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Theoretical analysis and computer simulation of fluorescence lifetime
measurements. Il. Contour length dependence of single polymers
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Fluorescence lifetime measurements in a polymer chain are modeled using a memory function
expansion, computer simulations, and simple scaling arguments. Unless the quenching rate is
localized and infinitely fast, the fluorescence lifetime is generally not equivalent to the first passage
time. The fluorescence lifetime distribution is decomposed into memory functions that can be
measured separately in single-molecule experiments. The leading order of the expansion gives the
Wilemski—Fixman(WF) approximation, and the convergence of higher order terms determines its
validity. Simulations of the fluorescence quenching on a Rouse chain verify the accuracy of the WF
approximation at small contact radii, short contour lengths, and small quenching rates. Detailed
investigation of the average fluorescence lifetime reveals two competing mechanisms: the
independent motion of end-to-end vector, which dominates at small contact radius, and the slowest
relaxation of polymer, which dominates at large contact radius. The Wilemski—Fixman rate is used
in combination with scaling arguments to predict the dependence of fluorescence lifetime on the
contour length. Our predictions for the scaling of the average lifetime with the contour length are in
good agreement with both simulations and recent experiments by Eaton and his[gralip
Lapidus, W. A. Eaton, and J. Hofrichter, Proc. Natl. Acad. Sci. U.97A.7220(2000]. © 2004
American Institute of Physics[DOI: 10.1063/1.1756578

I. INTRODUCTION semiflexible chain. We demonstrated that the first-order in-

. . homogeneous cumulant expansion in the configuration-
Fluorescence quenching on a polymer chain has been %f

. i ) ; ontrolled regime defines a lower bound for the survival
theoretical and experimental interest for a long tim&The g

strona dependence of auenching rate on the fluoro hor&robability, while the WF approximation in the diffusion-
g dep qu N9 UOroPNOTEs, i rolled regime defines an upper bound and approaches the

quencher distance makes fluorescence quenching a Sens'tlt\a/?act result at large diffusion coefficients. In the present pa-

robe of the loop formation dynamics in polypeptides and . o - )
BNAS. Recent pdevelopment)s/ in time-Fr)es)cl)?v:d Single_per, we derive the applicability criteria of the WF approxi-

molecule fluorescence spectroscopy provide new tools to ur§patlon by a memory f””C“OT‘ ex_pansmn_comblned W'th scal-
derstand conformational dynamics on the molecular [&vel. N9 argumgnts, and eStabI.'Sh Its relqthn to cha!n length,
The internal relaxation of the polymer makes the quenchin .olnta;:t raﬁilus, and quenphm_g rate. W|th|n '.[he regrllon ?: va-
reaction a complicated example of diffusion-controlled reaclidity for the WF approximation, we mvgst,gate the chain
tions. Over several decades, there have been extensive d|§N9th dependence of the fluorescence lifetime measurement
cussions of diffusion-controlled reactios28A widely used ~ ©f @ Single Gaussian chain.

approximation scheme to calculate intra-chain reactions in AItho_ug_h the rela_lxation of each ljormal mode of a P0|y_'
dilute solutions was first presented by Wilemski and™Mer chain is Gaussian and Markovian, the end-to-end dis-

Fixman%which is referred to here as the WF approxima-tance motion is generally non-Markovian. The quenching
tion. The main focus of this paper is to quantify the reliabil- "ate probed by fluorescence experiments is a function of the
|ty of the WF approximation for a Gaussian Chain7 Va”da‘[eend'tO'end distance and is in general not localized. If the
the criteria with computer simulations, and predict the con-guenching rate is infinitely fast and localized at the contact
tour length dependence of the average fluorescence lifetiméadius, the fluorescence is quenched upon first contact and
In paper | of this series, we studied two different regimesthe fluorescence lifetime becomes the first contact time or the
of the reaction kinetics modulated by conformational fluctuafirst passage time. Yet this equivalence does not hold for a
tions and accounted for the effects of the experimental obgeneral quenching rate. Several simplified approaches have
servation window in fluorescence measureméhiEhe sta- been proposed to address the fluorescence-quenching prob-
tionary reaction process dominates in the configurationtem in a polymer chain. The Szabo-Schulten—Schulten
controlled regime while the diffusion process dominates in(SSS theory in Ref. 12 considers the effective diffusion of
the diffusion-controlled regime. A path integral simulation the end-to-end distance. A similar approach has been adopted
was used to model fluorescence quenching processes ont@study the semiflexible polymers where a potential of mean
force is mapped out from the equilibrium distribution of the
dAuthor to whom correspondence should be addressed. Electronic mai?nd'to'end distanc®. These reduced approaches neglect the
jianshu@mit.edu non-Markovian nature of the end-to-end distance motion and
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do not necessarily describe the complete range of scalingttached to the other end. The fluorescence-quenching pro-
relations between the first passage time and the contouess determined by the raiteis coupled to the internal re-
length even for a simple Rouse chain. The WF approximataxation of the polymer described by the relaxation operation
tion, although derived from a Markovian approximation for £. The survival probability of the fluorescence evolves as
the quenching rate, works surprisingly well for a Gaussian .

chain and has been validated in a set of experiments and P(t)=LP(t)—KP(t), 1)

simulations? For a diffusion process with a delta-function . .

