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Single molecule experiments reveal intriguing phenomenon in chemical and biological systems.
Several indicators of complex dynamics, including “intensity” correlations, “event” correlations,
and characteristic functions have been proposed, but extraction of information from these indicators
can be difficult since these indicators only observe certain characteristics of the system. Generally,
for systems that follow Poisson kinetics, all of these indicators contain similar information about the
relaxation times of the system and the connections between different relaxation times, but the
information is convoluted in different ways so the strength of various indicators is system specific.
The paper discusses the theoretical implications and information content of various data analysis
methods for single molecule experiments and demonstrates the relationships between indicators.
Under certain conditions, common indicators contain all available information about systems with
Poisson kinetics between degenerate states, but extraction of this information is generally not
numerically feasible. The paper also discusses practical issues associated with these analyses, which
motivates a numerical study based on Bayes’ formula in the companion [Japitkoskie and J.

S. Cao, J. Chem. Phy$21, 6373(2004), following papef. © 2004 American Institute of Physics.

[DOI: 10.1063/1.1785783

I. INTRODUCTION which we discuss in recent papéPs2® A more recent pro-
posal suggests the use of a generating function to examine
Over the last few years, many scientists used single molblinking sequence® Most of these analyses depend on large
ecule experiments to reveal the nature of dynamic systemamounts of data to remove uncertainties and accurately mea-
The first elegant single molecule experiment by Moerner andure indicators. Since the typical experiment is on the order
Orrit explored low temperature glasses, where the spectraf seconds to minutes, these large data requirements may be
diffusion of a single chromophore probes the environmentexperimentally impossible to obtain.
Recent experiments extend the single molecule technique to  The paper is an elaboration of previous work and a dem-
probe complex biological systems at room temperature. Thenstration of the role of recently proposed indicators in the
systems studied with single molecule techniques have bdramework of single molecule kinetiés:2226-29313% e re-
come much more complex, which makes interpretation okults in this paper are important in order for us to properly
data more difficult? Experiments by Chu, by Xie, and by assess how to combine indicators to reveal the physics of the
other groups reveal the mechanisms of chemical reactions igystem. In this paper we introduce a standard single mol-
biomolecular systems and the associated time scales of theseule model using Poisson kinetics in Sec. Il. We simulate
reactions’'* Other experiments demonstrate single mol-data with a specific kinetic scheme in order to give a numeri-
ecule spectroscopy'’s ability to distinguish between heterogecal example of the application of these indicators to single
neous and homogeneous relaxation in glassy systerhs. molecule experiments. Through both analytical work and ap-
All of these analyses require the determination of characterplications to the simulated data, we demonstrate the informa-
istic times and pertinent configurations or states from theion content of each indicator and discuss both strengths and
frequency and count of the photons emitted during the expossible difficulties related to these indicators. We show that
periment. The switching between configurations and the phathe indicators contain similar information about connections
ton statistics are stochastic processes that create large uncbetween relaxation times in complementary forms, and this
tainties in the data retrieved from experiments on thesénformation may be easier to extract from one indicator or
systems. Considering these uncertainties, analysis of thes@other. Understanding the relationships between the signa-
experiments requires the use of robust statistical methods. tures of various indicators is important in unambiguously
The stochastic fluctuations in single molecule systemsletermining possible kinetic schemes.
stimulated interest in the statistical mechanics  Under common conditions the indicators can theoreti-
community!®—3°These single molecule experiments give ex-cally contain all the available information of the system, but
citing insight into microscopic systems including the role of extraction of this information may not be numerically fea-
system bath-interactions and fluctuations. For bulk experisible. We also discuss that nonuniqueness of the underlying
ments one is generally only able to measure “intensity” cor-kinetics prevent determination of the exact kinetic scheme,
relations in the system, but these single molecule experibut the degeneracy of the different schemes come from linear
ments allowed theorists to propose several new indicators dfansformations. In the companion papewe introduce a
various dynamics in these systems, including the eventeomputational approach based on Bayesian statistics to ana-
averaged quantities, “two-event echo,” and number densitylyze data from single molecule experiments, which can over-
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FIG. 1. The telegraph signal with 20% Poisson shot noise for the standard ) o ] ] o )
single molecule experiment that we examine in this paper. The molecule i§!G. 2. Possible kinetic scheme) A diagrammatic depiction of the ki-
either considered bright with high intensity of photon emission, or dark withnetic scheme that we analyze in this paper and the companion fiajpend
low photon intensity. The event correlation function measures the duratiori¢) Show two indistinguishable schemes. For example, the probability dis-
of bright events and dark events, labetgcandt, in the figure. tribution for a sequence produced from the modellih with parameters

Kp1=3 5!, kg;=1 s ! andy=2 st is indistinguishable from the model in

(0 withky; =6 51, kg;=(2/5) 5%, kpo,=1 5%, kgp=(3/5) s 1. These two

he defi h di Thi | sets of parameters correspond to cutting different connections in the model

come the deficiencies in the indicators. IS paper along Wltrh (&), which one would expect to behave qualitatively differently, but this
the companion paper concentrates on combining the insighituition is false.
from indicators with numerical methods to approach single
molecule problems? .

After discussing the standard four state Poisson model ifhe state and the temporal resolution. In many of these ex-
Sec. I, including the important role of initial conditions, we Periments, the photon emission rate for the bright state is
will examine the three common indicators, intensity correla-much larger than the dark state background photon emission
tion, “event” correlation, and characteristic function, in rate. Our temporal resolution is limited by our ability to col-
Secs. lll, IV, and V, respectively. Our analysis will include l€ct enough photons in a bin to determine the state of the
discussions of the information about relaxation times ancystem. If both the bright state photon emission is much
connectivity contained in each indicator. For each indicatorlarger than the blinking rates and the difference between the
we will also discuss situations where a limited number oftright and dark state photon emission rates is also much
moments of each indicator can theoretically contain all availlarger than the blinking rates, the binning time can be chosen
able information, but this information does not uniquely de-SO that there is little ambiguity in the state or times of tran-
termine the kinetic schemes. The paper also examines n@itions. The unambiguous sharp transitions are apparent in
merical examples of each indicator, which demonstrate$he simulation in Fig. 1, where we show a single-molecule

several difficulties with the use of indicators. trajectory where the bright and dark state lifetimes arddrs
other appropriate unit the bright photon emission rate is
Il SYSTEM OF INTEREST 3000 photon/s and the dark emission rate is 500 photon/s.

