single molecule experiment as a stochastic process
that switches between two different set of states. A number
of states, labeled ‘‘bright,’’ emit photons in a laser field, but
we cannot distinguish these states from each other. The other
states, labeled ‘‘dark,’’ do not emit photons and also cannot
be distinguished from each other. The resulting signal re-
sembles the telegraph signal demonstrated in Fig. 1, where
we are able to see the molecule switch from a bright state to
a dark state and vice versa, but we do not know which bright
or dark state the system is in.

This simple model does not consider uncertainty in the
state of the system, bright or dark, and also neglects restric-
tions on temporal resolution. One can compensate for these
simplifying assumptions, but for many systems the error in-
troduced by these assumptions is minimal. The photon shot
noise is instrumental in limiting both our ability to determine

the state and the temporal resolution. In many of these ex-
periments, the photon emission rate for the bright state is
much larger than the dark state background photon emission
rate. Our temporal resolution is limited by our ability to col-
lect enough photons in a bin to determine the state of the
system. If both the bright state photon emission is much
larger than the blinking rates and the difference between the
bright and dark state photon emission rates is also much
larger than the blinking rates, the binning time can be chosen
so that there is little ambiguity in the state or times of tran-
sitions. The unambiguous sharp transitions are apparent in
the simulation in Fig. 1, where we show a single-molecule
trajectory where the bright and dark state lifetimes are 1 s~or
other appropriate unit!, the bright photon emission rate is
3000 photon/s and the dark emission rate is 500 photon/s.
The bin size is 20 ms and the number of photons in each bin
is given by a Poisson distribution. These relative rates are
reasonable for many single molecule experiments. As can be
seen from this trace, the state can be unambiguously as-
signed and the time resolution is adequate.

This simple kinetic model successfully explains correla-
tions in the length of time spent in bright states in the ex-
periments by Xie.3 Mathematicians studied similar models
related to ion channels.34,35 Our discussion primarily ad-
dresses systems that follow Poisson kinetics,

ṙ52Kr, ~1!

which is a type of hidden Markov chain~HMC!. A HMC is a
model where the kinetics of state transitions only depend on
the current state, but we cannot directly observe the states.
We need to infer the states from data, which does not specify
the states uniquely or may only have a probabilistic depen-
dence on the current state. Although most of our discussion
will address discrete state Poisson kinetics, we can include

FIG. 1. The telegraph signal with 20% Poisson shot noise for the standard
single molecule experiment that we examine in this paper. The molecule is
either considered bright with high intensity of photon emission, or dark with
low photon intensity. The event correlation function measures the duration
of bright events and dark events, labeledtb and td in the figure.

FIG. 2. Possible kinetic schemes.~a! A diagrammatic depiction of the ki-
netic scheme that we analyze in this paper and the companion paper.~b! and
~c! show two indistinguishable schemes. For example, the probability dis-
tribution for a sequence produced from the model in~b! with parameters
kb153 s21, kd151 s21 andg52 s21 is indistinguishable from the model in
~c! with kb156 s21, kd15(2/5) s21, kb251 s21, kd25(3/5) s21. These two
sets of parameters correspond to cutting different connections in the model
in ~a!, which one would expect to behave qualitatively differently, but this
intuition is false.
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the continuous limit to get a diffusion type of equation, like
the fluctuating bottle-neck model whose equation is given in
Eq. ~23! ~also see Refs. 20–29, 31, 32, and 36!.

The discrete state HMC can be used to interpret many
experiments that fit multiexponential distributions. These
models explain dynamic heterogeneity that results in long
lived memory effects as we discussed in previous work.26–28

Determination of this heterogeneity or the time scales of
other underlying mechanisms in single molecule experiments
requires detailed analysis of data acquired from experiments.

A. Simple model

As a demonstration of the philosophical approach to
single molecule problems, we study a simple four-state
model in both papers,33 whose kinetic scheme is outlined in
Fig. 2~a!. The model has four states and the interconversion
between the states is governed by Poisson kinetics. Two
states are bright with labels ‘‘b1’’ and ‘‘b2,’’ and two states
are dark with labels ‘‘d1’’ and ‘‘d2.’’ The equation for the
probability density is given by the simple kinetic equation,

F ṙb1

ṙb2

ṙd1

ṙd2

G5F 2~gb11kb1! gb2 kd1 0

gb1 2~gb21kb2! 0 kd2

kb1 0 2~gd11kd1! gd2

0 kb2 gd1 2~gd21kd2!

GF rb1

rb2

rd1

rd2

G . ~2!

For numerical calculations,kb150.75 s21, kd150.50 s21,
kb250.33 s21, kd250.22 s21, and gb15gb25gd15gd2

50.1 s21. Note thatb1 is not connected tod2 andb2 is not
connected tod1. We break the links between these states to
avoid difficulties associated with nonuniqueness discussed in
Sec. IV. Except for certain ranges of parameters, the eight
parameter model can reproduce the waiting time distribution
for the four-state model with more parameters due to the
nonuniqueness.34 The numerical values of these kinetic con-
stants are chosen so that the waiting time distribution for
both the bright and dark states are obviously not monoexpo-
nential, which we could determine from the indicators pre-
sented in Secs. III, IV, and V, but the modulation rate be-
tween the states does not cause apparent time separation in
any of the indicators.