. . . where the operatof represents the internal relaxation of the
reaction rate, the quenching rate degree of freedom is Mar- .
. L2 polymer and reduces to the Smoluchowski operator for
kovian and the WF approximation becomes exact. In Appent. e : ! :
) : . : simple diffusion, andK = K(R) is the first-order reaction rate
dix A, we demonstrate this special case and the equivalence_ .. . . .
. . o . coefficient which depends on the fluorophore-quencher dis-
of the delta-function sink and the radiative boundary condi- . )
. T L tanceR. In bulk measurements, we optically excite the fluo-

tion. In general, the applicability of WF approximation to a . . . )
rophores attached to polymers in solution to their excited
polymer system depends strongly on the contour length, the . .
. . . States at zero time and then monitor the total fluorescence
experimental quenching rate, the contact radius, the solvent . I ) .
; . . . —intensity. The average fluorescence lifetime is obtained by
viscosity, etc. In Sec. Il, we discuss a generalized expansiof

of the WF approximation and a quantitative criteria for Itslqtegratlng the decay _prof|le of fluorescence intensity. In
o ) ) single-molecule experiments, short laser pulses are con-
reliability for a Gaussian chain. ; . .
. . stantly applied to the single polymer at high frequency so
For real polymers such as polypeptide chains, fluores-: . . ) :
o ; o that the fluorophore is quickly pumped back to its excited
cence lifetime measurements provide a quantitative tool to .
. . . . State once the fluorescence is quenched by the quencher. As a
investigate the effects of chain contour length and stiffness, . . . o
) . . result, fluorescence trajectories are registered with instanta-
In a series of fluorescence quenching experiments, Eaton

et al. studied these effects in the diffusion-controlled regimenﬁgﬁie;nﬁrreu\f)éﬁgs V\c/); g;r?ndcehtg]rgr]niﬁ\ée?r:: fl\llj\gtrr;stcr:aisci i?e
by varying intervening residues on a polypeptide chain. Ind DT ; X

: . . time distribution function and other single-molecule
their experiments, a fluorophore-quencher pair, for example

. uantities, such as the multiple-event density and high order
tryptophan and cysteine, are attached to the ends of : : o . .
: : . o ._memory functions discussed later in this section. In compari-
polypeptide chain. On optical excitation, the fluorophore is : : .
. . e . - son to bulk measurements, these single-molecule trajectories
excited to a state with long lifetime, and is quenched effi-

; . rovide detailed information of the polymer dynamics with-
ciently upon contact with the quencher. The average quench- . S

. 2 o . .~ out inhomogeneous averages, which is a powerful tool to
ing lifetime (t) clearly indicates the loop formation. Their

experiments show that the effective quenching riagg probe conformational dynamics on the molecular level.
=1/t) exhibits anN %2 dependence for long chains and hasA. First passage time and fluorescence lifetime
at'rflfonmor:otgnlct\lI(Ijlecpen?r?nce Ipr Isholrt clh?ms.due to_ (;halnt When the quenching process is localized, ek(R)
SUMNESS. In Sec. » a theoretical calculation 1S carried ou =(od(R—a), the fluorescence-quenching event is a clear
to investigate this observation. Fluorescence resonance e

) . [Ndication of the formation of a physical contact. Fgg
ergy transfer(FRET) IS anot_her promising tool to probe — oo, the fluorescence is quenched upon first contact and the
polymer dynamics on short time and length scales. In FRE

. -Ic-1 enching reaction reduces to the Smoluchowski boundary
experiments donor and acceptor dye molecules are attachg@

t two diff ¢ Doints of | wo diff t ool ndition. In this limit the quenching time or the fluores-
a WOU' eren Pto't’.‘ S0 onegotymer or W?[ ! e}rer} po 3(; cence lifetime becomes the first passage time or the first
mers. Upon excitation, nonradialive energy transter Irom dog, yact time. In reality, the fluorescence is not quenched
nor to acceptor may occur. The energy transfer rate has

aé’bmpletely upon contact. As a result, the fluorescence life-

inverse power-law dependence on the donor—acceptor di%—m ; _— ;
. X e includes contributions from the second contact, the third
tance. According to Hster theory, K(R)=kg(R/Rg) ¢,

ith R. the Fost di t 50% t for effici A contact, and so forth. These additional contributions distin-
w F € FOSIer Tadius & o franster etiiciency. A re- guish the fluorescence lifetime from the first passage time.

cent Brownian dynamics simulation by Srinivas and Bagchi In Fig. 1, we plot the simulation results of a Rouse chain.

showed a power-law dependence of the average lifetime %%he simulation details are elaborated in Sec. 11 D. The delta-

the chain length with an exponent of ZBA power-law ¢ . quenching ratt(R) = q,6(R—a) is approximated
dependence with a smaller exponent was observed earlier a narrow Gaussian and the contact radius is identical to
Pastor, Zwanzig, and Szabo in a simulation of the first pas

e R hadThe | b q the bond length. The mean first passage time is obtained
sage time In a Rouse ¢ The larger exponent observed ., gimyjation assuming the same Smoluchowski boundary
in the FRET simulation may arise from theRf/dependence,

h t of the effecti ist lenath f condition as in Ref. 13. At larggy’s, the average fluores-
or an enhancement of Ihe efiective persistence 1engin Torgy e jifetime approaches the mean first passage time. This

the excluded volume effects. In Sec. Ill we gnalyze the COMNtesult demonstrates the difference between the fluorescence
tour_ length dependence based on the semiflexible Gauss"'ﬁﬂatime and the first passage time, and this difference ap-
chain model for polymers: proaches zero in the limggy—oe.

