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The configuration-controlled regime and the diffusion-controlled regime of conform-
ation-modulated fluorescence emission are systematically studied for Markovian and
non-Markovian dynamics of the reaction coordinate. A path integral simulation is used to model
fluorescence quenching processes on a semiflexible chain. First-order inhomogeneous cumulant
expansion in the configuration-controlled regime defines a lower bound for the survival probability,
while the Wilemski–Fixman approximation in the diffusion-controlled regime defines an upper
bound. Inclusion of the experimental time window of the fluorescence measurement adds another
dimension to the two kinetic regimes and provides a unified perspective for theoretical analysis and
experimental investigation. We derive a rigorous generalization of the Wilemski–Fixman
approximation@G. Wilemski and M. Fixman, J. Chem. Phys.60, 866 ~1974!# and recover the 1/D
expansion of the average lifetime derived by Weiss@G. H. Weiss, J. Chem. Phys.80, 2880~1984!#.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1756577#

I. INTRODUCTION

Reaction kinetics modulated by fluctuating environments
has long been a theoretical and experimental interest.1–16Ex-
amples of such processes include ligand binding in proteins,
slow reactions in glasses, fluorescence resonance energy
transfer~FRET!, and intramolecular fluorescence quenching
on polymers. Recent advances in single-molecule techniques
based on fluorescence spectroscopy provide powerful tools
to measure the conformational structures and dynamics of
synthetic and biological polymers. The FRET and intramo-
lecular fluorescence quenching rates depend strongly on
donor–acceptor or fluorophore-quencher distance, and on
conformational fluctuations of polymers or biomolecules.
Hence it is of great importance to study the conformation-
modulated reactions, yet a unified perspective of reaction
kinetics modulated by fluctuating environments have not
been fully investigated. A widely used approximation
scheme to calculate intrachain reactions of polymers in dilute
solutions was first presented by Wilemski and Fixman,1,2 re-
ferred here as WF approximation. Szabo, Schulten, and
Schulten provided a first passage time approach to the diffu-
sion equation with Smoluchowski boundary conditions, re-
ferred to here as the SSS theory.3 Weiss developed a system-
atic perturbation analysis for diffusion-controlled reactions,
which recovers the WF approximation in the lowest order.5

Recently, Portman and Wolynes applied a variational method
and proved that the WF approximation is an upper bound for
the survival probability.9

The experimentally observed fluorescence lifetime dis-
tribution is the result of the competition between the reaction
from a distribution of conformations and the diffusion be-
tween different conformational states. In the homogeneous

limit, reaction is extremely slow compared to relaxation, and
the system can be well approximated by equilibrium, yield-
ing a homogeneous single-exponential decay. In the inhomo-
geneous limit, the survival probability is a static average
over the initial configurations and has a highly nonexponen-
tial decay. Between the two limits, the relaxation process and
the reaction kinetics are convoluted. The configuration-
controlled regime is dominated by the reaction kinetics, and
the diffusion-controlled regime is determined by the confor-
mational relaxation process. Although complete analytic so-
lutions are difficult, the first-order inhomogeneous cumulant
expansion and the WF approximation provide exact lower
and upper bounds to the real survival probability function,
respectively. In the present work, we investigate these re-
gimes for Markovian and non-Markovian fluctuations of re-
action coordinates modulated by conformational fluctuations
and account for the experimental time window used to moni-
tor fluorescence. To address these two regimes and their
asymptotic limits, we study a Markovian process in Sec. II
and a semiflexible chain as an example of non-Markovian
processes in Sec. III.

Reactions in biopolymers are often strongly coupled to
internal relaxation processes, and the fluctuations of the re-
action coordinate are generally non-Markovian. Reaction dy-
namics of biopolymers in solution can be directly probed in
real time by fluorescence spectroscopy.10–17 One important
technique is intramolecular fluorescence quenching, which
has been employed to measure contact formation between
two residues on an unfolded polypeptide chain by Eaton’s
group and other groups.18–20 By varying solvent viscosity,
Eaton and his group measure the full kinetics from the inho-
mogeneous limit to the homogeneous limit. In Sec. III, we
calculate the full kinetics of the fluorescence quenching in a
semiflexible Gaussian chain with a normal mode decompo-
sition scheme.21 Our calculations demonstrate that the first-
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order inhomogeneous cumulant expansion and the WF ap-
proximation provide lower and upper bounds for the real
survival probability, respectively.

In Sec. IV, we discuss the effects of the experimental
time scale on fluorescence lifetime measurements and the
unified perspective it provides. The experimental time scale
here refers to the time window to monitor fluorescence.
Within a very short time window, transient configurations
stay close to the static configurations, independent of the
relaxation rate. Such experiments can be well described
within the configuration-controlled regime. For long experi-
mental time, the configuration-controlled picture breaks
down even for the slow relaxing regions. The long time ki-
netics is dominated by the relaxation process and is de-
scribed by the diffusion-controlled regime. By varying the
length of the observation time, we can observe both kinetic
regimes.

In Appendix A, we generalize the WF approximation and
show that the WF approximation is exact to the first order of
1/D. In addition, we obtain the 1/D expansion of the average
lifetime and recover the perturbation result by Weiss.3,5 A
more detailed discussion of the generalized WF approxima-
tion and its applicability criteria are addressed in paper II of
this series.22 In Appendix B, we discuss the relation between
the experimental time scale and the apparent distribution of
the measured quantity obtained by single-molecule experi-
ments.