Since many experiments fit the waiting time distribu-
tions to a biexponential, this four-state model is a reasonable
minimal model for many systems. For the particular con-
stants we simulate, detailed balance holds, i.e., there is a
vectorreq such thatṙeq50 andki j (req) j5kji (req) i , but we
do not need detailed balance or even Poisson kinetics to
apply these approaches. In fact, detailed balance violations
are generally difficult to determine.37 The cholesterol oxidase
experiment by Xie and the RNA hairpin experiment by
Chu3,9,10 monitored macromolecule that requires a substrate,
which the reaction depletes from the environment. The re-
plenishment of the substrate is a transport process, which is
not in equilibrium although the system reaches a steady state.
When treated appropriately, the lack of detailed balance will
not affect any indicators discussed in this paper or the nu-
merical routine discussed in the companion paper.33

From the model system with the specified parameters,
we generate a sequence of bright and dark states for 25 mol-
ecules with a duration of 300 s, which allows about 150
observed turn-over events per molecule and 7500 pieces of
data.33 These data sets are much smaller than the data sets
collected in the experiments by Xie.3

B. Matrix notation for Poisson kinetics

To discuss these HMC more generally we introduce a
simple matrix notation for the kinetics of the system. We
write the kinetic matrix as three contributions

G1K1Kd5FG~11 ! 0

0 G~22 !G1F 0 K ~12 !

K ~21 ! 0 G
1FK ~11 ! 0

0 K ~22 !G . ~3!

We denote the bright state with a1sign and the dark state
with a2sign. K (67) corresponds to transitions from a dark
state to a bright state, or vice versa.Kd

(66) is the decay
caused byK (67). If probability is preserved then (Kd

66) jk

52( iK i j
76d jk . The case of diagonalK (12) andK (21) cor-

responds to the modulated reaction models discussed
extensively.18–29,36,38The G(66) matrices correspond to un-
seen transitions between two bright states or two dark states.

For the four state model, whose kinetic equation is out-
lined in Eq.~2!, these matrices are

Kd
~11 !52K ~21 !5F2kb1 0

0 2kb2
G ,

Kd
~22 !52K ~12 !5F2kd1 0

0 2kd2
G , ~4!

and

G~11 !5F2gb1 gb2

gb1 2gb2
G G~22 !5F2gd1 gd2

gd1 2gd2
G .

~5!

The waiting time distribution for the first visible transi-
tion into the dark state denoted byi given that we started
in the bright statej at t50 has the Laplace transform
Qi j

(21)(s)5(K (21)@1s2K (11)2G(11)#21) i j . Note that
our notation is transposed relative to standard probability
notation. A similar expression exists for the dark to bright
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transition, Qi j
(12)(s)5(K (12)@1s2G(22)2K (22)#21) i j .

Below we will discuss a characteristic function, which re-
quires us to define the combined matrix,

Q5F 0 Q~12 !

Q~21 ! 0 G . ~6!

From the matricesG and K or Q, all observables of the
system can be determined, but we want to determine the
properties of the matrix from the observables, which is a
nontrivial inversion problem.

C. Equilibrium distribution

For various indicators the initial condition plays a piv-
otal role in determining the strength and clarity of various
signatures. Since the system has Poisson kinetics, it has a
well-defined steady state distribution, which for convenience
we will call the equilibrium distributionreq even if detailed
balance does not hold. Generally,req will not be the initial
condition of our calculations since we select certain configu-
rations to start our measurement. For the intensity correlation
discussed below, we start monitoring the system at an arbi-
trary time, but we only consider configurations that are in a
specific state, bright or dark at that time. For this scenario,
the initial condition is triviallyd (6)req/ud (6)requ, where

d~1 !5F1 0

0 0G , d~2 !5F0 0

0 1G , ~7!

andud (6)requ5( i(d
(6)req) i . For the event correlation func-

tion, we start the observation times after an observable tran-
sition. If we start from an observed transition from the
dark state to the bright state and average over all observed
transitions, the initial condition is r ic

5K (12)d (2)req/uK (12)d (2)requ, which is the stationary
flux introduced previously.26–28 A similar expression exists
for starting measurements on a bright to dark transition. Gen-
erally, this initial condition is not as strongly influenced by
long time correlations as the intensity correlation since long
bright or dark periods do not have as large of a contribution
to the initial condition as they do for the intensity correlation
initial condition.39 It is important to note that we must aver-
age over all observed transitions. This stationary flux initial
condition is adequate if the duration of a bright or dark pe-
riod in the molecular trajectory is shorter than the experi-
mental measurement times so that many measurements can
be made on the same time sequence. If this is not the case,
the initial condition must be modified accordingly.

III. INTENSITY CORRELATION

As discussed in Sec. II, the need to determine the time
scales of the underlying conformational dynamics of these
experiments motivated many authors, including our previous
work, to propose various indicators. As a result, the recent
literature contains extensive references to these binary
‘‘bright-dark’’ systems.21,22,26–28,36 The popular indicators
measure correlations in the state of the system or analyze
blinking between the bright and dark states. Below we will
discuss three major approaches to interpreting single mol-

ecule experiments with binary—‘‘bright-dark’’—
informations, which we refer to as intensity correlations,
event correlations~see Sec. IV!, and characteristic functions
~see Sec. V!.21,22,26–29,36

The intensity correlation approach measures the prob-
ability of being in the bright or dark state at multiple
times.26–28This correlation function requires the existence of
two sets of distinguishable states. Unlike some quantities dis-
cussed below, this correlation function cannot be applied to
single photon statistics since single photons do not have a
well defined duration. The time scales of the correlation
functions determine the relaxation of the system to the equi-
librium distribution from the initial state, but does not con-
tain the time scales for time spent in the bright or dark mani-
fold. The one-time ‘‘bright-bright’’ intensity correlation
function measures the joint probability of being in the bright
state att50 and att. The general expression for a Poisson
kinetic process is

C6¯6~ t1 ,...,tn!

51TH)
n

d~6 !e2~G1K1Kd!~ t i2t i 21!J d~6 !req

ud~6 !requ
, ~8!

where the matrices are time ordered. The1T is a unit row
vector that denotes a sum over the remaining components
and the resulting quantity is a scalar. The bright-bright cor-
relation function measures the eigenvalues that correspond to
the relaxation of the system from the nonequilibrium initial
condition of being in the bright state att50. The matrix that
governs this relaxation isG1K1Kd .