In Appendix A, we discuss the equivalence of radiative
boundary condition and delta-function sink. For the reaction
rate given byK(r)=kyd(r—a) andr governed by the dif-

Let us consider a general scenario where a fluorophore i&ision operatoi, the WF approximation becomes exact and
attached to one end of a chain polymer and a quencher ig,(0) is the first contact time. In the limk,—, the aver-

IIl. MEASUREMENTS AND CALCULATIONS
OF AVERAGE FLUORESCENCE LIFETIME
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FIG. 1. The difference between the mean first passage time and the average (4)

fluorescence lifetime. The delta-function quenching r&teR)=q,6(R .
—a) is approximated by a narrow Gaussian in the simulation. The mean firsiyhere G(z) =1/(z— £) is the Laplace transform of the
passage time is obtained by assuming a Smoluchowski boundary conditio?_;reen,S functionG(t) for internal relaxation an(fs’(z)

=G(2) —Pey/z is _obtained by subtracting the asymptotic
limit Pgo/z from G(z). This expansion is identical to Eq.
age fluorescence lifetime is equivalent to the first passaggL0) in paper | of this serie¥’ and is cited here for complete-
time. In general, this equivalence does not hold wHKeis  ness. Then we re-sum the expansion, leading to
not infinitely fast and localized, or whefi is not a diffusion

N 1+Q(2)
operator. )= (5
k+2[1+Q(2)]
k=(K) is the homogeneous average of the reaction rate and
B. Generalized Wilemski—Fixman expansion 0(2) =k I;_o(—1)"Y(2). Given the definition of theth
and single-molecule measurements order memory functiori(n(;)=k*(”*1)<KG’K---G’K), we

In the time domain, the quenching time distribution is obtain the relation betweey,(z) and the memory functions

the time derivative of the survival probability(t)= k’z\?o(z):)}l(z),
—dS(t)/dt, which in Laplace space is R A A
k™%Y1(2) = X2(2) ~ Xi(2),

k™*Y5(2)=x3(2) ~ 2X1(DX2(D) + Xi(2),

For the diffusion-controlled reaction, the survival probability n—1

is S(2)=((z+K—L)""), where (---) represents the en- k~("*DY  (7)=%.(2)— > )A(J-(Z)k’m’j“)\?nfjfl(Z).
semble average over the initial equilibrium configuration. As i=1

such, the mean quenching tinfe = —F’(z=0) is equiva-  The re-summation result for the special case wittbeing
lent to the average lifetim&(0). We canalso demonstrate the diffusion operator is derived in Ref. 19. Under the Mar-
this relation within the modulated reaction model discussedovian assumption of the quenching ragg(z) = x1(z), we

in literature?~2* The probability density for a quenching haveY,-,=0, and the expansion in E¢5) reduces to the
event at timet is the cumulative probability to have the pre- well-known WF approximation

vious quenching event occurring at leaiime before, giving

F(2)=1-292). 2 6)

- 1+kxa(2)
S(z)=—————. (7)
2 k+2z[1+ky.(2)]
F(t)= f Ke (K=O7Kdr). ®) _

t In fact, thenth order memory function can be measured
directly from single-molecule experiments. In these experi-
The Laplace transform of the quenching time distribution isments, a high frequency laser source is constantly applied so
F(z)=z‘1<K[(K—£)‘1—(z+K—£)‘1]K>, which is  that the fluorophore is re-excited once the fluorescence is
equivalent to Eq(2). This interpretation relates the quench- quenched. Consequently, temporal trajectories of quenching
ing time distribution function to the single event distribution events in a single polymer are recorded. Tie 1 event
function, (Ke™(K~97K), discussed in Refs. 23 and 24, density N, ;=k XKG(2)K---KG(z)K) can be collected
which provides a unique way to determine the lifetime dis-from these single-molecule trajectories and provides a com-

tribution function in single-molecule measurements. prehensive probe of theth order memory functici?*

To calculate the average fluorescence lifetime, we derive he1
a rigorous expression @&(0). First we expand the survival Yn(Z)=k" N (-2 1> kj+15(_(z),§| (2| ®
probability as " el <o e

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 Fluorescence lifetimes. Il. Polymer contour length dependence 575

with N;=1 and x,(2) =1. Equations(5) and (8) provide a 10000 T 1
link between the ensemble-averaged fluorescence intensity LA
measurements and the single-molecule multi-event measure ++
ments 1000 + +
' -~
_+

C. Criteria for applying WF approximation 100 + (a)

The average fluorescence lifetime is obtained easily e — e |
from the expansion 10 100

B ] T
(H=80)=k Lk 23, (~1)"V,(0), @  100F PR
i M =

which reduces to the WF approximatioft)=1/K) 10 ‘/‘+/+
+x1(0) if truncated at the first order. The accuracy of the - .+
WF approximation is determined by the contribution from 1' . /+/ (b)
higher order terms in the expansion. Although a rigorous M SN ]
proof of the convergence criteria for the alternating series 10 100
expansion is not available, we can estimate the higher order 1000 T ] = T ] E|
contributions for a Gaussian chain. From previous discus- -+ ]
sion, we know that all the nonzero contributions of the 100 ‘_‘_/“F +
higher order terms arise from the non-Markovian nature of /+/*' 3
the quenching rate. Rescaling the time by the slowest relax- 10 - ~ ]
ation timerg, we estimatey,,(0)ock™ 275", which leads to +— —t+ E|
the sufficient criteria for the applicability of the WF expres- o |(C) ]
ston ! 10 100

krr<l. (10 N

This criteria involves two time scales of the reaction dynam-FIG. 2. The average fluorescence lifetime from the WF approximation com-
ics: the homogeneous average reaction time drid the Pared to the simulationta) a=0.1, 4o=5.6; (b) a=1.0, 4o=5.6; (3 a