II. MARKOVIAN PROCESSES: TWO REGIMES
OF LIFETIME DISTRIBUTION

Chemical reactions influenced by fluctuating environ-
ments can be described by the Smoluchowski equation
coupled to a reactive sink

Ṗ~ t !5LP~ t !2KP~ t !. ~1!

L characterizes the relaxation of the fluctuating environment,
andK is the first-order reaction rate coefficient. Initially, the
system is prepared in thermal equilibrium, i.e.,P(0)5P0

5Peq. The overall population depletion is monitored over
time. Exact solutions to this equation can be obtained for
only a few specific forms of the reaction rate.3–8 Let us now
discuss the calculation of the lifetime distribution function.
We take the trace of the Laplace transformP̂(z) and write
the survival probability as

Ŝ~z!5 K 1

z2L1K L . ~2!

The bracketŝ¯& represent a spatial average over the equi-
librium distribution. FromŜ(z) the Laplace transform of the
lifetime distribution is obtained:f̂ (z)512zŜ(z)5^(K2L)
3(z2L1K)21&. The average lifetime, expressed as the first
moment of the lifetime distribution function, iŝ t&
5*0

`t f (t)dt5Ŝ(0).
Figure 1 illustrates the configuration-controlled regime,

the diffusion-controlled regime, and their corresponding lim-
its. In the static limit, the population is depleted indepen-
dently at every configuration without relaxation. In the dy-
namic limit, the population is depleted with a homogeneous

rate while the fast relaxation maintains the population shape.
Between the two limits, the kinetics can be described by the
reaction dominated configuration-controlled regime and the
relaxation dominated diffusion-controlled regime. Increasing
the diffusion coefficient, the overall kinetics traverses from
the configuration-controlled regime to the diffusion-
controlled regime. Although these two regimes are not
clearly separated, the boundary falls roughly into the region
where the reaction and relaxation time scales become com-
parable.

Let us now study the Markovian fluctuations of the re-
action coordinate. The reaction rate is given in quadratic
form, K(x)5kx21k0 with x the reaction coordinate. The
term k0 , the nonzero decay rate atx50, is necessary to
remove the divergence of the static average lifetime. The
fluctuation of the reaction coordinate is controlled by a one-
dimensional diffusive environment,L5D]x@]x1]x(bU)#.
D5lu is the diffusion coefficient,bU5x2/(2u) is the po-
tential of mean force, andu is the variance of the fluctua-
tions. The relaxation is an Ornstein–Uhlenbeck process with
the survival probability given by5,7,8,23

S~ t !5A 4s

~s11!22~s21!2 exp@22lst#

3expH 2Fl2 ~s21!1k0G tJ . ~3!

s5A114ku/l represents the coupling of the time scales
associated with environmental relaxation and reaction kinet-
ics. Next we expand the square root in Eq.~3! and express
the survival probability as a combination of eigenmodes. The
average lifetime, i.e., the averaged sum of the eigenmode
lifetimes, is

^t&5E
0

`

S~ t !dt5A 4s

~s11!2 (
n50

`
~2n21!!!

2nn!
S s21

s11D 2n

3
1

l~s21!/21k012nls
. ~4!

The lowest eigenvaluen50 yields the long-time exponent.
We discuss now the different dynamic scenarios:

FIG. 1. An illustration of the two kinetic regimes, the configuration-
controlled regime and diffusion-controlled regime, and their corresponding
limits.
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A. Static limit: Inhomogeneous average

The static limit case is displayed in Fig. 1. Sluggish en-
vironments such as glasses,L!K, have slow relaxation rates
that depend only on the initial configuration. The survival
probability is the inhomogeneous average of the survival
probabilities associated with each transient configuration,
S(t)5^exp@2Kt#&. In this limit, the lifetime distribution
function is f (t)5^Ke2Kt&, and the calculation of the aver-
age lifetime requires the inhomogeneous average of the time
scale for each initial configuration,^t&5^K21&. Larger ex-
perimental time windows probe the configurations that relax
gradually and essentially sample the configuration-controlled
regime. The effects of the experimental time window in the
dynamic regimes experienced by the chain conformation are
elaborated in Sec. IV.

The static limit of the survival probability with a qua-
dratic rate is obtained in the limit ofl→0 in Eqs.~3!

S~ t !5
1

A112kut
exp@2k0t#. ~5!

The averaged lifetime is

^t&5A p

2k0ku F12ErfSA k0

2ku D GexpF k0

2kuG . ~6!

For k0→0, the survival probability has a power-law decay
S(t)51/A112kut and a divergent average lifetime.

B. Configuration-controlled regime:
Inhomogeneous cumulant expansion

The configuration-controlled regime displayed in Fig. 1
is now addressed. Environmental fluctuations in viscous sol-
vents are greatly reduced, but not negligible. The effects of
the survival probability are evaluated with an inhomoge-
neous first-order cumulant expansion24

S~ t !5^^e2*0
t K~t!dt& inhom&

'K expF2E
0

t

^K~t!& inhomdtG L . ~7!

^¯& inhom stands for the inhomogeneous average over trajec-
tories at a given initial configuration.