If the eigenvalues of the matrixG1K1Kd are unique,
the two time correlation functionsC666(t1 ,t2) contain all
of the available information about the other correlation func-
tions through a decomposition of the correlation function
into a sum of multiexponentials,

C6¯6~ t1 ,...,tn!5 (
i 1 ,...,i n

a6 i 1 ,...,6 i n
6 )

m51

n

el i m
~ t i2t i 21!,

~9!

where we can then relate the coefficientsa6 i 1 ,...,6 i n
6 to each

other. As a result, we can determine all of the available in-
formation about the system from accurate two time
measurements.40 For completeness, we outline the proof in
Appendix A. We use the term all available information be-
cause different kinetic schemes can result in the same wait-
ing time distributions and therefore produce the same se-
quence, although from a given kinetic matrix the waiting
time distributions are uniquely determined.34 We present an
example of this nonuniqueness in Sec. IV.

Although one can theoretically extract information on
the duration of time spent in the bright or dark manifold by
measuring an infinite number of multitime correlations, it is
not practically feasible. The approach also has a difficulty
when one set of states is short lived and the system is almost
always bright or dark since the correlations stay near the base
line. One must simultaneously solve all of the eigenvalues at
once, whereas the event correlation methods that we will
discuss in Sec. IV below separates the bright and dark pro-
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cesses. The intensity correlation function does not contain
any readily observable signatures of conformational
dynamics.26–28 Another difficulty with this approach is the
need to accurately calculate the correlation function for a
wide range of times and for multiple times, since the inten-
sity correlation relaxation time scale will generally be larger
than the duration of events. The intensity correlation function
does not probe individual elements ofG, K , and Kd , only
the total matrix, so that determination of the kinetics is more
difficult than the event correlation.

A. Numerical example

The deviations of the population from the equilibrium
distribution by knowing that the system is in the bright or the
dark state at a given time are smaller than knowing that the
system made a transitions from bright to dark or vice versa at
that time. As a result, the signatures of memory can be weak.
The weak signatures are made apparent in Fig. 3. The figure
compares the two time ‘‘bright-bright-bright’’ correlation
function to the predictions for a single time correlation func-
tion, C111(t1 ,t2)2C11(t1)C11(t2), for the model sys-
tem discussed in Sec. II. The correlation function was calcu-
lated with a sliding time window from 25 molecular
trajectories. The maximum deviations in the correlation func-
tion are around 1% relative to the steady state value of the
correlation function. This deviation is of the same order as
the deviations of the correlation function calculated from the
data relative to the exact calculation, and because of corre-
lations in the fluctuations and the high redundancy in the
sliding window, the deviations appear to be systematic.

The deviations can be seen in Fig. 3~a!, which compares
the bright-bright correlation functionC11(t) determined
from the data with the model prediction. The two-time cor-
relation functionC111(t1 ,t2) shown in Fig. 3~b! does not
have any obvious features that represent memory. Figure 3~c!
compares the values ofC111 for t15t2 with the square of
the single-time correlation function. The deviations between
the two correlation functions coincide with deviations pre-
sented in Fig. 3~a!, which indicates that it is probably a data
artifact. Figure 3~d! shows a contour plot of the deviations
for 0,t1 , t2,10. The maximum deviations are around 1%
of the total magnitude of the function and may not indicate
any memory effects considering the data’s deviations from
the exact correlation function. These difficulties make it al-
most impossible to determine the coefficients of the decom-
position of the intensity correlationsai j above, but suggest
that other methods of determining the presence of memory
are necessary. One should also note that the deviations do not
give a clear signature of a specific kinetic motif since the
deviations occur at short time which makes determination of
specific features difficult.

IV. EVENT CORRELATION

The event correlation approach determines the statistics
of events. An event is the duration of a bright or dark period.
In other words, the start of a bright event is the time when
the molecule makes a transition from dark to bright. The
event ends when the molecule turns dark again. The defini-
tions of time of events are demonstrated in Fig. 1. We can
easily generalize these definitions to photon statistics, where
the events are the arrival times of individual photons so the
times of events are the times separating photons. The time
scales extracted from the measurements pertain to the dura-
tion of events and not the overall relaxation measured by the
intensity correlation approach. One determines the correla-
tions in the length of duration of multiple events, such as two
bright events separated by one dark event, or separated by
two dark and one bright event, etc. The most important indi-
cator of the event correlation family is a bright event versus
an adjacent dark event. This quantity is the strongest, but
also the most important for cases where we can determine all
available information. Previous work concentrated on two
bright events separated by a single dark event, but these mea-
surements are not as strong and cannot be simply inverted
even when the eigenvalues are distinct.26–28 The approach
contains possible flags to infer non-Poisson or nonrenewal
behavior, but these flags also require a large amount of data
to see them. One of these flags is the ‘‘two-event echo,’’
which shows a rise in the two-event bright-bright duration
probability density function compared to the predictions of
uncorrelated behavior fort1't2@t, wheret i is the duration
time of an event andt is a characteristic time of the system.
The position and height of the echo is a measure of the
memory of the system.26–28

The n-event probability density function, which we will
call the n-event correlation function, directly specifies the
probability of the path of the system. The correlation or any
other quantity is a sum over all possible paths so the event

FIG. 3. Memory in the correlation function generated from the sequences of
25 molecules with kinetic scheme discussed in Sec. II.~a! shows the single-
time bright-bright correlation functionC11(t) measured from the simula-
tion vs the exact solution for the model. As can be seen, the data is not
sufficient for the determination of weak features.~b! shows a contour plot of
the two-time bright-bright-bright correlation functionC111(t1 ,t2). ~c!
shows the deviation ofC111(t,t) from C11(t)2. The deviations coincide
with deviations of the simulation data from the exact correlation function
and cannot be considered an indication of memory. These deviations are less
than 1% of the normalized correlation function and well within the range of
noise. ~d! shows a two dimensional plot of C111(t1 ,t2)
2C11(t1)C11(t2), which shows the scale of the noise in the system. Once
again, the largest deviations are less than 1% of the maximum height of the
correlation functions.
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correlation is in many ways the basis of all other measure-
ments. The probability density for the 1stn transitions is

P~ t1 ,...,tn!51TF)
i 51

n

Ke~Kd1G!~ t i2t i 21!Gr ic
~6 ! . ~10!