The bin size is 20 ms and the number of photons in each bin

Our analysis will primarily focus on the blinking model is given by a Poisson distribution. These relative rates are
that appears extensively in the literatdfe?®*"**The model  reasonable for many single molecule experiments. As can be
views the single molecule experiment as a stochastic procesgen from this trace, the state can be unambiguously as-
that switches between two different set of states. A numbesigned and the time resolution is adequate.
of states, labeled “bright,” emit photons in a laser field, but  This simple kinetic model successfully explains correla-
we cannot distinguish these states from each other. The oth@ons in the length of time spent in bright states in the ex-
states, labeled “dark,” do not emit photons and also cannoperiments by Xi€. Mathematicians studied similar models
be distinguished from each other. The resulting signal rerelated to ion channef$:*>® Our discussion primarily ad-
sembles the telegraph signal demonstrated in Fig. 1, wherdresses systems that follow Poisson kinetics,
we are able to see the molecule switch from a bright state to
a dark state and vice versa, but we do not know which bright = K @
or dark state the system is in. which is a type of hidden Markov chai{iiMC). AHMC is a

This simple model does not consider uncertainty in themodel where the kinetics of state transitions only depend on
state of the system, bright or dark, and also neglects restriche current state, but we cannot directly observe the states.
tions on temporal resolution. One can compensate for thesé#/e need to infer the states from data, which does not specify
simplifying assumptions, but for many systems the error inthe states uniquely or may only have a probabilistic depen-
troduced by these assumptions is minimal. The photon shatence on the current state. Although most of our discussion
noise is instrumental in limiting both our ability to determine will address discrete state Poisson kinetics, we can include
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the continuous limit to get a diffusion type of equation, like A. Simple model
the fluctuating bottle-neck model whose equation is given in

Eq. (23) (also see Refs. 20-29, 31, 32, and.36 As a demonstration of the philosophical approach to

The discrete state HMC can be used to interpret man>§|ngle| .molec;]ule prgle?s, V;ie sFudy ha smple flgur—s'Fate
experiments that fit multiexponential distributions. TheseMdel in both papers, whose kinetic scheme is outlined in

models explain dynamic heterogeneity that results in Iond:'g' 2(@). The model has four states and the interconversion
lived memory effects as we discussed in previous Wrk® ~ between the states is governed by Poisson kinetics. Two
Determination of this heterogeneity or the time scales oftates are bright with labels “b1” and “b2,” and two states
other underlying mechanisms in single molecule experimentgre dark with labels “d1” and “d2.” The equation for the
requires detailed analysis of data acquired from experimentgrobability density is given by the simple kinetic equation,

Pb1 — (Vb1 Kp1) Vb2 K1 0 Pb1
Pb2 B Vb1 — (Vb2 Kp2) 0 Ka2 Po2 @
Pd1 Kp1 0 —(Yart+Ka1) Yd2 par |
Pd2 0 Kp2 Yd1 —(Ya2+Ka2) | | pa2
|
For numerical calculationsk,;=0.75s?, ky;=0.50s!,  B. Matrix notation for Poisson kinetics

_ ~1 _ 1 _ _ _
Kp=0.335 7, ky;=0.2257, and 1= ¥b2= Ya1= Va2 To discuss these HMC more generally we introduce a

— <1 i i
=0.1s " Note thatbl is not connected td2 andb2 is N0t gimple matrix notation for the kinetics of the system. We
connected tall. We break the links between these states tGyyite the kinetic matrix as three contributions

avoid difficulties associated with nonuniqueness discussed in

Sec. IV. Except for certain ranges of parameters, the eight e 0 0 K

. . . . . r'+K+ Kd: N —t
parameter model can reproduce the waiting time distribution 0 re-) K=+ 0
for the four-state model with more parameters due to the K(+) 0

nonuniquenes%“. The numerical values of these kinetic con- + ‘ &)
stants are chosen so that the waiting time distribution for 0 K7

both the bright and dark states are obviously not monoexpoys denote the bright state with+aign and the dark state
nential, which we could determine from the indicators pre-iin a—sign. K(* ) corresponds to transitions from a dark
sented in Secs. Ill, IV, and V, but the modulation rate be-gizie to a bright state, or vice Vergﬁ&i *) is the decay

tween the §ta'Fes does not cause apparent time separationdgysed byK (== If probability is preserved thenK@i)jk

any of the indicators. =—3K;“ 5. The case of diagon®(* ) andK~*) cor-
Since many experiments fit the waiting time distribu- responds to the modulated reaction models discussed

tions to a biexponential, this four-state model is a reasonablgxtensive|y1.8—29’36x381'he I'=*) matrices correspond to un-

minimal model for many systems. For the particular con-seen transitions between two bright states or two dark states.

stants we simulate, detailed balance holds, i.e., there is a For the four state model, whose kinetic equation is out-

VECtor peq such that,')eqzo andk;ij(pegj=Kji(pegi. but we lined in Eq.(2), these matrices are

do not need detailed balance or even Poisson kinetics to

apply these approaches. In fact, detailed balance violations K(FH=—KEH= Koo O }
are generally difficult to determiné.The cholesterol oxidase 0 —Kp
experiment by Xie and the RNA hairpin experiment by —k 0
. . dl
Chu***monitored macromolecule that requires a substrate, K| =)= — K<+—):[ } (4)
which the reaction depletes from the environment. The re- 0 ~kaz
plenishment of the substrate is a transport process, which ignd
not in equilibrium although the system reaches a steady state.
When treated appropriately, the lack of detailed balance will  ++)_ |~ Yp1 702 | oy |7 Yal Y2 |
not affect any indicators discussed in this paper or the nu- Yb1 T Vb2 Yd1 T Yd2

merical routine discussed in the companion paper. (5)
From the model system with the specified parameters, The waiting time distribution for the first visible transi-
we generate a sequence of bright and dark states for 25 majon into the dark state denoted lygiven that we started
ecules with a duration of 300 s, which allows about 150in the bright statej at t=0 has the Laplace transform
observed turn-over events per molecule and 7500 pieces q§| ")(s)= (K" "[1s— K" -1+ )]71) . Note that
data®® These data sets are much smaller than the data setsir notation is transposed relative to standard probability
collected in the experiments by Xfe. notation. A similar expression exists for the dark to bright
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transition, Qi(j+_)(s):(K(+_)[1S_F(__)_K(__)]_l)ij- f-:-cule _ experiments with bingry—“pright—dark’j—
Below we will discuss a characteristic function, which re-informations, which we refer to as intensity correlations,
quires us to define the combined matrix event correlationgsee Sec. 1Y, and characteristic functions
’ (see Sec \)/21,22,26—29,36
(+-) O .
0= 0 Q ©6) The intensity correlation approach measures the prob-
Q" 0 ability of being in the bright or dark state at multiple