In the short time limit, expansion of the configuration-
controlled rate ^K(t)& inhom yields S(t)'^exp@2K(x0)t
2D]x

2K(x0)t
2#& and corresponds to a summation over the in-

homogeneous Gaussian line shapes in spectroscopy.25

The average lifetime, a weighted average over the in-
homogeneous reaction times, is^t&'^@K(x0)#21

3exp@2D]x
2K(x0)/K(x0)

2#&.21

The survival probability with a quadratic reaction rate is
evaluated by a first-order cumulant expansion

S~ t !5
1

A112kute22lt
exp$2@k01ku~12e22lt!#t%.

~8!

The average lifetimêt&5Ŝ(0), is displayed in Fig. 2. The
plot shows that the first-order inhomogeneous cumulant ex-

pansion is the lower bound for the exact calculation and re-
duces to the static limit in the limit ofD5lu→0.

C. Diffusion-controlled reaction regime:
Wilemski–Fixman approximation

Let us now discuss the diffusion-controlled regime.
Here, the relaxation time is shorter than the typical the reac-
tion time. Expansion of (z2L1K)21 followed by the en-
semble average renders the survival probability

Ŝ~z!5
1

z
2

1

z2
^K&1

1

z2
^KĜ~z!K&

2
1

z2
^KG~z!KĜ~z!K&1¯. ~9!

^¯& represents the ensemble average andĜ(z)51/(z2L) is
the Laplace transform of the Green’s functionG(t) for the
environmental relaxation. We now derive a closure forŜ(z).
First let us separate out the asymptotic limit ofĜ(z) as
Ĝ(z)5Ĝ8(z)1Peq/z with Peq/z5 limz→0Ĝ(z). The sur-
vival probability is approximated as

Ŝ~z!5
1

z
2

1

z2
^K&1

1

z2 S ^K&2

z
1^KĜ8K& D

2
1

z2 S ^K&3

z2
12^KĜ8K&

^K&
z

1^KĜ8KĜ8K& D 1¯

'
1

z
2

k

z2
1

k

z2 S k

z
1kx̂ D2

k

z2 S k

z
1kx̂ D 2

1¯

5
11kx̂~z!

z@11kx̂~z!#1k
. ~10!

FIG. 2. The average lifetime for the Markovian fluctuations of reaction
coordinate studied in Sec. II, wherek51, k050.1, andu51. The diffusion
coefficient D is equal tol. The inhomogeneous cumulant expansion in
configuration-controlled regime defines a lower bound for the survival prob-
ability and agrees well with the exact calculation as the reaction approaches
the static limit. The WF approximation in the diffusion-controlled regime
defines an upper bound and agrees with the exact calculation and the reac-
tion approaches the dynamic limit.
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k5^K& is the homogeneous average of the reaction rate and
x(t)5^KG8(t)K&/k25^KG(t)K&/k221. x(t), the memory
function measures the relaxational effect of the reactive sys-
tem. The Laplace transform of the lifetime distribution func-
tion is obtained from Eq.~10!

f̂ ~z!5
k

z~11x̂~z!k!1k
~11!

with the average lifetime

^t&5Ŝ~z50!5
11x̂~0!k

k
. ~12!

These results have been derived by Wilemski and Fixman
using a different approach.1,2 Let us now make several ob-
servations.

~1! ^KG8KG8K&'k3x̂2(z) applies at small reaction
rates and fast relaxation times, i.e.,x̂(0)k!1. This is con-
sistent with the stochastic rate model discussed in Ref. 23.
The survival probability was derived there from a second
cumulant expansion of the stochastic rate

S~ t !5^e2* K~ t !dt&

5expF2^K&t1
1

2 E ^dK~ t1!dK~ t2!&dt1dt21¯G
'exp@2kt1k2x̂~0!t#. ~13!

The average lifetime,̂t&'k@12kx̂(0)#21'1/k1x̂(0), re-
covers Eq.~12!.

~2! In the homogeneous limit,x(z)→0, Ŝ(z) from the
WF theory isŜ(z)51/(z1k). Hence the survival probability
decays exponentially and corresponds to a homogeneous
Lorentzian line shape observed in optical spectroscopy. In
the inhomogeneous limit, we have shown earlier in Sec.
II B that the survival probability is given byS(t)
5^exp@2K(x0)t2D]x

2K(x0)t
2#&. This dependence corresponds

to an inhomogeneous Gaussian line shape.25

~3! Evident from Eq.~10!, the key approximation to the
WF expression iŝ KG8KG8K&'k3x̂2(z).1,2 For localized
reactions,K5k(r0)d(r2r0), the WF approximation and Eq.
~10! are exact. This situation has been studied in the context
of solvent-controlled electron transfer, where the nonadia-
batic electron transfer occurs at the transition state. The
diffusion-controlled electron transfer rate was first studied by
Zusman and recently reexamined by Cao and Jung.26–29

~4! For moderate values of the diffusion coefficient, the
long-time decay is still dominated by the fundamental relax-
ation mode and has a single-exponential decay. For finiteD,
the depletion rate at long time is generally different from the
homogeneous average ratek, and is different from the WF
approximation. A detailed discussion of the long-time decay
rate is given in Sec. IV.

~5! The WF approximation in the diffusion-controlled
regime provides an upper bound for the survival probability
~see Ref. 9 by Portman and Wolynes!. Quantitatively, the WF
approximation is exact to the first order in 1/D for both Mar-
kovian and non-Markovian processes. A mathematical proof
is given in Appendix A for an arbitrary reaction rate using the
generalized WF approximation. The 1/D expansion of the

average lifetime obtained is in agreement with Weiss’s
work.3,5A more detailed discussion of the WF approximation
and its validity regime are presented in paper II of this
series.22

The WF approximation for the quadratic reaction-rate
process considered in Eq.~3! yields

^t&5
1

k
1x̂~0!'