The initial conditionr ic
(6) is chosen because the measure-

ments start at a transition and one averages over all of the
possible starting transitions. The superscript that appears in
the initial condition is to specify the initially observed state.
As has been pointed out by Verbeek and Orrit, the single
event probability does not contain any information about the
overall relaxation of the system. In order to extract meaning-
ful information about conformational kinetics, multiple time
event densities are required, whereas the single-time correla-
tion function contains some information about conforma-
tional kinetics.26–28 As discussed in Sec. II, event densities
can be sensitive to photon shot noise, which can cause un-
certainty in the state of the molecule, and data binning,
which can cause uncertainty in the time of transitions, if the
photon emission rate is not high enough.

Similar to the two-time intensity correlation function,
when the matricesG(66)1Kd

66 have distinct eigenvalues,
the two-event correlation function contains all of the avail-
able information about the Poisson process. The derivation
follows the results in Appendix A with some redefinitions of
various quantities and is also outlined by Fredkin and Rice.40

It is important to note that the eigenvalues for the decay
constants will be determined by the submatricesKd

(11)

1G(11) andKd
(22)1G(22) instead of the complete matrix

Kd1G1K and the coupling between the exponential decays
for the two different times will be determined by the matrices
K (12) and K (12) instead ofd (6), so one can separate the
contributions fromK (67) andG(66)1Kd

66 .
The result implies that there is no additional information

in higher densities, but the analysis of the two-event corre-
lation function requires binning small amounts of data into a
multidimensional array. Since the probability of falling into a
specific bin is a Bernoulli variable, statistical fluctuations in
the number of events that fall into a bin can affect determi-
nation of these relaxation times. One method of avoiding the
binning difficulty is the calculation of the covariance of the
times of two events. Although this calculation can indicate a
correlation between adjacent events, one loses much of the
information contained in the density since the covariance is
an averaged quantity.

A. Event correlations and nonuniqueness

The ‘‘n-event’’ density function can be rewritten in a
revealing form

P~ t1 ,...,tn!51TF)
i 51

n

Ke~Kd1G!~ t i2t i 21!Gr ic

5qTF)
i 51

n

S21KSe2L~ t i2t i 21!Gp, ~11!

whereS is the similarity transform that diagonalizesKd1G
and L are the corresponding eigenvalues. The vectors,p

5S21r ic andqT51TS, result from the similarity transform.
We assumeL is diagonal because having an algebraic mul-
tiplicity greater than 1 usually requires additional constraints.
This form demonstrates a lack of uniqueness since any sys-
tem with the same eigenvalues, the same matrixS21KS, and
the same vectorsqT and p give the same probability distri-
bution for multiple time events.34 In other words, since the
density is restricted to probe along the vectorsp and qT

complete information about the underlying matrix is lost
even if we can determine all of the higher order correlations
or event densities, but the different models are related
through a linear transformation.

A simple example of two indistinguishable kinetic
schemes is presented in Figs. 2~b! and 2~c!. These are three-
state models with two bright and one dark state. We can map
the three-state model into a model with one bright state and
one dark state with multiexponential waiting times for the
duration of each state. Processes with one bright state and
one dark state with possibly non-mono-exponential waiting
times are known as alternating renewal processes. If we set
kb153 s21, kd151 s21, kb25kd250 s21, g52 s21, the
bright state waiting time distribution with dimensionless time
is (2/5)6e26t1(3/5)e2t. The dark state waiting time is a
simple Poisson processe2t. The model in Fig. 2~c! can
achieve the same waiting-time distribution with the param-
eters kb156 s21, kd15(2/5) s21, kb251 s21, kd2

5(3/5) s21. These models have different connections, but
the ambiguity about the underlying kinetic scheme cannot be
resolved.

B. Numerical example

The advantages of the event correlation over the other
measurements mainly stem from its separation of the bright
and dark events and the separation ofKd1G, which deter-
mines the eigenvalues, andK which determines the connec-
tivity. The event correlation is the best indicator in many
respects. As shown in Figs. 4~a! and 4~b!, we are able to
easily fit the waiting time distribution generated by 25 mol-
ecules to a biexponential form. This biexponential form
gives us the number of states in both the bright and dark
manifolds and also restricts the range of eigenvalues. A log
plot of the binned data is not obviously biexponential, but it
is obviously not monoexponential, which would justify per-
forming a numerical fit to the biexponential, which is quite
good.

The deviations of the two-event correlation versus the
prediction from single waiting time distributions,P(t1 ,t2)
2P(t1)P(t2), are on the order of 2%, which is stronger than
the correlation function and the echo at later times indicates
conformational dynamics. It is important to note that Fig. 4,
presents the adjacent ‘‘bright-dark event’’ correlations. The
‘‘bright-bright event’’ correlations has weaker memory ef-
fects and cannot be used in the analysis for system with
distinct eigenvalues since one needs to know about the dark
state to determine the connectivity. For the four-state model,
one only needs to fit the data to a biexponential, versus a
triexponential and a constant for the correlation functions.
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The reduction in the number of fits also makes use of the
event quantities more feasible.

V. CHARACTERISTIC FUNCTION

In this section we examine a recently proposed indicator,
the characteristic function, and the related moments that we
previously referred to as ‘‘number densities’’.21,22,26–29,36The
characteristic function and related moments have an exten-
sive history although suggestions of introducing them into
the field of single molecules is fairly recent.21,22,28,29,36The
‘‘characteristic function’’ approach examines the probability
of observingn transitions from bright to dark or vice versa in
a period of timeP(n,t).29 One classic indicator derived from
the characteristic function is the Mandel Q parameter that
measures deviations from a Poisson process,

^n2~ t !&2^n~ t !&2

^n~ t !&
21, ~12!

where^ni(t)&5(nni P(n,t) is the expectation of the number
of events. Wang and Wolynes and Silbey and co-workers
also discuss using moments in several single molecule
experiments.30,38One attractive property of the characteristic
function indicators is that the large amounts of information
can be carried in quantities measured at a single time. The
binning with respect to the number of observed events is
more natural than binning time. Often one measures mo-
ments or number densities, which resemble the use of corre-
lations and avoids binning. These properties help us avoid
problems associated with binning our data in multidimen-
sional arrays.