- . . . =1.0,9o=0.56. The simulation results are shown as plus symbols and the
Slqwes_t relaxation timer . Equation(10) reqwre_s the_ relax- WF approximation(t)=1(K)+ x1(0) is shown as dot-dashed lines. As
ation time scale to be smaller than the reaction time scal@y, or N decreases, the WF approximation approaches the simulation re-
which is consistent with the local equilibrium sults.
approximation>2°

For a quenching reaction with a delta-function sink

K(R)=dod(R—a) on a Rouse chain, the homogeneous av-whereb is the equilibrium bond length ang is the position
erage rate ik~ qoa’/N¥%?, given that the contact radizs  of the nth bead. The quenching time is averaged over many
is normally much smaller than the equilibrium end-to-endtrajectories. For each trajectory, the initial configuration is
distance. The slowest relaxation timerig~N®b?/D, where  generated from the equilibrium distributioR .= Nexp
b is the equilibrium bond length. Combination kfand 7z [—BU], and\is the normalization factor. Here we adopt the

yields an explicit expression of the criteria in H40) Ermak—McCammon algorithm to generate dynamic trajecto-
NY202 [ 312 ries of Rouse chaift?® The evolution of the nth bead’s po-
kTr~dob—5— |}, (11)  sition is
ry(t+A)=r,(t)—DgV,BUA + X, (13

Therefore, for a Gaussian chain of fixed bond length the WF
approximation is accurate for short contour lenjthsmall ~ whereA is the time step and, is a random displacement
contact radius, small quenching ratgg, or large diffusion from a normal distribution with zero mean and variance
coefficientDy,. 2DyA. The quenching probability for each time step is 1
—exgd —K(R)A] andR is the end-to-end distance at tinhe
Upon detection of a quenching event in our simulation, we
record the quenching time and restart the simulation with a
To examine the accuracy of the criteria in Sec. Il C, wenew initial configuration. In our simulation we take=1,
perform computer simulations to compute the average fluob,=1 and use a specific functional form of quenching
rescence lifetime in a Rouse chain. In our simulation, werate®* K(R) =q, exd —®(R—a)] with y=a .
consider a Rouse chain with a fluorophore attached to one The results for the average fluorescence lifetime are dis-
end and a quencher attached to the other end. The potentiglayed in Fig. 2. The criteria in Eq11), although obtained

D. Simulation of a Rouse chain

energy of the chain is from simple scaling arguments, is surprisingly reliable. At
5 N1 a=0.1,99=5.6, the WF expression reproduces all the simu-
BU=— 2 (ri—Tni1)?, (12) lation results for _the cont_our Iengths up ho=100. At a
2b2n=1 larger contact radiua=1 with g, fixed, the WF approxima-
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10000 7 — T -l"" _] ing relatio_ns for different radii arise naturally fr.oﬁq(O).
| 4 ] We investigate the contour length dependence in the follow-
1000 NS sl ) . ing section and discuss Fig. 3 further.
X + B i
100} - - .
+ = -4 N-58 _
10F B - (a) ] I1l. CONTOUR LENGTH DEPENDENCE
o~ - AND SEMIFLEXIBILITY
[ L 1 L L Ll | 1 A L L L 1 1] | ]
1 10 100 For synthetic and biological polymers, fluorescence life-
1000 —r———r77 ——TT T time measurements provide a quantitative tool to investigate
100F 2.44 A H ] the dependence of fluorescence lifetime on contour length.
N N E’BE i Real polymers have excluded volume, hydrodynamic, and
10f a” — +—t N monomer-specific interactions, resulting in variations in
= -ﬂf'//' o+ =t N1.27 . chain stiffness over a wide range of length scales. In this
| +,—-’" ] section we study the effects of semiflexibility and contour
0.1 O (b) length dependence on conformational dynamics of single
0.01 — ] e J macromolecules. We limit our discussion to fluorescence
1000 10 100 guenching and fluorescence resonance energy transfer
. The major difference between them is the distance
i T 1 T T I T T 1 L} T T Iﬁ | (FRED Th - d-ff b h . h d.
100~ 127 P/Q—-I- - dependence oK(R): the fluorescence-quenching rate falls
10k N_'l_ a ;ﬂr‘a E off exponentially,K(R) =g, exd —¢®R—a)], and the FRET
| +_ .-t | rate has an inverse power-law dependendé(R)
in ',-I'_‘T. 2.44 T =ke(R/Rg) ~°. . . o S
0.1F .~ (©) ] For a Gaussian chain, the equilibrium distribution of the
001k o | | _ end-to-end distance is
) 10 100 Ped R)=4mR[27(R?)/3]*2exd —3R¥2(R?)], (14)

where (R?) is the mean square end-to-end distance. The

FIG. 3. Scaling of ¥K) and x(0): (8) a=0.1,0o=5.6; (b) a=1.0.do  Green’s function of the end-to-end distance is
=5.6; (@ a=1.0,0,=0.56. 1{K) is shown as plus symbols and(0) is

shown as square symbols. The scaling relations are shown in dot-dashed \/E \/§R
lines. G(R,t R ): -