. times: Thi rrelation function requires the existen f
From the matriced™ and K or Q, all observables of the €s IS correfation function requires the existence o
. . two sets of distinguishable states. Unlike some quantities dis-
system can be determined, but we want to determine the ; ; . :
. : .. _Cussed below, this correlation function cannot be applied to
properties of the matrix from the observables, which is a_. . . .
S . single photon statistics since single photons do not have a
nontrivial inversion problem. . ; : :
well defined duration. The time scales of the correlation
functions determine the relaxation of the system to the equi-
C. Equilibrium distribution librium distribution from the initial state, but does not con-

For various indicators the initial condition plays a piv- t@in the time scales for time spent in the bright or dark mani-
otal role in determining the strength and clarity of variousfold- The one-time “bright-bright” intensity correlation
signatures. Since the system has Poisson kinetics, it hasf@nction measures the joint probability of being in the bright
well-defined steady state distribution, which for conveniencet@te at=0 and att. The general expression for a Poisson
we will call the equilibrium distributiorpeq even if detailed kinetic process is

balance does not hold. Generalpbyq will not be the initial Cora(tyyen )

condition of our calculations since we select certain configu- ~ = ="

rations to start our measurement. For the intensity correlation - B 5 peq

discussed below, we start monitoring the system at an arbi- =11 ] o)e TrKrKatiti-0) S (8)
trary time, but we only consider configurations that are in a " 8% ped

the initial condition is trivially ) peq/| 8 ped . Where vector that denotes a sum over the remaining components
1 0 0 0 and the resulting quantity is a scalar. The bright-bright cor-
5= o ol (D)= 0 1}, (7)  relation function measures the eigenvalues that correspond to

the relaxation of the system from the nonequilibrium initial
and| 5 ped = =(8)pey); . For the event correlation func- condition of being in the bright state & 0. The matrix that
tion, we start the observation times after an observable trargoverns this relaxation iF+K+Ky.

sition. If we start from an observed transition from the If the eigenvalues of the matriK+ K + Ky are unique,
dark state to the bright state and average over all observdtie two time correlation function€ .. . . (t;,t,) contain all
transitions, the initial condition is p of the available information about the other correlation func-
=K 6 pg f[KE)8()p, |, which is the stationary tions through a decomposition of the correlation function
flux introduced previousl$? =2 A similar expression exists into a sum of multiexponentials,
for starting measurements on a bright to dark transition. Gen- N
erally,l this initial c_ondmon is |_10t as strongly mfluehced by Coroa(tyr )= E at . H i (ti—ti 1)
long time correlations as the intensity correlation since long i T E e E I oy

bright or dark periods do not have as large of a contribution 9
to the initial condition as they do for the intensity correlation .
initial condition®® It is important to note that we must aver- Where we can then relate the coefficieats . .; to each

age over all observed transitions. This stationary flux initialother. As a result, we can determine all of the available in-
condition is adequate if the duration of a bright or dark pe-formation about the system from accurate two time
riod in the molecular trajectory is shorter than the experi-measurements. For completeness, we outline the proof in
mental measurement times so that many measurements cARpendix A. We use the term all available information be-
be made on the same time sequence. If this is not the caseduse different kinetic schemes can result in the same wait-
the initial condition must be modified accordingly. ing time distributions and therefore produce the same se-
quence, although from a given kinetic matrix the waiting
time distributions are uniquely determin&iwe present an
example of this nonunigueness in Sec. IV.

As discussed in Sec. Il, the need to determine the time Although one can theoretically extract information on
scales of the underlying conformational dynamics of theséhe duration of time spent in the bright or dark manifold by
experiments motivated many authors, including our previousneasuring an infinite number of multitime correlations, it is
work, to propose various indicators. As a result, the recenhot practically feasible. The approach also has a difficulty
literature contains extensive references to these binarwhen one set of states is short lived and the system is almost
“bright-dark” systems?1?226-2836The popular indicators always bright or dark since the correlations stay near the base
measure correlations in the state of the system or analyZee. One must simultaneously solve all of the eigenvalues at
blinking between the bright and dark states. Below we willonce, whereas the event correlation methods that we will
discuss three major approaches to interpreting single moMiscuss in Sec. IV below separates the bright and dark pro-

.....

IIl. INTENSITY CORRELATION
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L los The deviations can be seen in Figa3 which compares
08 8 os the bright-bright correlation functiorC, . (t) determined
- 8 - from the data with the model prediction. The two-time cor-
o % 4 » relation functionC. , . (t;,t;) shown in Fig. 8b) does not
04 o o4 have any obvious features that represent memory. Figigje 3
50 o u compares the values @, , , for t;=t, with the square of
0 e 10 0 2 4,8 8 the single-time correlation function. The deviations between
001 L the two correlation functions coincide with deviations pre-
¢ sented in Fig. &), which indicates that it is probably a data
o, 0005 /,\/\ ) artifact. Figure &) shows a contour plot of the deviations
SO o for 0<t,, t,<<10. The maximum deviations are around 1%
i_ooos W : of the total magnitude of the function and may not indicate
- any memory effects considering the data’s deviations from
-0.01 8

the exact correlation function. These difficulties make it al-
most impossible to determine the coefficients of the decom-
position of the intensity correlatiors; above, but suggest
FIG. 3. Memory in the correlation function generated from the sequences ofhat other methods of determining the presence of memory
25 molecules with kinetic scheme discussed in Secalishows the single- 56 necagsary, One should also note that the deviations do not
time bright-bright correlation functio®, . (t) measured from the simula- . . - . . e .