If there is a visible transition into statej at t50, the
probability of observingn more transitions by timet is given
by

P~n,tu j ,t50!5(
i ,k

F E
t

`

dtQik~ t !G* @Q* n~ t !#k, j . ~13!

In this expression,Q is the matrix defined in Eq. 6,* is the
convolution operator, and* n denotesn convolutions of the
same term. TheQ(t)* n term represents the probability of
making n transitions before timet, and the@* t

`dtQik(t)#
term represents the probability of not making the next tran-
sition. The expression in the Laplace domain is given by

P~n,su j ,t50!51TF12Q~s!

s G@Qn~s!#. ~14!

The above equation is valid for any waiting time distribu-
tions, not just Poisson kinetics. The formalism can be easily
applied to photons statistics, where a transition corresponds
to a detected photon. Since we do not know the original or
final state we must introduce the initial distribution and sum
over the initial states. As will be discussed below the best
initial condition starts from a switching event, switching
from bright to dark or vice versa, since this initial condition
allows simple analysis to determine if the process is the re-
sults of single waiting-time distributions. Supplemented with
an initial conditionr ic

(6) , the probability of observingn tran-
sitions in a HMC with bright and dark states becomes

P~n,su ic!51T@1s2G2Kd#21~K @1s2G2Kd#21!nr ic .

~15!

The characteristic function for the number of events,n→z,
as a function of the Laplace variablet→s is

G~z,su ic!5(
n

P~n,su ic!einz

51T@1s2G2Kd2ei zK #21r ic . ~16!

This characteristic function comes from the discrete Fourier
transform, which can be easily related to the generating func-
tion by Brown ~a Z transform! through analytic
continuation.29 For numerical applications the discrete Fou-
rier transform has better software support and the general
approach to inverting aZ transform is by evaluating it on the
unit circle, in which case it becomes the discrete Fourier
transform.

A. Moments of the characteristic function

As with many functions, the Fourier or Laplace trans-
forms generally do not give good insight into the probability
function. Because of this difficulty, the most convenient and
informative procedure for analyzing a characteristic function
will come from the moments. If there is one state with arbi-
trary waiting-time distributionQ(s) and we see the transi-
tions from the state back into itself, an intermittent blink
discussed in Refs. 26 and 27, we have complete information
by only knowing the expected number of blinks as a function
of time. This scenario also applies to photon counting statis-
tics, where the blinks are emitted photons. For photon statis-
tics, the photon emission rates from the system will be lower
than the bright-dark kinetics. As a result the background pho-
ton detection rate becomes important. For a Poisson kinetics
with Poisson background, the kinetic rates inKd need to be

FIG. 4. Event density generated from data of 25 molecules.~a! shows the
bright waiting time distribution measured from the data for 25 molecules vs
the predictions.~b! shows the dark waiting time distribution measured from
25 molecules vs predictions.~c! Shows the error of the two-time bright-dark
density vs the predictions of uncorrelated behavior,DPon/off(t1 ,t2)
5Pon/off(t1 ,t2)2Pon(t1)Poff(t2). ~d! shows two slices of~c!, t250 ~h! and
t25t1 , ~s!.
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increased by the background rate and the emission from the
background will correspond to a visible transition back into
the same state. For a single state, the first moment is known
as the renewal function and it is related to the waiting-time
distribution by the renewal theorem,

Q~s!5s^n~s!&/~11s^n~s!&!, ~17!

where^n(s)& is the Laplace transform of the expected num-
ber of events,̂ n(t)&5(nnP(n,t), whose derivative is the
number density that we discussed previously.26 The relation
is only valid if the process starts from a blink. If the process
does not start from a blink, i.e., arbitrary start time, the ex-
pected number of blinks grows linearly in time and the rela-
tion is lost,^n(t)&5t/t, wheret is the average time between
events, and any memory effects are contained in the higher
moments, which are difficult to measure. This analysis can
be extended to processes with one bright and one dark state
if one measures the expected number of transitions initially
starting from a bright to dark transition and then measures
the expected number of transitions initially starting from a
dark to bright transition, one can deduce both the bright and
dark waiting-time distributions, in Laplace space. Systems
that have only a single bright and single dark state, can be
described by two waiting-time distributions and are known
as alternating renewal processes. Systems with a single wait-
ing times for both bright and dark states have a simple
memory. The system remembers how long it has been in a
particular state, but does not know the path that it took to get
there.

B. Deviations from simple memory

The characteristic function also contains information
about the nonrenewal nature of the process. For a process
with a single waiting-time distribution~renewal process!,

(
n

n2P~n,s!5^n2~s!&5^n~s!&12s^n~s!&2, ~18!

and deviations from this relation imply more complex
memory effects. Similar relationships can be derived for an
alternating renewal process, supplemented with the appropri-
ate initial conditions.

For the case of intermittent blinks discussed in Refs. 26
and 27, the inverse Laplace of transform of Eq.~18! suggests
a simple indicator

I ~ t !5
^n2~ t !&2^n~s!&22* dt^n~ t2t!&] t^n~t!&

^n~ t !&
. ~19!

For long timeŝ n(t)&'mt1b, wherem is the average wait-
ing time andb is an off set caused by the non-Poisson nature
of the system. In the long time limit, the indicator function
behaves as

I ~ t !→ ^n2~ t !&2m2t224mbt2mt

mt
. ~20!

Note that for a Poisson process,b50 and we recover the
MandelQ parameter.