RN TR0 VI 9710
tion deviates from the simulation result, and the deviation 3(R?+ ¢2(1)R3)
becomes more prominent at larger contour lengths. At lower N 2(RA[1— ¢2(1)]

guenching rates|y, the WF approximation shows excellent
agreement with simulation. In all three subplots, the agree- . r( 3RRy(t) )
ments are generally better for shorter Rouse chains. As pre- o 2.
dicted by Eq.(11), for short contour lengths, small contact (ROI1=¢%(1)]
radii or smallgg, the relaxation time scale is much smaller where ¢(t) is the normalized distance correlation function
than the reaction time scale. In this limit, the Markovian defined in the literaturé For a Rouse chain, the explicit
assumption of the quenching rate or the local equilibriumform of ¢(t) is given by Szabo and othet$?
approximation becomes valid, so the WF approximation is  In paper I*°* we demonstrate that either the reaction or
accurate. the relaxation time scale can dominate chain conformational
It can be seen from Fig. 2 that the WF results havekinetics depending on the experimental scenarios. The
different slopes in the log—log plot at different contact radii. present discussion centers on the diffusion-controlled re-
As demonstrated in Sec. Il C, the WF approximation includegyime, which has been measured experimentally and studied
two contributions, the homogeneous average rati)Yland  numerically>**3 The WF theory defines two fundamental
the average relaxation timeg,(0). To examine the details of quantities, the homogeneous average katgK) and the
the length dependences, we plot these two contributionmiemory functiony,(t). Both are sensitive to the functional
separately in Fig. 3. The scalings of both quantities withform of the reaction rate. In Secs. Il A and Il B, we assume
contour length show strong dependencies on the contact ra delta-function reaction sinK(R)=qy,6(R—a) and ana-
dius; 1/K) scales ad\®2 ata=0.1 and has a smaller scaling lyze the dependence &fand,(0) on the persistence length
exponent at a larger contact radias- 1. The scaling expo- and chain length. Here is the contact radius for fluores-
nent of y,(0) decreases with the contact radius. Differentcence quenching processes and thestfeo radiusRg for
contour length dependences are also observed for differefRET processes. In Sec. IlIC, we use an exponential
contact radii with Smoluchowski boundary conditions, asquenching rate and compare our predictions with the
shown by Pastor and Szabo’s simulations, which correspondiiorescence-quenching experiment by Eaton and his co-
to a delta-function sink in the limig,—> (see Sec. )l  workers. In Sec. Il D, we discuss the lifetime and yield mea-
Based on our calculation and their simulation, different scalsurements in FRET experiments.

(15
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1 T T T
T T T T <KG(t)K>
» — X ="—5—-1
s N=4 | k
—— N=6
— 1 . % 2Xo¢b(1) )
> ] = sin
% 2x(OVI=¢%(1) | 1-¢*(1)
] 2% (t
N X ex —%() -1, (17
R 1 1- (1)
e e el where xo=3a%/2(R?) and ¢(t) is the normalized distance
R‘Ereducedun?t) s 1 correlation function. To estimate the contour length depen-

dence, we expang;(t) at small Xyp(t)/[1— $2(t)], giv-
FIG. 4. Equilibrium distribution of the end-to-end distance for the semiflex- . pang(t) O¢( ) ¢" (01 9

ible Gaussian chain with the persistence lerigik 2. The length unit is the Ing

equilibrium bond lengttb. The delta-function sink is represented as a solid H~l1— d2(1)] 32— 1—2x.b2(t)[ 1— H2(t)] 52
bar atR=a. TheN dependence of the homogeneous averagekratdlus- x:(O~1 ¢°()] o (Ol ¢ (1]

trated by the crossing points of the delta-function sink and the equilibrium NI (18
distributions.

At short times, both ends move independently, givib@)
~1-6Dy/(R?)t.?? In this time region,¢(t) is close to 1
and the expansion is no longer valid. We can estimate the
invalid region of the expansion aggp(t)/[1— ¢2]>1, giv-
Given the equilibrium distribution in Eq14) and the ing ¢(t)>1—x, or equivalentlyt<(R?)xo/6Dy=a%/4D,.
delta-function sink, we have Accordingly, we break the full integration into two parts

a? 3a2 x1(0)=1,+1, with
ko exg —
<R2>3/2 2< R2>

where the mean square end-to-end distafiR® is a func-
tion of N. As illustrated in Fig. 4, at extremely smal, a2~ where T=a2%/4D,. Within [0,T], x(t)~1/4y2x3?, yield-
>(R?), the homogeneous average r&tés a probe of the ing an estimation of the first term

right edge of the distribution and is dominated by the expo- 32 52\ 32

nential factor exp—3a%/2(R?)]. For a? smaller thar{R?), |1~ T4\2xG"=(R?)*424/3Doa. 20

the probe falls on the left edge of the distribution &tths a Compared to the first passage tifeN¥%3/12,/2Da in
complicated dependence &hfor small N. In the limit of  the SSS theory where only the diffusion of the end-to-end
largeN, and the homogeneous average katedominated by  distance is consideréd,|, is off by a factor of 2/24. The

the prefactora?/(R?)*2 The scaling exponents & with  second terni, is essentially dominated by the slowest relax-
contour length in this regimea?<(R?), is summarized in  ation time rg, yielding a different scaling
Table I: For a flexible chain with persistence lengith<N,