1

k
1

1

l

k2u2

k2
. ~14!

The homogeneous average rate isk5ku1k0 . As shown in
Fig. 2, the WF approximation approaches the exact average
lifetime for largel. Direct expansion of the exact average
lifetime in Eq. ~4! for largel yields

^t&5
1

k
1

1

l

k2u2

k2
2

1

l2

k2u2

2k3
~3k2u216kuk01k0

2!

1OS 1

l3D . ~15!

Equation~14! reduces to the WF approximation of the aver-
age lifetime up to the first order in 1/l. The negative sign in
front of the 1/l2 term supports the fact that the WF approxi-
mation always gives the upper bound to the survival prob-
ability. This is confirmed for a non-Markovian fluctuation of
the reaction coordinate by a numerical calculation in Sec. III.

D. Dynamical limit: Homogeneous average

Let us now discuss the case where the relaxation time is
much shorter than the reaction time. This kinetic scenario
corresponds to a phenomenological Poisson process with a
homogeneous reaction ratek5^K&. In this limit, the average
lifetime is 1/k, and the survival probability reduces to exp
(2kt). The average lifetime approaches the dynamic limit
from above asD increases, and the homogeneous average is
a lower bound for the system. This limit illustrated in Fig. 2
is obtained naturally from the diffusion-controlled reaction
regime discussed in the previous subsection. In the limit
l→` for the Markovian process considered in Eq.~3!, the
survival probability reduces toS(t)5exp(2kt), yielding the
homogeneous decay.

III. NONMARKOVIAN PROCESSES:
INTRAMOLECULAR FLUORESCENCE QUENCHING
ON A SEMIFLEXIBLE GAUSSIAN CHAIN

Formation of a specific contact between two residues on
a polypeptide chain is a fundamental process in protein fold-
ing. Fluorescence quenching has recently been employed to
study the intramolecular contact in polymer chains by mea-
suring the average lifetime of fluorescence.18–20 In the
diffusion-controlled regime, the internal relaxation of the
polymer chain is controlled by solvent viscosity, and it pro-
vides an effective way to decouple the relaxation process
from the quenching process.

Without explicit considerations of the excluded volume
effect and geometrical constraints, ideal polymers are flex-
ible at all length scales and are described by Gaussian statis-
tics. However, most single molecule experiments on bio-
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molecules are performed at length scales where the polymer
exhibits some rigidity, and semiflexibility is key to under-
stand the measurements of single polymer dynamics. In Ref.
21, we extended the Gaussian chain model to include the
chain stiffness and studied the Brownian dynamics of the
semiflexible chain with a normal mode decomposition of the
Langevin equation. The equilibrium properties of semiflex-
ible chains were studied by Kratky and Porod, Harris and
Hearst, Freed, Fixman and Kovac, Ha and Thirumalai, and
many others.30–35The non-Markovian features of the internal
relaxation make it hard to solve the full kinetic equation
analytically. Here we decompose non-Markovian fluctuations
of the reaction coordinate into a sum of Markovian processes
and investigate the coupled reaction and relaxation using
path integral methods.

Eaton and co-workers measured the quenching rate for
tryptophan-cysteine pairs usingK(R)5q0 exp@2g(R2a0)#
with g5a0

21. The terma0 is the contact radius,q0 is the
quenching rate at contact, andR is the reaction coordinate
described by the fluorophore-quencher distance.K(R) falls
off exponentially as a function of the reaction coordinate.
For a tryptophan-cysteine pair,q054.2 ns21 and a0

50.4 nm.19,36 For a Gaussian chain, with two amino acids,
tryptophan and cysteine attached at the end points, the equi-
librium distribution of the end-to-end distance is

Peq~R!5F2p^R2&
3 G23/2

4pR2 expF2
3R2

2^R2&
G , ~16!

with ^R2& the mean square fluorophore-quencher distance.
The normal mode representation of the end-to-end distance
vector is

R5 (
p51

N21

cpxp ~17!

with cp52@(21)p21#/2 cos(pp/2N). The normal mode
representation of the internal relaxation Smoluchowski op-
eratorL is

L5 (
p51

N21
1

zp

]

]xp
S kBT

]

]xp
1lpxpD . ~18!

L determines the Green’s function and equilibrium distribu-
tion of each normal coordinate. A detailed derivation is given
in Ref. 21. The equilibrium distribution and the Green’s
function of the normal coordinates are

Peq~xp!5 )
p51

N21 S 2pkBT

lp
D 23/2

expH 2
(p51

N21lpxp
2

2kBT J ~19!

and

G~xp ,tuxp ,t8!

5 )
p51

N21 F2pkBT

lp
~12e22lp /zp~ t2t8!!G23/2

3expH 2
(p51

N21lp@xp2xp~0!e2lp /zp~ t2t8!#2

2kBT@12e22lp /zp~ t2t8!#
J , ~20!

respectively. So all the normal coordinates are Markovian
with different relaxation times. On the other hand, the reac-
tion coordinate is a combination of these normal coordinates
and is generally non-Markovian. In this work, we carry out
path integral simulations of the fluorescence quenching pro-
cess on a semiflexible chain.27,37,38 The total time is dis-
cretized into slicesMD5t. In our simulation, initial con-
figurations of the normal coordinates are generated according
to the equilibrium distribution in Eq.~19! and propagated
within each time slice according to the Green’s function in
Eq. ~20!. For each time step, we determine the end-to-end
distance vector with Eq.~17! and the quenching rate accord-
ingly. Formally, the survival probability is

S~ t !5 lim
M→`

E dXM21¯E dX0e2K~XM21!D

3G~XM21 ,~M21!D;XM22 ,~M22!D!