tion vs the exact solution for the model. As can be seen, the data is ndd!V€ & clear signature of a Spec]f'C kinetic motif since the
sufficient for the determination of weak featurés. shows a contour plot of ~ deviations occur at short time which makes determination of
the two-time bright-bright-bright correlation functio€, , ,(t;,t;). (c) specific features difficult.

shows the deviation of . . . (t,t) from C ., (t)2. The deviations coincide

with deviations of the simulation data from the exact correlation function

and cannot be considered an indication of memory. These deviations are less

than 1% of the normalized correlation function and well within the range of V. EVENT CORRELATION

noise. (d) shows a two dimensional plot of C,, (t;,t,) . . .
~C, .(t)C. . (t,), which shows the scale of the noise in the system. Once The event correlation approach determines the statistics

again, the largest deviations are less than 1% of the maximum height of thef events. An event is the duration of a bright or dark period.
correlation functions. In other words, the start of a bright event is the time when
the molecule makes a transition from dark to bright. The
event ends when the molecule turns dark again. The defini-
cesses. The intensity correlation function does not contaitions of time of events are demonstrated in Fig. 1. We can
any readily observable signatures of conformationaleasily generalize these definitions to photon statistics, where
dynamics?®~28 Another difficulty with this approach is the the events are the arrival times of individual photons so the
need to accurately calculate the correlation function for dimes of events are the times separating photons. The time
wide range of times and for multiple times, since the inten-scales extracted from the measurements pertain to the dura-
sity correlation relaxation time scale will generally be largertion of events and not the overall relaxation measured by the
than the duration of events. The intensity correlation functiorintensity correlation approach. One determines the correla-
does not probe individual elements Bf K, andKy, only  tions in the length of duration of multiple events, such as two
the total matrix, so that determination of the kinetics is morebright events separated by one dark event, or separated by
difficult than the event correlation. two dark and one bright event, etc. The most important indi-
cator of the event correlation family is a bright event versus
an adjacent dark event. This quantity is the strongest, but
The deviations of the population from the equilibrium also the most important for cases where we can determine all
distribution by knowing that the system is in the bright or theavailable information. Previous work concentrated on two
dark state at a given time are smaller than knowing that théright events separated by a single dark event, but these mea-
system made a transitions from bright to dark or vice versa aturements are not as strong and cannot be simply inverted
that time. As a result, the signatures of memory can be wealeven when the eigenvalues are distitfct® The approach
The weak signatures are made apparent in Fig. 3. The figureontains possible flags to infer non-Poisson or nonrenewal
compares the two time “bright-bright-bright” correlation behavior, but these flags also require a large amount of data
function to the predictions for a single time correlation func-to see them. One of these flags is the “two-event echo,”
tion, C,, . (t1,t5)—C, . (t1)C, . (t,), for the model sys- which shows a rise in the two-event bright-bright duration
tem discussed in Sec. Il. The correlation function was calcuprobability density function compared to the predictions of
lated with a sliding time window from 25 molecular uncorrelated behavior fdg~t,> 7, wheret; is the duration
trajectories. The maximum deviations in the correlation functime of an event and is a characteristic time of the system.
tion are around 1% relative to the steady state value of th&he position and height of the echo is a measure of the
correlation function. This deviation is of the same order asmemory of the systerff =28
the deviations of the correlation function calculated from the ~ The n-event probability density function, which we will
data relative to the exact calculation, and because of corresall the n-event correlation function, directly specifies the
lations in the fluctuations and the high redundancy in theprobability of the path of the system. The correlation or any
sliding window, the deviations appear to be systematic. ~ other quantity is a sum over all possible paths so the event

time

©

A. Numerical example
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correlation is in many ways the basis of all other measure=s-1), andq"=1TS, result from the similarity transform.

ments. The probability density for the Istransitions is We assume\ is diagonal because having an algebraic mul-
n tiplicity greater than 1 usually requires additional constraints.
P(ty,...ty)=17 H KeKatD(ti—ti_q1) pi(ct)' (100  This form demonstrates a lack of uniqueness since any sys-
=1

tem with the same eigenvalues, the same m&TiX<S, and
The initial conditionp(”) is chosen because the measure-h® same vectorg’ andp give the same probability distri-
ments start at a transition and one averages over all of tHeution for multiple time events! In other words, since tThe
possible starting transitions. The superscript that appears F€NSity is restricted to probe along the vectprand q
the initial condition is to specify the initially observed state. COMPIéte information about the underlying matrix is lost
As has been pointed out by Verbeek and Orrit, the singl€Ven if we can _dgtermme all of t.he higher order correlations
event probability does not contain any information about the®™ €vent densities, but the different models are related
overall relaxation of the system. In order to extract meaning{hrough a linear transformation. o
ful information about conformational kinetics, multiple ime A Simple example of two indistinguishable kinetic

event densities are required, whereas the single-time correlf¢hemes is presented in FigebPand Zc). These are three-
tion function contains some information about conforma-Staté models with two bright and one dark state. We can map

tional kinetics26-28 As discussed in Sec. Il, event densities the three-state model into a model with one bright state and

can be sensitive to photon shot noise, which can cause uifne dark state with multiexponential waiting times for the
certainty in the state of the molecule, and data binningduration of each state. Processes with one bright state and

which can cause uncertainty in the time of transitions, if the®n€ dark state with possibly non-mono-exponential waiting
photon emission rate is not high enough. times are known as alternating renewal processes. If we set

Similar to the two-time intensity correlation function, kb_1:3571' kg1=1 Sfl’ k.b2=.kd2.=05f1, y=2's Y the
when the matriced = i)+K§: have distinct eigenvalues, _brlght stat?ﬁ\ivanmg tlrpte distribution with dmgnsmnles; time
the two-event correlation function contains all of the avail-iS (2/5)6e” >+ (3/5)e™". Tthe dark state waiting time is a
able information about the Poisson process. The derivatiofiMPle Poisson process™. The model in Fig. &) can
follows the results in Appendix A with some redefinitions of 2chieve the_z same wa|t|n_g-t|me d_|:1;tr|but|orl W|t[11the param-
various quantities and is also outlined by Fredkin and Fice. €ters kgi_G s5 ka=(2/)s 7 kp=1s7, kg
It is important to note that the eigenvalues for the decay™ (3/5) S *- These models have different connections, but
constants will be determined by the submatridé§ *) the ambiguity about the underlying kinetic scheme cannot be
+TC) andK§ )+ instead of the complete matrix "€SCIVed:

Kq+TI'+K and the coupling between the exponential decays

for the two different times will be determined by the matrices
K*) and K" ) instead of5), so one can separate the
contributions fromK ) andI'* =)+ K 7 *.