A. Homogeneous average rate k

: (16)

o

T
Ij_: fo Xl(t)dt, and |2=f Xl(t)dt, (19)

T

the mean square end-to-end distancgRé = 2Nb?L , andk l2~ 7R (21)
scales asN~ % while for a stiff chain with persistence It is clear that two competing processes contribute dif-
lengthL,>N, (R?)=N?b? andk scales ad\ 2. ferently toy,(0). The difusive motion of end-to-end vector

dominates at short time, while the collective relaxation of the
polymer dominates at long time. The relative weights of
B. Memory function  x,(0) thgse two contributions are determined by the contact radius
a. x1(0) is dominated by, at smalla and byl at largea,
and the crossover falls roughly into the region where these
two integrals are comparable. The length dependence of
x(0) is determined by both, andl,. For the dependence on
semiflexibility and contact radius, we make several observa-
TABLE I. Summary of the scaling exponents okland y,(0) with the tions.
contour length in the largé\ limit where a®?<(R?). Depending on the (1) For a flexible chain Wherh_p<N, the mean square

persistence length, this regime is separated into two regions correspond—end_to_end distance (5RZ> =2N szp and the slowest relax-

ing to L,<N and L,>N, respectively. Smalk represents the limib/a . . . 2 2 32 .
> /N while largea represents the opposite limit. HI refers to hydrodynamic ation time isTe~N Lpb /DO' Hence,l;~N"“ dominates at

interactions incorporated in the Zimm model. smalla while 1 ,~N? dominates at large, and the crossover

occurs aroundd/a~ /N. Our numerical calculation of;(0)

for a Rouse chainl(,=1/2) with a delta-function sink cor-
1k Smalla Largea Smalla Largea roborates this result. As shown in Fig. §;(0) scales as

Flexible chainL,<N 372 3/2 2 32 372 N2 for a=1, N**for a=0.1, andN™** for a=0.01, re-

Stiff chain L,=N 3 3 4 3 7/2 spgctlvely. The palculatlon strongly conflrms the two com-

peting contributions and that; ~N*? dominates over,

The memory functiony4(t) for a delta-function sink is
rigorously obtained as

x1(0) without HI x1(0) with HI
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T T & ] C. Intramolecular fluorescence quenching:
s P ] Comparison with Eaton’s experiments
10000 Piied -
Nl.53/o/w/ sz Quenching of the long-lived triplet state of tryptophan
e by cysteine provides an accurate way to measure the rate of
s | »% T R ] loop formation in polymer chains. With tryptophan at one
<3 100f 0 N P . end of a semiflexible peptide and cysteine at the other, Eaton
27 S0 et al. were able to obtain the diffusion-limited rate of contact
// formation. They measured the length dependence and the
i ¥ P ° :z(l) . ] viscosity dependence of the effective quenching rate by vary-
-~ o a=001] | ing the number of intervening Ala-Gly-GIn sequences. The
L e , effective quenching rate is defined as the inverse of average
I TN 100 lifetime, keg=1Kt)~k/[1+ kx1(0)]. In this section, we
mainly address two important experimental findings by the
FIG. 5. The contour length dependencexa{0)=[3x.(t)dt for a delta- Eaton group.
function sink. x;(0) scales adN?% at a=1, N8 at a=0.1, andN'* at
a=0.01. Exact calculations are plotted with symbols and the scaling rela{1) The scaling of the effective quenching rate approaches

tions are shown in dashed lines. N~3? for chain lengthN~ 15 but depends less dx for
shorter peptide$.
(2) The diffusion coefficient required to fit the diffusion-
influenced rate is about ten times smaller than the value

~N? as the contact radius decreases. The decreasing scaling €xPected for free diffusion of the contacting residties.
exponents with the contact radii are also observed for an

exponential quenching rate in Fig. 3, wheyg0) scales as ponential quenching rat(R) =g, exri — R—a)], the ho-

N?4 at a=1.0 andN*® at a=0.1. Although the contour ) : .
X . __mogeneous average quenching rate is obtained as
lengths are not large enough to show the asymptotic scalings,

we are still able to distinguish the leading contributions at % (Rg)
different radii, which is a generic effect of the two competing k=(K)= Ja qoe” PedRIAR
processes.

(2) For a stiff chain wher. =N, the mean square end- 1 1
to-end distance i§R?)=N2b? and the slowest relaxation = —exp{ - 2_5} 2=2{+V2mw{(1+{)
time is 7g~N*b?/L,D,. Consequently), scales with the 2m{
corltoqr Ieng_th ad® andl, sgale; adN?. Sriniyas and Bag- (1+¢)? 1+4¢
chi’s simulationd! for a semiflexible chain with., compa- X xp{ erf
rable to the contour length and excluded volume effects re- 2¢ \/2_5

ported an exponent of 2.6. This result lies between thgyith ;= y%(R?)/3. Given that{R?) =2NLb? for a flexible
flexible chain limit and the stiff chain limit. chain andy=a"!, ¢is a large number for smadl and large

(3) In the presence of hydrodynamic interactions, they |n the asymptotic limit—, (K) reduces tajo\/8/m¢ 32
normal modes of a semiflexible chain are approximated Uszng scales an~32. For the case where the contact radius is
ing the pre-averaged appro>§i8matiop for the hydrodynamicgphoyt the bond length, the asymptotic scaling is approached
tensors |ntrodu2ced by Zmﬁ?; Details can be found in our  for |arge contour lengths. Furthermore{K} does not ex-
previous work?” The scaling relations are summarized as: phipjt a monotonic dependence on the contour length for short

polypeptide chains due to the chain stiffness.
3 . In Fig. 6, the effective quenching rate is calculated nu-
When Ly<N, 13~N75 1p~N"% 22) merically with and without hydrodynamic interactions. The
When L,=N, 1;~N3, [,~N"2 contour length dependence of the effective quenching rate is
close to the experimental observatforror short peptide
chains,ky;(0)<1, the overall quenching rate is dominated