¯e2K~X1!DG~X1 ,D;X0,0!Peq~X0! ~21!

with X a short notation of the normal coordinates$xp%.
In experiments, the survival probabilityS(t) or quantum

yield is monitored over a wide range of experimental time
scales, and the average lifetime is obtained by integration of
S(t) up to the experimental time

^t&5E
0

texp
S~ t !dt. ~22!

Equation~22! reduces toŜ(z50) astexp approaches infinity.
The configuration-controlled regime and the diffusion-
controlled regime are explained in detail. We calculate sur-
vival probabilities and their corresponding average lifetimes
for various solvent viscosities. The survival probability func-
tions are shown in the master plot of Fig. 3, and the average
lifetime for the full range from the static limit to the dynamic
limit is plotted in Fig. 4. In both plots, a specific solvent at a
viscosity of 10 cp and 293 K is taken as a reference state,

FIG. 3. Path integral simulations of the survival probabilityS(t) for the
intramolecular fluorescence quenching experiments;a0

2/6D0 is the time unit.
The persistence lengthLp52, chain lengthN510, and the quenching rate at
contact is estimated from the experiments of Eatonet al. in Ref. 19 to be
q055.6. All the survival probability functions for various solvent viscosities
reduce to homogeneous single-exponential decay for large observation time.
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a050.4 nm is the natural length unit, anda0
2/6D0'25 ns is

the corresponding time unit. In the reference state, the
quenching rate at the contact isq055.6. These numbers are
used to match experimental values from Eaton’s studies.19

The average lifetime from Eq.~22! is evaluated in a time
window of texp540 and plotted in Fig. 4. That the average
lifetime falls below the static limit is a clear indication of the
reaction slowdown in the absence of sufficient relaxation.
This feature is more evident in Fig. 3: The survival probabil-
ity in the static limit is the upper bound for the survival
probability with nonzero diffusion coefficients, and inhomo-
geneous effects are significant for short observation times. In
the long-time limit, the kinetics is dominated by homoge-
neous decay.

In the configuration-controlled regime, an inhomoge-
neous cumulant expansion of Eq.~7! yields

^K~t!& inhom5
q0

2
expF S a

2
21DgR0f~ t !1ga0G

•H 11e2gR0f~ t !1a~e2gR0f~ t !21!

1u12auErfS U~12a!AgR0f~ t !

A2a
U D

2e2gR0f~ t !u11au

3ErfS U~11a!AgR0f~ t !

A2a
U D J

with a5
g^R2&~12f2~ t !!

3R0f~ t !
. ~23!

f(t)5^R(t)R(0)&/^R2& is the distance–distance correlation
function given in Ref. 21. Figure 5 compares inhomogeneous
cumulant expansion of the survival probability and the path
integral calculation. The configuration-controlled reaction

provides a better approximation at lower solvent diffusion
coefficients. The exact survival probability is bounded from
below by inhomogeneous averaging. At larger observation
time, the exact survival probability yields a homogeneous
decay, consistent with our observations in Fig. 3. A more
detailed discussion of the experimental time scale will be
addressed in Sec. IV.

In the diffusion-controlled regime, the memory function
x(t) is obtained directly from path integral simulations and
the average lifetime is evaluated with Eq.~12!. Figure 4
shows that the WF approximation,^t&51/k1x̂(0), is an up-
per bound for the average lifetime. The exact result is ap-
proached from above as the relaxation rate increases. For fast
diffusion, ^t&51/k1x̂(0) converges to the dynamic limit
with the order of 1/D. The scaling of the average lifetime is
demonstrated in the inset of Fig. 6. The log–log plot ofx̂(0)
precisely follows the 1/D scaling. In Fig. 6, we use the
memory functionx(t) from the simulation to calculate the
survival probability with the WF approximation. The nu-
merical implementation is as follows. First, we rewrite Eq.
~10! as

Ŝ~z!5
1

z1k
1kF 1

z1k
x̂~z!2Ŝ~z!x̂~z!G

1k2
1

z1k
x̂~z!Ŝ~z!. ~24!

Then, we invoke the inverse Laplace transform and obtain
the iteration scheme

FIG. 4. The average lifetimêt& calculated by path integral simulations for
a fixed experimental timetexp540 in the reduced time unit. Other param-
eters are the same as in Fig. 3. The WF approximation holds for fast intra-
chain relaxation while the inhomogeneous cumulant expansion holds for
slow intra-chain relaxation. The long-time kinetics is always described by
the WF approximation for the diffusion-controlled regime.

FIG. 5. Comparison of the survival probability functions calculated by path
integral simulation and first-order inhomogeneous cumulant expansion. As
the intra-chain relaxation becomes slow, andt→0, the inhomogeneous cu-
mulant expansion better approximates the real survival probability. As the
observation time increases, the overall kinetics is dominated by the homo-
geneous decay.

567J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 Fluorescence lifetimes. I. Kinetic regimes

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



S~ t !5e2kt1kE
0

t

dt1E
0

t1
dt2@e2k~ t12t2!x~ t2!