C. Long lived correlations and the moments
of the characteristic function

To give insight into the memory effects captured by
these indicators, we consider a simple example with long
lived bright states and intermittent dark states. The transition
matrix Q is given by

Q~s!5F12p p

p 12pGF 1

11s
0

0
2

21s

G , ~21!

and in the limit as t→` the indicator approaches
limt→`^n(t)&I (t)5(1/18p)@(1/p22)#. For p50, the indi-
cator is infinite since the memory is infinite. Forp51/2 there
is no memory of the previous transition and the indicator is
zero, but the process is not Poisson. This is a simple renewal
process~single waiting-time distribution! with biexponential
waiting time. The renewal indicator becomes negative forp
.1/2 because the system prefers to flip-flop between states
and a fast transition is followed by a slow one, i.e., anticor-
related steps. The anticorrelation is a sign of a break down of
detailed balance resulting in circulation through the configu-
rations. The important observation is that the indicator is
based on first and second cumulants, which are easy to mea-
sure. Comparisons of higher order cumulants ofP(n,t) are
not as easily measured, and it is difficult to extract meaning-
ful information from these higher cumulants.

In these long persistence situations, large deviations
from a normal distribution for intermediate times are
possible.21,22,29,36For our example withp'0 at intermediate
times, one observes a superposition of two normal distribu-
tions. Although the two-event measurements contain some of
this information, the information may not be as explicit if the
two exponents are comparablek1'k2 , but p is still small.

D. Moments of a Poisson process and the extraction
of kinetic schemes

From Eq. ~16! for the HMC, the expected number of
blinks ~also know as renewals! can be written as

^n~s!&5
1

s
1TK @1s2G2K2Kd#21r ic , ~22!

where@1s2G2K2Kd#21 is the matrix for the relaxation to
the equilibrium distribution from the fluctuation that results
in the initial transition att50. These are the same decay
constants measured by the intensity correlation functions, but
the quantities are integrated because of the 1/s term, which
often makes extraction of this information difficult. Similar
to discussions above, these eigenvalues are different than the
two-event density eigenvalues, and the two measurements
provide complementary information. One advantage of the
characteristic function over the intensity correlation function
is that the characteristic function directly probes the transi-
tion matrixK which is also measured in the event density so
the characteristic function can be viewed as a mixture of the
intensity and event indicators.
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For Re(s).0, the system has a convergent Taylor expan-
sion in terms of the generating variables aroundz50, so we
only need to know the moments to determine the functional
form. If the eigenvalues of the matrixG1K1Kd are distinct
we can use a similar procedure to those applied to the inten-
sity correlation function to relate higher moments to the first
few lower moments, so we can theoretically determine the
entire generating function from the first few moments. This
procedure is discussed in Appendix B. Unlike the intensity
correlation function, the relations are highly nonlinear and
requires higher order moments so this extraction is not prac-
tical. Introducing a multiple time moment expansion will
prevent the nonlinearities, but multiple times also remove the
advantages of having a large amount of information con-
tained in a two variable function.

E. Numerical examples

The above analysis demonstrates the difficultly in using
the generating function to see explicit details of the system.
Although the position and variance of the number of ob-
served transitions give indications of memory effects, the
underlying causes of these memory effects are not obvious.
The lack of specific features makes it difficult for the gener-
ating function to distinguish features in the data. The lack of
other features can be seen in Fig. 5. In this figure, we exam-
ine the data generated for the model discussed in Sec. II. The
initial condition is a dark to bright transition and every dark
to bright transition in the trajectory is used as an initial con-
dition. Figure 5~a! shows a histogram of the number of re-
newals as a function of timeP(n,t) determined from the
data sequence.

The histogram is compared against the expected prob-
ability for an alternating renewal process in Fig. 5~b!. The
alternating renewal waiting time distributions are determined
from event correlations. The maximum error is 3% with typi-

cal errors around 0.5%. The characteristic function is calcu-
lated in Fig. 5~c!. As can be seen, most of the details of this
distribution are hidden by noise in the data. The only notable
features are the central peak, whose width we can measure
through the second moment and the weak peaks atk56p.
The peaks atk56p are the result of the alternating renewal
nature of the generating function. The dark events are longer
lived than the bright events so the number of renewals is
more likely to be odd than even if we start from a renewal
into a bright state. Figure 5~d! compares the generating func-
tion calculated from the data and the alternating renewal pro-
cess predictions. The deviations between the alternating re-
newal prediction extracted from the data and the complete
set of single molecule data are small by,1% relative to the
maximum values of the function—unity—except in the vi-
cinity of k50, 6p. The error in this vicinity will grow in
height, but it will shrink in width, and results from the long
time Gaussians measured from the real system and predicted
for an alternating renewal process. These peaks indicate a
memory effect, but it is difficult to discern a motif associated
with this memory effect.

Brown used the characteristic function approach to com-
pare the signatures of the four-state model with the fluctuat-
ing bottle-neck model.29 The fluctuating bottle-neck model
corresponds to a one dimensional diffusion process in a har-
monic well with a reaction rate that depends quadratically on
the coordinate.

] tP6~ t !5D¹2P6~ t !1“@kxP6~ t !#2k6x2P6~ t !

1k7x2P7 . ~23!

Consistent with previous notation1 represents the bright
state and2 represents the dark state. He demonstrates that
for perfect data the characteristic functions are different for
the four state model and the fluctuating bottle-neck model, as
long as the temporal fluctuations of the rate constant is slow
in comparison with the rates of transitions. His example
shows the exact generating functions with temporal fluctua-
tions in the rate constants that are 25 times slower than the
average rate of reaction. As demonstrated in Fig. 6, when
these measurements are made on stochastic data with the
more interesting scenario of the fluctuations in the rate con-
stant being the same order as the average transition rates, the
signature cannot be successfully deduced. The figure com-
pares data generated from a diffusion process withD5k
5k151 andk215Keqk152, with a four-state model with
gb15gd150.289 706, gb25gd251.710 29, kb151/2kd1

50.417 953,kb251/2kd254.436 15. The constants for the
four-state model are chosen according to the procedures out-
lined in Ref. 29, which are close to maximizing the similarity
of the two models.