The result implies that there is no additional information ~ The advantages of the event correlation over the other
in higher densities, but the analysis of the two-event corremeasurements mainly stem from its separation of the bright
lation function requires binning small amounts of data into aand dark events and the separatiorkgf+ I', which deter-
multidimensional array. Since the probability of falling into a mines the eigenvalues, akdwhich determines the connec-
specific bin is a Bernoulli variable, statistical fluctuations intivity. The event correlation is the best indicator in many
the number of events that fall into a bin can affect determi+espects. As shown in Figs(a& and 4b), we are able to
nation of these relaxation times. One method of avoiding theasily fit the waiting time distribution generated by 25 mol-
binning difficulty is the calculation of the covariance of the ecules to a biexponential form. This biexponential form
times of two events. Although this calculation can indicate agives us the number of states in both the bright and dark
correlation between adjacent events, one loses much of thganifolds and also restricts the range of eigenvalues. A log
information contained in the density since the covariance ilot of the binned data is not obviously biexponential, but it

B. Numerical example

an averaged quantity. is obviously not monoexponential, which would justify per-
forming a numerical fit to the biexponential, which is quite
good.

A. Event correlations and nonuniqueness The deviations of the two-event correlation versus the

prediction from single waiting time distribution®(t4,t,)
—P(t1)P(t,), are on the order of 2%, which is stronger than
the correlation function and the echo at later times indicates
conformational dynamics. It is important to note that Fig. 4,
Pic presents the adjacent “bright-dark event” correlations. The
“bright-bright event” correlations has weaker memory ef-
fects and cannot be used in the analysis for system with
P, (13) distinct eigenvalues since one needs to know about the dark
state to determine the connectivity. For the four-state model,
whereS is the similarity transform that diagonaliz&;,+1T"  one only needs to fit the data to a biexponential, versus a
and A are the corresponding eigenvalues. The vectprs, triexponential and a constant for the correlation functions.

The “n-event” density function can be rewritten in a
revealing form

n
P(ty,...tn)=1T| [] KeMatDti~ti-2)
=1

n
— qT H S—lKSe—A(ti—ti,l)
=1
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0.5 0.4 %
04 03 P(n,t|j,t=0)=% [ﬁ dtQi(t) [*[Q*"() ]x;. (13
o3 = ’
§02 go2 In this expressionQ) is the matrix defined in Eq. 6 is the
& L convolution operator, anéin denotesn convolutions of the
sl same term. TheQ(t)*" term represents the probability of
0O 1234567809410 0012345678910 making n transitions before time, and the[ffdtQik(t)]
""‘(‘:)bi" i ""‘(‘;)b"‘ term represents the probability of not making the next tran-
o0 sition. The expression in the Laplace domain is given by
= -0.01
s " T P(n,s|j,t=0)=17 1TQ(S) [Q"(s)]. (14)
g o VE 0.01
- S @ The above equation is valid for any waiting time distribu-
B tiong, not just Poisson I_(in_etics. The formaligm can be easily
ol B LR T applied to photons stat|§t|cs, where a transition corre;ponds
© %) to a detected photon. Since we do not know the original or

) final state we must introduce the initial distribution and sum

FIG. 4. Event density generated from data of 25 molecy®sshows the ver the initial stat As will be di d below the best
bright waiting time distribution measured from the data for 25 molecules vs_o e € . _a states. AS e - scysse elo . e . €s
the predictions(b) shows the dark waiting time distribution measured from initial condition starts from a switching event, switching
25 molecules vs prediction&) Shows the error of the two-time bright-dark  from bright to dark or vice versa, since this initial condition
density vs the predictions of uncorrelated behavidrPonoi(l1,t2) - allows simple analysis to determine if the process is the re-
. E;’”"’“((g)'t?)* Pon(t1)Por(t2). (d) shows two slices ofc), =0 () and ¢ 145 of single waiting-time distributions. Supplemented with
27 L1 . el .. + .. .

an initial conditionp{.”), the probability of observing tran-

sitions in a HMC with bright and dark states becomes

The reduction in the number of fits also makes use of the  P(n,slic)=1"T1s—T'-K4] }(K[1s—T'=K4] H)"pic.
event quantities more feasible. (15)

The characteristic function for the number of evemts; ,
V. CHARACTERISTIC EUNCTION as a function of the Laplace varialie»s is

In this section we examine a recently proposed indicator F L @ing
o : ' G(¢,slic)= P(n,s|ic)e
the characteristic function, and the related moments that we (¢.slic) ; (n.sfic)

previously referred to as “number densitie&"?#?6293¢he ot et
characteristic function and related moments have an exten- =1[1Is—I'=Ky—=e*K] “pic. (16)

sive history although suggestions of introducing them intoThjs characteristic function comes from the discrete Fourier
the field of single molecules is fairly receft?*?*?**The  yransform, which can be easily related to the generating func-
“characteristic function” approach examines the probability tion by Brown (a z transform through analytic

of observingn transitions from bright to dark or vice versa in continuatior?® For numerical applications the discrete Fou-
a period of timeP(n,t).> One classic indicator derived from rier transform has better software support and the general
the characteristic function is the Mandel Q parameter thagpproach to inverting # transform is by evaluating it on the

measures deviations from a Poisson process, unit circle, in which case it becomes the discrete Fourier
(n?(t))—(n(t))? L b transform.
(n(v) ' (12) A. Moments of the characteristic function

where(n'(t))==,n'P(n,t) is the expectation of the number As with many functions, the Fourier or Laplace trans-
of events. Wang and Wolynes and Silbey and co-worker§orms generally do not give good insight into the probability
also discuss using moments in several single moleculéunction. Because of this difficulty, the most convenient and
experiments®® One attractive property of the characteristic informative procedure for analyzing a characteristic function
function indicators is that the large amounts of informationwill come from the moments. If there is one state with arbi-
can be carried in quantities measured at a single time. Thgary waiting-time distributionQ(s) and we see the transi-
binning with respect to the number of observed events isions from the state back into itself, an intermittent blink
more natural than binning time. Often one measures modiscussed in Refs. 26 and 27, we have complete information
ments or number densities, which resemble the use of corrdsy only knowing the expected number of blinks as a function
lations and avoids binning. These properties help us avoidf time. This scenario also applies to photon counting statis-
problems associated with binning our data in multidimen-tics, where the blinks are emitted photons. For photon statis-
sional arrays. tics, the photon emission rates from the system will be lower