2S~ t12t2!x~ t2!#1k2E
0

t

dt1E
0

t1
dt2E

0

t2
dt3

3@e2k~ t12t2!x~ t22t3!S~ t3!#. ~25!

Figure 6 shows that the survival probability calculated using
the WF approximation approaches the exact results at larger
diffusion coefficients.

IV. EXPERIMENTAL TIME SCALE:
A UNIFIED PERSPECTIVE

In the previous two sections, we explored the relation
between the relaxation and the reaction time scales. In real-
ity, finite experimental time windows play an important role
in the kinetic interpretations. For example, in fluorescence
quenching experiments we monitor the time range of popu-
lation decay to obtain the average lifetime. In FRET experi-
ments, an appropriate observation window is used to monitor
the quantum yield and determine the donor–acceptor
distance.13,14

The mechanism of population depletion from its depen-
dence onD and texp is illustrated in Fig. 7. At small time
windows, only transient configurations can be probed no
matter how fast the relaxation is and the static limit is re-
trieved. At larger experimental times, transient configurations
are no longer frozen, yet the relaxation perturbs slightly the
transient configuration and the kinetics is typically in the
configuration-controlled regime. The inhomogeneous cumu-
lant expansion gives here the correction to the inhomoge-
neous limit. As illustrated in Fig. 7, the effective range of the
configuration-controlled regime depends inversely on the re-
laxation rate. In the slow relaxation region, static configura-
tions dominate the kinetics for a wide range of time. In the
fast relaxation region, the static configurations relax quickly
into other configurations. This behavior is clearly demon-
strated in our numerical calculation for fluorescence quench-
ing processes. The survival probabilities from the inhomoge-
neous cumulant expansion agree well with the exact results
for small D and at short times, but the expansion fails to
describe the long-time decay. That is seen clearly in Fig. 5.

Now we expand Eq.~7! to the second inhomogeneous
cumulant

S~ t !'K expF2E
0

t

^K~t!& inhomdt1E
0

t

~ t2t!

3^dK~t!dK~0!& inhomdtG L . ~26!

For the expansion to be valid, the second cumulant has to be
smaller than the first cumulant for every initial position.
Such criteria cannot be satisfied in the long-time limit. Gen-
erally speaking, in theK→0 limit, the slow-reacting popu-
lation is first diffused to the fast-reacting region and then
depleted at longer times. Hence the long-time decay is al-
ways dominated by the diffusion process. At small fluctua-
tions, we evaluate the survival probability using a full cumu-
lant expansion instead of the inhomogeneous cumulant
expansion. This scenario is similar to the Gaussian stochastic
rate model discussed in Ref. 23. The average lifetime is ob-
tained from the second cumulant expansion,^t&5k@1
2kx̂(0)#21'1/k1x̂(0), which reduces to the WF results
for diffusion-controlled reactions. The second cumulant ex-
pansion over the equilibrium distribution in Eq.~26! gener-
ates the same result. The transition from the short-time to the
long-time behavior was discussed by Pechukas and Anker-
hold in the context of Agmon–Hopfield kinetics.39 For an
ergodic system, the average of lifetime over an extreme large
experimental time generates the homogeneous limit. This has
been demonstrated in the numerical calculation of fluores-
cence quenching processes. Figures 3, 5, and 6 show that the
long-time kinetics is always homogeneous regardless of the
magnitude of the diffusion coefficient, yielding a single-
exponential decay.

In that case, the long-time decay of the population is
determined by the lowest eigenvalue of the full kinetic equa-
tion in Eq. ~1!.27 Let us now defineL5D]x@]x1]x(bU)#
and a corresponding Hermitian operatorH5ebU/2Le2bU/2.
H transforms the original kinetic equation into a
Schrödinger-type equation

FIG. 6. ~a! The survival probability functions calculated and compared for
path integral simulation and WF expansion. In the long time, the WF ap-
proximation always predicts a single-exponential decay, yet with a smaller
decay rate than the actual survival probability obtained from the path inte-
gral simulation. The difference in rate decreases with the diffusion coeffi-
cient. ~b! A log–log plot of the contact formation timex̂(0)5*0

`x(t)dt vs
the diffusion coefficient.x̂(0) scales as 1/D in the diffusion-controlled re-
gime.

FIG. 7. An illustrative sketch of the experimental time scale effects. The
boundaries drawn in the plot are only for the purpose of explanation.
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] t~ebU~x!/2P!52K~ebU~x!/2P!1H~ebU~x!/2P!. ~27!

The lowest eigenvalue ofK2H is kf and the lowest eigen-
state isc f(x). The long-time decay of the population is
given by

lim
t→0

P~x,t !}exp@2kf t#e
2bU~x!/2c f~x!. ~28!

The overall population is proportional toe2bU(x)/2c f(x) and
decays in the long-time limit with a homogeneous rate. The
dominance of the lowest eigenvalue requires a large gap be-
tween the lowest two eigenvaluestDk@1. This indicates a
lower bound on the experimental time. For the Markovian
case of the reaction coordinate defined in Sec. II, the eigen-
values are determined exactly askn5l(s21)/21k0

12nls. The gap between the lowest two eigenvalues is 2ls
and is a convolution of the reaction time scale and the diffu-
sion time scale. In the long time when 2lst@1, the popula-
tion depletion is dominated by the lowest eigenvaluekf

5l(s21)/21k0 . As shown in Fig. 8, the dominant eigen-
value from the WF approximation approacheskf from below
asD increases. Both decay rates converge tok5^K& in the
fast diffusion limit. The lowest two eigenvalues are plotted in
the inset of Fig. 8, where the gapk12k052ls grows almost
linearly with the diffusion coefficient at largeD’s.