The data includes the trajectories of 25 molecules run
over 100 time units resulting in an average of 150 turn
overs.33 The initial condition starts from a bright to dark and
the system is averaged over all possible initial transitions,
which gives about 1250 total trajectories of 10 time units.
Figure 6~a! shows the absolute value of the fluctuating
bottleneck characteristic function determined from the data
and Fig. 6~b! shows the absolute value of the four-state

FIG. 5. P(nut) and the absolute values of its generating functionG(kut). ~a!
showsP(nut) determined from data of 25 molecules.~b! shows the errors
betweenP(nut) and predictions for alternating renewal process.~c! shows
the generating functionG(kut) determined from the data.~d! Shows the
absolute errors betweenG(kut) and the predictions for alternating renewal
processes.
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model characteristic function determined from the data. Fig-
ure 6~c! shows the absolute value of the difference between
the two models calculated from the data and Fig. 6~d!, is the
ideal plot of Fig. 6~c!. Even the ideal signal is only about 5%
of the total signal, and the noise in the characteristic function
is around 10%, which prevents any strong conclusions using
generating function methods. The signal would be weaker if
one did not specify the sequence starting on a transition at
t50.29 In the long time limit the two models become indis-
tinguishable since they have the same average rate of transi-
tions and similar fluctuations in the number of transitions,
but at short times there are possible signatures. It important
to note that similar systematic deviations between character-
istic functions generated from data sets from the same sto-
chastic process also appears because of the averaging over
the same data sequence for 25 molecules. As a result, the
strongest possible conclusion is that the data might not be
consistent with a four state model, but these measurements
do not give a good quantitative measure.

VI. CONCLUSION AND COMPARISONS

This paper presents a critical analysis of proposed indi-
cators for single molecule experiments. All indicators have
the potential to give qualitative insight into the dynamics of
a single molecule system. The information contained in each
indicator is similar, but it is convoluted differently in each
measurement so that one indicator may have a relatively
stronger signature than the others. An example is the long
memory effects captured by the characteristic function.

The intensity correlation function is generally the weak-
est indicator. Measurements do not start from a transition so
the deviations from equilibrium are small. Due to the initial
condition, accurate measurements of the intensity correlation
is sensitive to long bright or dark periods. The intensity cor-
relation does not contain clear signatures of the dynamics of
the system and only probes the total matrixG1K1Kd

which does not give insight into individual contributions.

The event correlations are generally the most useful of
the three indicators. It separates the contributions fromK
from G1Kd and the contributions from the bright and dark
states. The event correlations also contain the two-event
echo, which is a signature of conformational dynamics, but
the indicator requires data binning, instead of averaging,
which causes a loss of temporal resolution.

The characteristic function and its moments are a hybrid
between the intensity correlations and event correlations. The
characteristic times are determined by the same matrix as the
intensity correlationG1K1Kd but the coefficients allow ex-
ploration ofK separately. The characteristic function allows
averaging instead of binning, but it does not allow separation
of bright and dark states. The average number of transitions
and its variance give insight into memory effects of the sys-
tem, but there are no other salient features. Application of
complete information for distinct eigenvalues becomes a
highly nonlinear problem for this indicator, unlike the other
indicators.

In principle, Markovian systems with distinct eigenval-
ues only require two-time information to extract all available
information about the process, but as shown in the simple
example in Sec. II all available information does not give a
unique kinetic scheme. The analysis can be extended to pro-
cesses with a limited number of degeneracies, such as double
degeneracies. These relations are theoretically interesting,
but practical implementation is difficult if not impossible.
The indicators can still give valuable information such as the
time constant for relaxation or the time constants for the
duration of an event. A major cause of the difficulties with
any indicator is the large data requirements and the lack of a
unique solution. A more robust numerical approach that does
not depend on the inversion of averaged data is required. In
the companion paper,33 we give a demonstration of combin-
ing the single molecule indicators with a Bayesian numerical
approach to extract possible kinetic schemes.
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APPENDIX A: PROOF OF COMPLETE
INFORMATION CONTENT

It is important to demonstrate the completeness of the
information so that we can compare results with other indi-
cators. The derivation follows those in the Ref. 40. The
n-time correlation function is written in the Laplace domain
as,

1TH)
n

d~6 !S@1sn1L#21S21J d~6 !req

ud~6 !requ

5 (
i 1 ,...,i n

a6 i 1 ,...,6 i n
6 )

m51

n
1

sn1l i m

. ~A1!

The matrixS is a similarity transform of the matrixG1K
1Kd , andL is the matrix of corresponding eigenvalues,l i .

FIG. 6. Comparison the fluctuating bottle-neck model and the four-state
model.~a! shows the absolute value ofG(kut) for the fluctuation bottle-neck
model as determined from data of 25 molecules.~b! shows the absolute
value ofG(kut) for the four-state model.~c! shows the absolute value of the
difference in the two models.~d! Shows the theoretical results of~c!.
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Since the eigenvalues are distinct this matrix is diagonal. The
prefactora6 i 1 ,...,6 i n

6 is determined by fitting then-time cor-

relation function to the functional form presented above. The
initial condition appears in the superscript of the prefactor6
and the6 i m refers to the index of the eigenvalues and the
state measured at the timetm . Note that fitting the functional
form can be done in the time domain. The functional form of
the prefactor is

a6 i 1 ,...,6 i n
6 51TH)

n
d~6 !Sd i n

S21J p6 . ~A2!