If there is a visible transition into staeat t=0, the  than the bright-dark kinetics. As a result the background pho-
probability of observingy more transitions by timeis given  ton detection rate becomes important. For a Poisson kinetics
by with Poisson background, the kinetic rateskig need to be
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increased by the background rate and the emission from th@. Long lived correlations and the moments
background will correspond to a visible transition back intoof the characteristic function
the same state. For a single state, the first moment is known 1, give insight into the memory effects captured by

as the renewal function and it is related to the waiting-timeihase indicators. we consider a simple example with long
distribution by the renewal theorem, lived bright states and intermittent dark states. The transition

Q(s)=s(n(s))/(1+s(n(s))), (17) matrix Q is given by
where(n(s)) is the Laplace transform of the expected num- 1
ber of events{n(t))==,nP(n,t), whose derivative is the 1-p p 1+s
number density that we discussed previod&yhe relation Q(s)= p 1-p 2 |’ (21
is only valid if the process starts from a blink. If the process 0 77 s

does not start from a blink, i.e., arbitrary start time, the ex-

pected number of blinks grows linearly in time and the rela-and in the limit as t—c the indicator approaches
tion is lost,(n(t))=t/7, whereris the average time between lim,_..(n(t))I(t)=(1/180)[(1/p—2)]. For p=0, the indi-
events, and any memory effects are contained in the higherator is infinite since the memory is infinite. Fo= 1/2 there
moments, which are difficult to measure. This analysis caris no memory of the previous transition and the indicator is
be extended to processes with one bright and one dark statero, but the process is not Poisson. This is a simple renewal
if one measures the expected number of transitions initiallyprocesgsingle waiting-time distributionwith biexponential
starting from a bright to dark transition and then measuresvaiting time. The renewal indicator becomes negativepfor
the expected number of transitions initially starting from a>1/2 because the system prefers to flip-flop between states
dark to bright transition, one can deduce both the bright an@nd a fast transition is followed by a slow one, i.e., anticor-
dark waiting-time distributions, in Laplace space. Systemgelated steps. The anticorrelation is a sign of a break down of
that have only a single bright and single dark state, can bedetailed balance resulting in circulation through the configu-
described by two waiting-time distributions and are knownrations. The important observation is that the indicator is
as alternating renewal processes. Systems with a single waltased on first and second cumulants, which are easy to mea-
ing times for both bright and dark states have a simplesure. Comparisons of higher order cumulantsP¢h,t) are
memory. The system remembers how long it has been in aot as easily measured, and it is difficult to extract meaning-
particular state, but does not know the path that it took to geful information from these higher cumulants.

there. In these long persistence situations, large deviations
from a normal distribution for intermediate times are
possible?}?2293%or our example witlp~0 at intermediate
times, one observes a superposition of two normal distribu-
tions. Although the two-event measurements contain some of
The characteristic function also contains informationthis information, the information may not be as explicit if the

about the nonrenewal nature of the process. For a proces&o exponents are comparalMe~k,, butp is still small.
with a single waiting-time distributiorenewal procegs

B. Deviations from simple memory

2 —in2(e) — 2
zn: n“P(n,s)=(n%(s))={n(s))+2s(n(s))*, (18 D. Moments of a Poisson process and the extraction
of kinetic schemes

From Eq.(16) for the HMC, the expected number of
ks (also know as renewadlgan be written as

and deviations from this relation imply more complex
memory effects. Similar relationships can be derived for ain
alternating renewal process, supplemented with the appropri-

ate initial conditions. 1
For the case of intermittent blinks discussed in Refs. 26 (N(s))= ngK[ls—I‘— K—=Kgl *pic. (22)
and 27, the inverse Laplace of transform of E) suggests
a simple indicator where[1s—I'— K —K 4] 1 is the matrix for the relaxation to
) the equilibrium distribution from the fluctuation that results
(1) = (n“(t))—(n(s))—2[ dr{(n(t—17))d(n(7)) (19 i the initial transition att=0. These are the same decay
(n(1)) ' constants measured by the intensity correlation functions, but

. . . the quantities are integrated because of tlsetd/m, which
For long times(n(t))~ ut+b, wherey is the average wait- ;o maes extraction of this information difficult. Similar
ing time andb is an off set Cé?use‘?' b_y the n_on-_Pmsson na_turqo discussions above, these eigenvalues are different than the
of the system. In the long time limit, the indicator function two-event density eigenvalues, and the two measurements
behaves as provide complementary information. One advantage of the
(n?(t))— u?t?— 4ubt— ut characteristic function over the intensity correlation function
. (200 s that the characteristic function directly probes the transi-

tion matrix K which is also measured in the event density so
Note that for a Poisson proceds=0 and we recover the the characteristic function can be viewed as a mixture of the
Mandel Q parameter. intensity and event indicators.

I(t)—

mt
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cal errors around 0.5%. The characteristic function is calcu-
lated in Fig. %c). As can be seen, most of the details of this
distribution are hidden by noise in the data. The only notable
features are the central peak, whose width we can measure
through the second moment and the weak peaks=at .