V. CONCLUDING REMARKS

Reaction kinetics modulated by environmental fluctua-
tions are bounded by two different regimes. In the
configuration-controlled regime, the reaction process domi-
nates, and the average lifetime becomes a weighted average
over the inhomogeneous reaction time. The asymptotic limit
of this regime is the static limit where the average lifetime
^t&5^K21& is an inhomogeneous average over the equilib-
rium distribution. In the diffusion-controlled regime, the dif-
fusion process dominates, and in the WF approximation,
^t&51/k1x̂(0) is the sum of the reaction time and the dif-
fusion time. In the dynamic limit for fast diffusion,̂t&
51/̂ K& becomes the reciprocal of the homogeneous rate.
The exact survival probability is bounded from below by the

first-order inhomogeneous cumulant expansion and from
above by the WF approximation. For comparable reaction
and relaxation times, in the long-time limit the convolution
of reaction kinetics and the internal relaxation process even-
tually reaches a fixed distribution shape and the overall re-
action is characterized by a single exponential.

Variation of the experimental time of the fluorescence
measurements allows people to explore various kinetic re-
gimes from the inhomogeneous limit across the homoge-
neous limit. At small time windows, only static configura-
tions are probed. At larger time windows, the relaxation
process modifies the transient configurations to a
configuration-controlled regime. Further increase in the mea-
surement time probes the diffusion-controlled regime where
long-time kinetics is dominated by relaxation. For ergodic
systems, the long-time average yields the homogeneous
limit.

In Appendix A, we generalize the WF approach to ad-
dress the average lifetime. A perturbation expansion over
1/D of our equations reduces to the WF approximation to the
first order of 1/D. In addition, we recover the 1/D expansion
of the average lifetime derived by Weiss.5 In Appendix B, we
discuss the relation between the experimental time scale and
the apparent distribution of the measured quantities such as
lifetime distribution obtained in single-molecule experi-
ments.

Fluorescence quenching and fluorescence resonance en-
ergy transfer~FRET!, can probe the details of the motions of
synthetic and biological polymers. Semiflexibility, hydrody-
namic interactions, excluded volume effects, and experimen-
tal time scales greatly affect their equilibrium and nonequi-
librium properties. In paper II of this series,22 we address the
contour-length dependence of the average lifetime due to
semiflexibility. Theoretical studies of these effects improve
our understanding of the important issues related to biologi-
cal functions of DNA and proteins.
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APPENDIX A: GENERALIZED WF APPROXIMATION
AND THE WEISS EXPANSION

A widely used approximation to calculate the average
lifetime in the diffusion-controlled limit was first presented
by Wilemski and Fixman.1,2 As demonstrated in Secs. II and
III, the WF approximation is only accurate to the first order
in 1/D, hence is useful for large diffusion coefficients. In
1980, Szabo, Schulten and Schulten presented an integral
expression for the first passage time.3 Later, Weiss obtained a
1/D expansion of the average lifetime based on a systematic
perturbation analysis.5 Here we generalize the WF approxi-
mation based on a perturbative expansion scheme. In paper

FIG. 8. ~a! The asymptotic decay rate for long experimental time. The exact
lowest eigenvalue and the WF approximation are calculated for the Markov-
ian fluctuations of the reaction coordinate defined in Sec. II with the same
parameters as those in Fig. 2.~b! The lowest two eigenvalues. Their gap
increases almost linearly withD for large diffusion coefficients.
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II of this series, we discuss the relation of this generalization
with single-molecule measurements and the validity region
of the WF approximation.22

To proceed, we consider a generic scenario described by
the diffusion equation,] tP5LP2KP, whereK is the reac-
tion rate andL is the relaxation operator proportional to the
diffusion coefficientD. We write the operatorL as DL0 ,
where L05]x@]x1]x(bU)# is the relaxation operator for
unit diffusion coefficient. For simplicity, we only consider
the one-dimensional case; the formalism is fully applicable
to higher dimensions.

Next we employ the adjoint operatorL1 definition
which was used by Szabo, Schulten and Schulten in their
solution to diffusion with Smoluchowski boundary
conditions.3 And we obtain the passage time for any given
initial position x0

L1t~x0!2K~x0!t~x0!521. ~A1!

The average lifetime is the spatial average oft(x0) over the
equilibrium distribution

^t&5E dx0Peq~x0!t~x0!. ~A2!

Peq5N exp@2bU# and N is the normalization constant.L0

is not a Hermitian operator. We define a corresponding Her-
mitian operator:H5exp@bU/2#L0 exp@2bU/2#.27 The ad-
joint operator isL15exp@bU/2#DH exp@2bU/2#. We de-
fine a functional space:X5$f(x)u*f2(x)dx51% with inner
product (f ,g)5* f (x)g(x)dx. Apparently f0(x)5AN
3exp@2bU/2#PX, and Hf050. The average lifetime de-
fined in Eq. ~A2! is equivalent to ^t&5(f0 ,(K
2DH)21f0) and the homogeneous average rate isk
5(f0 ,Kf0). The survival probability in Laplace space is
obtained asŜ(z)5(f0 ,(z1K2DH)21f0) in the same
fashion.