Consequentlyy;(0) scale withN and has a smaller ex- by thek given in Eq.(23). At large N, the probe radiusfalls
ponent in presence of hydrodynamic effects. on the left edge of the equilibrium distribution amkdde-

In short summary, both &/and y,(0) scale with the creases with increasiny, which agrees favorably with the
contour length for long polymer chains. The scaling expo-calculations of Eatonet al* Our calculations predict a
nents are listed in Table I. At small contact radiyg(0) is  weaker dependence dharoundN =3 due to the chain stiff-
dominated by the integrdl;, which depends only on the ness. The probe positicafor a short peptide chain witNl
equilibrium end-to-end distanck, has the same scaling ex- =3 occurs at the right edge of the distribution, as illustrated
ponents with and without hydrodynamic interactions. Whilein Fig. 4, and produces the small decline of the curve. In our
at large contact radiugy;(0) is dominated by the integral simulation, the effective quenching rate for long peptide
I,, which depends on the slowest relaxation time and hashains is dominated by ¥{(0). In theabsence of hydrody-
different scaling exponents with and without hydrodynamicnamic interactions, ¥;(0) scales with the contour length as
interactions. N~2 where the contact radius is comparable to the bond

From the Gaussian distribution in E(L4) and the ex-

(23)
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motion of the polymer beads at both ends while containing

100 . . T e---ek, : A g !
E (@ . —. _ <;<> no information on the collective motion of the whole poly-
ok ‘N — 140 mer _chain. A simple c;alculation shows thHagy given py Eq.
N . (24) is about seven times smaller thakgd/{ for chains of
- -~y '\, ] Iength_ N=10 gt 1 cp and 293 K2,4in agreement with the
= -*.,\\\‘§ 4 experimental findings of Eatoet al
E ....:\\\
L '..'.\ 4
0.1F R D. Fluorescence resonance energy transfer:
F . 3 Lifetime and quantum yield
0.01 . e e '1'0 Another laser-induced fluorescence spectroscopy tech-
nigue that provides complementary information on the inter-
100 —X e @k nal relaxation of biopolymers is fluorescence resonance en-
F (0 . —— K> ergy transfer(FRET). This technique has been extensively
i \ e 1/(0) used in single-molecule studies of conformational dynamics
10k \ 3 of proteins, DNAs, RNAs and other biomolecules.The
i N E inverse power-law transfer rate divergesRat-0 where the
oo, N 1 tr_a}nsition dipole—dipole interaction no Ip_nger holds. _To fa-
L w.,._\..\\ N, i cilitate the calculation, we use a modified expression for
RSO K(R)
....\\\ K
oo e | K(R)=————, (25
‘ N 10 e+ (R/RE)®

' ' ' wheree is a small quantity that represents the breakdown of
FIG. 6. Dependence of the effective quenching kate=1/(t) on the chain the weak dipole—dipole interaction for sm&ll This expres-

length (a) without hydrodynamic interactions ari) with hydrodynamic . .
interactions. The time unit i8%/6D,. The persistence length is,= 2, and sion reduces to the quantum yield for FRET processes when

the quenching rate at contact is estimated from experimental datadg be €=1. Thus the discussion applies to quantum yield measure-
=5.6. Due to the chain stiffnesk,; does not have a monotonic scaling for ments as well. The Fourier transform of the FRET rate is
very short chains. For a relatively long chain, the effective rate is dominated

by 1/x1(0), yielding N~2 scaling without hydrodynamic interactions and ZWZkFR,ZZ qRFel’G
N~3?2 scaling with hydrodynamic interactions, respectively. Mie¥2scal-  K(Q)= 7 exf] —qR-€Y¢]+exp — 5
ing was observed by Eataet al?* for N~ 15. 3ge
V3 V3

. —CO{7QR,:61/6 + 3Sir<7QRF61/6) ],
length. While in the presence of hydrodynamic interactions,
1/x1(0) scales with the contour length Bs ®2, which was (26)
also observed by Eatoet al. for N~ 15. which reduces to 2°R2kg/3\e when qR-€e*®<1. Consid-

To better approximate the exponential quenching ratering thate is a small number, the FRET rate is well approxi-
with the delta-function sink, the effective probe radiusmated by a delta-function sink(R)=ko8(R—Rg) with kg

should be greater than the contact radiusReal polymers = ;R k. /(6/€).?? The contour length dependence roughly
are closer to the worm-like chain model than the semiflexiblgg|iows Table |.