The peaks ak= =+ 7 are the result of the alternating renewal
nature of the generating function. The dark events are longer
lived than the bright events so the number of renewals is
more likely to be odd than even if we start from a renewal
into a bright state. Figure(8) compares the generating func-
tion calculated from the data and the alternating renewal pro-
cess predictions. The deviations between the alternating re-
newal prediction extracted from the data and the complete
set of single molecule data are small tiy1% relative to the
maximum values of the function—unity—except in the vi-
cinity of k=0, =4. The error in this vicinity will grow in
height, but it will shrink in width, and results from the long
FIG. 5. P(nlt) and the absolute values of its generating func@(i|t). (8  time Gaussians measured from the real system and predicted
showsP(n|t) determined from data of 25 moleculgb) shows the errors for an alternating renewal process. These peaks indicate a

betweenP(n|t) and predictions for alternating renewal procegs.shows e ege . . .
the generating functioi (k|t) determined from the datdd) Shows the memory effect, but it is difficult to discern a motif associated

absolute errors betwedg(k|t) and the predictions for alternating renewal with this memory effect.
processes. Brown used the characteristic function approach to com-

pare the signatures of the four-state model with the fluctuat-
ing bottle-neck modet® The fluctuating bottle-neck model
For Re§)>0, the system has a convergent Taylor expantqrresponds to a one dimensional diffusion process in a har-

sion in terms of the generating variables arodnrd, SO We  mgnic well with a reaction rate that depends quadratically on
only need to know the moments to determine the functional,e coordinate.

form. If the eigenvalues of the matrlk+ K + K are distinct

we can use a S|mllar procedure to'those applied to the inten- - 5P (t)=DV2P.(t)+ V[KxP(t)]— k. X?P.(t)

sity correlation function to relate higher moments to the first )

few lower moments, so we can theoretically determine the T KkXPs. (23

entire generating function from the first few moments. This

procedure is discussed in Appendix B. Unlike the intensityCOnsistent with previous notatiorr represents the bright
correlation function, the relations are highly nonlinear andStateé and— represents the dark state. He demonstrates that

requires higher order moments so this extraction is not pracf-or perfect data the characteristic functions are different for
tical. Introducing a multiple time moment expansion will the four state model and the fluctuating bottle-neck model, as
prevent the nonlinearities, but multiple times also remove thdong as the temporal fluctuations of the rate constant is slow

advantages of having a large amount of information conin comparison with the rates of transitions. His example
tained in a two variable function. shows the exact generating functions with temporal fluctua-

tions in the rate constants that are 25 times slower than the
average rate of reaction. As demonstrated in Fig. 6, when
these measurements are made on stochastic data with the
The above analysis demonstrates the difficultly in usingmore interesting scenario of the fluctuations in the rate con-
the generating function to see explicit details of the systemstant being the same order as the average transition rates, the
Although the position and variance of the number of ob-signature cannot be successfully deduced. The figure com-
served transitions give indications of memory effects, thepares data generated from a diffusion process wWithk
underlying causes of these memory effects are not obvious= «k, =1 andx ;=K ; =2, with a four-state model with
The lack of specific features makes it difficult for the gener-y,;= y4:=0.289 706, 7ypo=7v42=1.71029, kp;=1/2kqy;
ating function to distinguish features in the data. The lack of=0.417 953,ky,=1/2k4,=4.436 15. The constants for the
other features can be seen in Fig. 5. In this figure, we exanfour-state model are chosen according to the procedures out-
ine the data generated for the model discussed in Sec. Il. THmed in Ref. 29, which are close to maximizing the similarity
initial condition is a dark to bright transition and every dark of the two models.
to bright transition in the trajectory is used as an initial con-  The data includes the trajectories of 25 molecules run
dition. Figure %a) shows a histogram of the number of re- over 100 time units resulting in an average of 150 turn
newals as a function of tim@(n,t) determined from the overs® The initial condition starts from a bright to dark and
data sequence. the system is averaged over all possible initial transitions,
The histogram is compared against the expected probwhich gives about 1250 total trajectories of 10 time units.
ability for an alternating renewal process in Figbp The  Figure a) shows the absolute value of the fluctuating
alternating renewal waiting time distributions are determinedottleneck characteristic function determined from the data
from event correlations. The maximum error is 3% with typi- and Fig. &b) shows the absolute value of the four-state
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E. Numerical examples
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ke ” The event correlations are generally the most useful of
o7 o7 the three indicators. It separates the contributions fibm
. L » from I'+ K4 and the contributions from the bright and dark
04 os states. The event correlations also contain the two-event
e ” echo, which is a signature of conformational dynamics, but
o e —— the indicator requires data binning, instead of averaging,
time which causes a loss of temporal resolution.
® e : ; _
- I 0se The characteristic function and its moments are a hybrid
PR | o oos between the intensity correlations and event correlations. The
008 004 characteristic times are determined by the same matrix as the
o oos intensity correlatiod’+ K + K 4 but the coefficients allow ex-
00s /g’ ooz ploration of K separately. The characteristic function allows
ooz oor averaging instead of binning, but it does not allow separation
0 4 6 8 . .
time of bright and dark states. The average number of transitions

@ and its variance give insight into memory effects of the sys-

FIG. 6. Comparison the fluctuating bottle-neck model and the four-statdem, but there are no other salient features. Application of
model.(a) shows the absolute value Gf(k|t) for the fluctuation bottle-neck complete information for distinct eigenvalues becomes a

model as determined from data of 25 moleculds. shows the absolute - - [ -
value of G(K|t) for the four-state mode(c) shows the absolute value of the hlghly nonlinear pmblem for this indicator, unlike the other

difference in the two model$d) Shows the theoretical results ). indicator_s- ) ) ) o )
In principle, Markovian systems with distinct eigenval-

ues only require two-time information to extract all available

model characteristic function determined from the data. Figinformation about the process, but as shown in the simple
ure 6c) shows the absolute value of the difference betweergXample in Sec. Il all available information does not give a
the two models calculated from the data and Fig)) 6is the unique kinetic scheme. The analysis can be extended to pro-
ideal plot of Fig. 6c). Even the ideal signal is only about 5% C€SSes with a limited number of degeneracies, such as double
of the total signal, and the noise in the characteristic functiorflegeneracies. These relations are theoretically interesting,
is around 10%, which prevents any strong conclusions usingut practical implementation is difficult if not impossible.
generating function methods. The signal would be weaker i he indicators can still give valuable information such as the
one did not specify the sequence starting on a transition dime constant for relaxation or the time constants for the
t=0.2° In the long time limit the two models become indis- duration of an event. A major cause of the difficulties with
tinguishable since they have the same average rate of trang@ily indicator is the large data requirements and the lack of a
tions and similar fluctuations in the number of transitions,unique solution. A more robust numerical approach that does
but at short times there are possible signatures. It importartot depend on the inversion of averaged data is required. In
to note that similar systematic deviations between charactefl€ companion papéf,we give a demonstration of combin-
istic functions generated from data sets from the same std?d the single molecule indicators with a Bayesian numerical
chastic process also appears because of the averaging o@iProach to extract possible kinetic schemes.