We now derive the generalized WF approximation. As-
suming$f0 ,f1 ,f2 ,...% is an orthogonal basis ofX, we can
express the operatorsK andH as block matrices

K5FK00 K01

K10 K11
G , H5F0 0

0 H11
G . ~A3!

K00 is the homogeneous average ratek. The survival prob-
ability is

Ŝ~z!5@z1k2K01~z1K112DH11!
21K10#

21

5
11V̂~z!

k1z@11V̂~z!#
, ~A4!

whereV̂(z)5k21(n50
` (21)nD2(n11)Ŷn(z/D) with

Ŷn~z!5K01@~z2H11!
21~K112K10k

21K01!#
n

3~z2H11!
21K10. ~A5!

The average lifetime is

^t&5Ŝ~0!5k211k21V̂~0!5
1

k
1

1

k2 (
n50

`
~21!n

Dn11
Ŷn~0!.

~A6!

The first momentŶ0(0) is identical tok2x̂(0) in the WF
approximation. To show this, we write the Green’s function
in the Laplace domain as (z2L0)215exp@2bU/2#(z
2H)21 exp@bU/2#. Using the block matrix representation in
Eq. ~A3!, we evaluatex̂(z) as

x̂~z!5
1

k2 K K
1

z2L K L 2
1

z

5
1

k2 S f0 ,K
1

z2DH
Kf0D2

1

z

5
1

Dk2
K01

1

z/D2H11
K10. ~A7!

x̂(z)5(Dk2)21Ŷ0(z/D) reduces toŶ0(0)/Dk2 in the limit
of z→0. It is ready to show that

~D2k3!21Ŷ1~z/D !5k23^K@~z2L!212z21Peq#

3K@~z2L!212z21Peq#K&2x̂2~z!.

~A8!

A similar expansion was obtained by Weiss using a pertur-
bative correction to the WF approximation.5

APPENDIX B: EXPERIMENTAL TIME SCALE AND
SINGLE-MOLECULE MEASUREMENTS

In this appendix we discuss the effects of experimental
time window on fluorescence lifetime measurements. We
consider single-molecule quantities monitored over a fixed
time window texp. A general definition of the average value
within this time window is given by Gopich and Szabo as40

ā5
1

texp
E

0

texp
a@x~ t !#ux0

dt, ~B1!

wherex(0)5x0 is the initial condition. In principle,a@x(t)#
can be any experimentally measured quantity, for example,
the FRET rate17 or the quantum yield in FRET
experiments.14 A similar scenario is discussed for two-state
dynamics of single biomolecules by Geva and Skinner.41

Based on Hochstrasser’s experiments,17 the distribution of
the measured quantityā is related to the underlying equilib-
rium distributionPeq(x0) as

P~ āutexp!

5E Peq~x0!dx0K dS ā2
1

texp
E

0

texp
a@x~ t !#Ux0

dtD L
inhom

5E dv

2p
eivāK K expF2

iv

texp
E

0

texp
a@x~ t !#Ux0

dtG L
inhom

L ,

~B2!

where the inner bracketŝ̄ & inhom stand for the inhomoge-
neous average over trajectories with fixed initial configura-
tion and the outer bracketŝ̄ & denote the average over
Peq(x0).

In the static limit, texp→0, P(āu0)
5@Peq(x0)u]x0

a(x0)u21#x05x
0*

with a(x0* )5ā. For small
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texp, the relaxation slightly perturbs the transient configura-
tion, giving the configuration-controlled regime. As shown in
Sec. II, we perform a first-order cumulant expansion over
a@x(t)#ux0

, yielding

P~ āutexp!'K dS ā2
1

texp
E

0

texp

^a@x~ t !#ux0
& inhomD L . ~B3!

For large texp, the inhomogeneous cumulant expansion
breaks down. We invoke the full cumulant expansion over
a@x(t)#ux0

in Eq. ~B2!

lim
texp→`

P~ āutexp!5@2ps2~ texp!#
21/2expF2

~ ā2^a&!2

2s2~ texp!
G .

~B4!

^a& and s2(texp)52/texp
2 *0

texp(texp2t)^da@x(t)#da@x(0)#&dt are
the mean and the variance of the distribution, respectively.
The same expression was obtained by Gopich and Szabo
from the central limit theorem.40 For largetexp, the integral
in s2(texp) reduces to 2*0

`^da@x(t)#da@x(0)#&dt/texp,
which is proportional to the ratio of the relaxational time
scale and the experimental time scale. Ifa5K(x) and
s2(texp)'2^K&2x̂(0)/texp, the homogeneous decay rate^K& is
observed in the dynamic limit,texp@x̂(0).

The above discussion agrees well with our picture illus-
trated in Fig. 7, where the overall kinetics is described by the
diffusion-controlled regime for large experimental time win-
dow. Furthermore, the intermediate region between the static
limit and the diffusion-controlled regime is described well by
the configuration-controlled regime. Thus the inhomoge-
neous cumulant expansion is a natural bridge to link static
limit and the dynamic limit.

The FRET rate and the quantum yield depend on the
donor–acceptor distance and are affected by internal relax-
ation dynamics. The quantum yield can be directly measured,
yet the FRET rate has to be determined indirectly from life-
time measurements. The lifetime distribution is related to the
FRET rate

f ~ t !'E P~ k̃utexp!k̄e2 k̄t. ~B5!

The termf (t) in Eq. ~C5! is an approximation valid for small
experimental observation times. This condition limits the use
of FRET rate as a measure of lifetime distribution.
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