Gaussian chain model. The semiflexible Gaussian chain
model normally gives smooth equilibrium distribution
Peq(R), as shown in Fig. 4, while the worm-like chain model V- CONCLUSION AND DISCUSSIONS
predicts "}gh sharper decay at right edges of the pore we summarize our findings. For the fluorescence-
distribution.”™ Therefore, the worm-like chain model pre- ,anching process in a polymer chain, the fluorescence life-
dicts sharper decay df asa falls at the right edge of the e is not equivalent to the first passage time unless the
distribution. As a combination of these two effects, the ho-g,anching rate is infinitely fast and localized at the contact
mogeneous average quenching riate(K(R)) should de-  is Based on a generalized Wilemski—Fixman formalism,
cline Taster at small contour lengths, as demonstrated ighe fiyorescence lifetime distribution function can be decom-
Eaton’s experiments. posed into memory functions that are measurable in single-
In general, the effective diffusion process of the end-t0-qecyle experiments. A sufficient criteriarg<1, for the
end distanc& is non-Markovian. A natural way to introduce  ajigity of the WF approximation is obtained from the ex-
an effective diffusion coefficient is pansion for a Gaussian process. This criteria for a Gaussian
(R?) chain predicts thaft)=1/k+ x1(0) is a reliable approxima-
Deﬁzm- (24)  tion for small contact radii, slow guenching rates or short
0 contour lengths. The theoretical prediction is corroborated by
This definition differs fromDy=2kgT/{ used in Pastor, computer simulations of quenching processes in a Rouse
Zwanzig and Szabo’s wotk and reflects the independent chain.
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reaction rateK(R) =qo,6(R—a), wherea is the contact ra-

dius for fluorescence quenching or thérster radius for

FRET, 1k scales aNg’z for flexible chains ancN3 for stiff APPENDIX A: EQUIVALENCE OF BOUNDARY

chains. The scaling of thg;(0) with the contour lengtiN is CONDITION AND DELTA-FUNCTION SINK
characterized by two competing processes, the independent ) ) _ _
motion of the end-to-end vector and the slowest relaxation of FOr @ one-dimensional delta-function  sink{(x)
polymer. The former dominates at a small contact radius and <09(x—a), the homogeneous average rate I
the latter dominates at a large contact radius. For flexible kOPeq(_a). Let Us now obtainy,(0) from the rate—rate
chains,y;(0) scales ad? at a large contact radius amf’? correlation function

at a small contact radius, while for stiff chaing,(0) scales -

asN® at a large contact radius ard* at a small contact kzXl(O):f 7(X) P ¥) (K(X) —Kk)dx. (A1)

radius. The scaling relation for a flexible chain agrees WeIIWith the adjoint operato* definition which was used by
with Szapo’s.simulat@oﬁ?'Srinivas and Bagchi's simulations o751, schyiten—Schulten in their solution to diffusion with
of a semiflexible chain witt. , comparable to contour length absorbing boundary;(x) satisfies

gives an exponent of 2.6 faft), which lies between the
flexible and the stiff limit! In the presence of hydrody- L7 7(x)= = (K(x)—k). (A2)
namic interactionsy;(0) has a smaller scaling exponent, The adjoint operatol* =efV4,(D(x)e #Y4,) depends on
which scales abl®?for a flexible chain, and as® ata small  the general position dependent diffusion coefficier(ix).
contact radius andN”? at a large contact radius for a stiff Considering now the boundary conditiongx— *)=0,
chain. we have
An application of the scaling relations to the x @Buy)
fluorescence-quenching experiments by Eaton and his group n(x):f
clarifies two findings: = D(y)
(1) For intramolecular fluorescence-quenching pro-Substituting this equation into EGA1) and averaging over
cesses, the effective quenching rate is giverkpy=1/t). the equilibrium distribution Ped(X)
For long polymer chains, the effective quenching rate is=(f* e #YMdy)te AYX  we obtain
dominated byy,(0) and exhibitsN~%? scaling. For short . 1 e QAU
polymer chains, the effective quenching rate is determined k2y1(0)= J e‘BU(Wdy) f e
o0 2
f e_ﬁwy)(K(y)—k)dy} : (Ad)
X

dYLw(K(f)—k)e_ﬁU@df- (A3)

by k, the homogeneous average rateglecreases ahl in-
creases when the contact radius falls on the left edge of the
equilibrium distributionP(R), and increases withl when Xdx
the contact radius falls on the right edge of the equilibrium
distribution. Our calculations agree quantitatively with the Therefore,x,(0) is given by
experimental data of Eatoretal’ where the effective " “1 5 @BUX)
f e—ﬁU(y)dy) j
o —« D(X)

quenching ratek.; approaches th& ~%? scaling for long X1(0)=
polymer chains and depends lessMffior short chains.

2

(2) Through normal mode decomposition, non- x % -1
Markovian relaxation of the end-to-end distance for a semi- Xdx f e AUUWdy| + f e_ﬁu(y)dY)
flexible chain is composed of a number of Markovian pro- - o
cesses. The end-to-end distance undergoes an effective = @PU(X) sy 2
diffusion on the potential of mean force. Phenomenologi- Xfa D(x) dx JX € dy} : (AS)

cally, the effective diffusion coefficient is related to the dis-
tance correlation function byB.«[ #(t)dt=(R?). Numerical
calculations demonstrate thBt. for N=10 is about seven 1
times smaller than the bead diffusion coefficiebty (ty= F+
=2kgT/{ at 1 cp and 293 K. This theoretical prediction

And the average lifetime is

o -1 ra eﬁU(X)
j e_ﬁU(Y)dy) j D(X)

agrees with recent experimental findings by Eaton and his < dx J’X & BUYgy 2+ J” & AUy -t
co-workers. The effective diffusion constant required to fit o o
the diffusion-influenced rates in their experiments is about S0 )
ten times smaller compared to the free diffusion of the “e F - BU(Y)

) 7 X dx e dy| . (AB)
residues: a D(X) X
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