the same data sequence for 25 molecules. As a result, the

strongest possible conclusion is that the data might not bACKNOWLEDGMENTS

consistent with a four state model, but these measurements

do not give a good quantitative measure. This research is supported by the AT&T Research Fund

Award, the NSF Career Awar@Grant No. Che-0093210
and the Camille and Henry Dreyfus Teacher-Scholar award.
VI. CONCLUSION AND COMPARISONS

This paper presents a critical analysis of proposed indiAPPENDIX A: PROOF OF COMPLETE
cators for single molecule experiments. All indicators havel NFORMATION CONTENT

the potential to give qualitative insight into the dynamics of It is important to demonstrate the completeness of the

a single molecule system. The information contained in eackh¢yrmation so that we can compare results with other indi-
indicator is similar, but it is convoluted differently in each ~,i5rs. The derivation follows those in the Ref. 40. The

measurement so that one indicator may have a relatively time correlation function is written in the Laplace domain
stronger signature than the others. An example is the longg

memory effects captured by the characteristic function.

_Th(_e intensity correlation function is generally the \_/v_eak- T H () ATl gi)peq
est indicator. Measurements do not start from a transition sé . & H1Is,+A]TS 16 ped
the deviations from equilibrium are small. Due to the initial Ped
condition, accurate measurements of the intensity correlation . 1
is sensitive to long bright or dark periods. The intensity cor- = 2 i, iin].—_.[ SN
relation does not contain clear signatures of the dynamics of e m=1 et M
the system and only probes the total matlix-K+K,  The matrixS is a similarity transform of the matriX’+ K
which does not give insight into individual contributions.  + Ky, andA is the matrix of corresponding eigenvalugs,

n

(A1)
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Since the eigenvalues are distinct this matrix is diagonal. TheT ) I
prefactoraZ;  .; is determined by fitting the-time cor- 1 1;[ 6~ 1s, +A]" S 7 p-
relation function to the functional form presented above. The
initial condition appears in the superscript of the prefactor AT 1 (%) 1| o1
- . . =1 1s,+ A +
and thexi, refers to the index of the eigenvalues and the S 1;[ ST 1+ AT S s
state measured at the tirhg. Note that fitting the functional
form can be d_one in the time domain. The functional form of ~ _ ¢, s 1p.17s H S l50g1s,+ A1 |, (A9
the prefactor is n

the n-time intensity correlation maps into the spectral
decomposition of the quantum time-correlation function

as +in=1T{H 5<i>s(sinsl} P . (A2)  with a density matrixo—S 5)p.1TS, eigenfrequencies
iwj— —\;, and transition matrice®— S 16(*)S,

In this expression, the matrices are time ordered and thapPPENDIX B: APPLICATION OF INFORMATION
matrix &; has all zeros except for the elemény,i,} which  CONTENT TO THE GENERATING FUNCTION
is unity. The vectorp. is 8)pey/|8*)ped. The matrix

. For integer powers ofin, the mth moment has the form,
S6,S™1 can be written as an outer product of two vectors, gerp

S6,S *=w;v; with the property thatwvv'w;v|=w;v! and - S Cmit 1y
wiv;wjp[ =0 for j#i. Starting from the trivial identity (n (5)>:i21 — LIK[1s=T'—=K=Kg]""Tpic. (BL)
T T

wiv =(ai/ai)wp!=(a:;) 'waip] with scalar aZ; ) _ . . .

=1754)w,v[p.. , which follows from the definitions above, [N this expression;y,; is a combinatorial factor, and we used
we getwiv;r:(éii)ilwilT(s(i)WiUiTpiUi- Since Ts(Mw, 1T[T+K+Ky4]=0 to get the 1§ term. The terms with
andv]p.. are scalars, they commute resulting in the expres=m can be expressed as lower order moments. From these
sion, WiUiT:(afi)ilwivrp+lT5(i)WiUiT- Substituting this €xpression it is apparent that each higher term contains new
expression foiSs, S™* in Eq. A2 gives a recursion relation information in the form of the expression,

for the values of 1
fn(8) = S LIK[1s—I'=K = Kg] " ]"pic. (B2)

N T 55) 1 We can use the same projection technique with projec-
Axiy,i, T 1 1;[ S5ins P tion operators of the forn$5,S ! to derive a recursive rela-
tionship between terms that contamproducts of the matri-

1T ] 85w, o7 cesK and those with one and twid matrices. One should
B 5 i (P note thatS is a similarity transform that diagonalizes the
matrix I'+ K+ K, which is the same transformation used in
a1 T +) the intensity correlation calculation, but the coefficients will
=a. |1 8w v/ tpa _ , T _
2 n=2 be different. Using the projection operator we can write
X (178w, vl 8w, vl p. . 1
( iV, Ui P+) fm(s)= 3. > a1l T (B3)
. i1,0dm =i1,0.0 im i
a. I (A3) wherea’s have a similar definition to the intensity correlation
FlrFin ar;, ' and event density, but they will be numerically different al-

though\’s will be the same as the intensity correlation func-
tion. The same recursion relation holds,
which implies that determination cd%; and aZ; .; from
fitting C+ .. (t;,t,) to sums of exponentials determines all a. =17
of the higher order correlations. One can determine the decay  *""'™ j

e o T Fom e frst mament e can d gt by ing e
transform to a sum of terms of the forgn(s+\;) "%, but

cients of the exponens. ; _.; determined from the one-time we cannot find they,_; terms from the simple second mo-

correlation. If a limited number of degeneracies exist, such . L i o
as double degeneracy, a limited number of higher order maments since we cannot distinguish ordering. It is important to
te that the functional form does not give us any ordering of

ments can capture this behavior. The result depends on e X

fact that eigenmodes never mix and does not generalize ttge eigenvalues, so we would fik(s) to

arbitrary waiting time distributions even if these distributions

have a single parameter. fm(s)= >2>. Biy iy .7.1_[ SN (BS)
As we discuss in previous work, the above analysis has R Tt !

an analogy to spectral decompositon in quantumWith by =Zpg s i, whereP{---} is the per-

mechanic€®~2 By writing, mutation operator. By fitting the moments™(s)) or f(s)

a,,
Pic=g Bigipy (B
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