In this expression, the matrices are time ordered and the
matrix d i n

has all zeros except for the element$ i n ,i n% which
is unity. The vectorp6 is d (6)req/ud (6)requ. The matrix
Sd iS

21 can be written as an outer product of two vectors,
Sd iS

215wiv i
T with the property thatwiv i

Twiv i
T5wiv i

T and
wiv i

Twjv j
T50 for j Þ i . Starting from the trivial identity

wiv i
T5(a6 i

6 /a6 i
6 )wiv i

T5(a6 i
6 )21wia6 i

6 v i
T with scalar a6 i

6

51Td (6)wiv i
Tp6 , which follows from the definitions above,

we getwiv i
T5(a6 i

6 )21wi1
Td (6)wiv i

Tp6v i . Since 1Td (6)wi

andv i
Tp6 are scalars, they commute resulting in the expres-

sion, wiv i
T5(a6 i

6 )21wiv i
Tp61Td (6)wiv i

T . Substituting this
expression forSd i 2

S21 in Eq. A2 gives a recursion relation
for the values of

a6 i 1 ,...,6 i n
6 51TH)

n
d~6 !Sd i n

S21J p6

51TH)
n

d~6 !wi n
v i n

T J p6

5a6 i 2
21 S 1TH )

n52
d~6 !wi n

v i n
T J p6D

3~1Td~6 !wi 2
v i 2

T d~6 !wi 1
v i 1

T p6!

5a6 i 2 ,...,6 i n
6

a6 i 1 ,6 i 2
6

a6 i 2
6

, ~A3!

which implies that determination ofa6 i
6 and a6 i ,6 j

6 from
fitting C666(t1 ,t2) to sums of exponentials determines all
of the higher order correlations. One can determine the decay
ratesl i and a6 i

6 from the single-time correlation function,
and use the two-time correlation function to fit the coeffi-
cients of the exponentsa6 i ,6 j

6 determined from the one-time
correlation. If a limited number of degeneracies exist, such
as double degeneracy, a limited number of higher order mo-
ments can capture this behavior. The result depends on the
fact that eigenmodes never mix and does not generalize to
arbitrary waiting time distributions even if these distributions
have a single parameter.

As we discuss in previous work, the above analysis has
an analogy to spectral decomposition in quantum
mechanics.26–28 By writing,

1TH)
n

d~6 !S@1sn1L#21S21J p6

51TSH)
n

S21d~6 !S@1sn1L#21J S21p6

5TrS S21p61TSH)
n

S21d~6 !S@1sn1L#21J D , ~A4!

the n-time intensity correlation maps into the spectral
decomposition of the quantum time-correlation function
with a density matrixr→S21d (6)p61TS, eigenfrequencies
iv i→2l i , and transition matrices,B→S21d (6)S.

APPENDIX B: APPLICATION OF INFORMATION
CONTENT TO THE GENERATING FUNCTION

For integer powers ofm, themth moment has the form,

^nm~s!&5(
i 51

n
cm,i

s
1T

†K @1s2G2K2Kd#21
‡

ir ic . ~B1!

In this expression,cm,i is a combinatorial factor, and we used
1T@G1K1Kd#50 to get the 1/s term. The terms withi
,m can be expressed as lower order moments. From these
expression it is apparent that each higher term contains new
information in the form of the expression,

f m~s!5
1

s
1T

†K @1s2G2K2Kd#21
‡

mr ic . ~B2!

We can use the same projection technique with projec-
tion operators of the formSd iS

21 to derive a recursive rela-
tionship between terms that containm products of the matri-
cesK and those with one and twoK matrices. One should
note thatS is a similarity transform that diagonalizes the
matrix G1K1Kd , which is the same transformation used in
the intensity correlation calculation, but the coefficients will
be different. Using the projection operator we can write

f m~s!5
1

s (
i 1 ,...,i m

ai 1 ,...,i m )
j 5 i 1 ,...,i m

1

s1l j
, ~B3!

wherea’s have a similar definition to the intensity correlation
and event density, but they will be numerically different al-
thoughl’s will be the same as the intensity correlation func-
tion. The same recursion relation holds,

ai 1 ,...,i m
51TF)

j 51

m

KSd i m
S21Gr ic5

ai 1 ,i 2

ai 2

ai 2 ,...,i m
. ~B4!

From the first moment we can find theai terms by fitting the
transform to a sum of terms of the forms21(s1l i)

21, but
we cannot find theai 1 ,i 2

terms from the simple second mo-
ments since we cannot distinguish ordering. It is important to
note that the functional form does not give us any ordering of
the eigenvalues, so we would fitf m(s) to

f m~s!5 (
i 1>...> i m

bi 1 ,...,i m )
j 5 i 1 ,...,i m

1

s1l j
, ~B5!

with bi 1 ,...,i m
5(P$ i 1 ,...,i m%ai 1 ,...,i m

, whereP$¯% is the per-
mutation operator. By fitting the moments,^nm(s)& or f m(s)
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as functions of the Laplace variables to the data, we can
determinebi 1 ,...,i m

, and using the recursion relations, we

write bi 1 ,...,i m
in terms of products ofai 1 ,i 2

and ai 1
21. In

principle, this process produces a set of equations that deter-
mine all of ai 1 ,i 2

and the properties of the HMC, but the
resulting equations are nonlinear, which makes the existence
of the solution difficult to ascertain. The higher order single
time moments of the generating function can be used to ex-
tract the available information about these processes, but
more of these moments are needed than with time correla-
tions, either intensity or event measurements, and these mo-
ments generally cannot be reliably extracted from experi-
ments. The problem can be avoided by determining a two-
time renewal function,^n(t1)n(t2)&, in which case the
analysis becomes the same as Sec. III and only the first- and
second-time moments are needed. Even using the two-time
renewal function requires one to either fit the function in
Laplace space, or fit functions that contain convolutions,
which results in additional polynomials in terms of time that
must be fit. The results is theoretically interesting, but in
practice, even for a model with two eigenvalues we need to
accurately measure the Laplace transform of the third mo-
ment and numerically solve a nonlinear set of equations,
which is not numerically feasible. The lack of certainty of
the existence of a solution, as well as numerical difficulties
in finding this solution, makes the use of the characteristic
function difficult even when the eigenvalues are distinct.
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