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Theoretical analysis and computer simulation of fluorescence lifetime
measurements. |. Kinetic regimes and experimental time scales
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The configuration-controlled regime and the diffusion-controlled regime of conform-
ation-modulated fluorescence emission are systematically studied for Markovian and
non-Markovian dynamics of the reaction coordinate. A path integral simulation is used to model
fluorescence quenching processes on a semiflexible chain. First-order inhomogeneous cumulant
expansion in the configuration-controlled regime defines a lower bound for the survival probability,
while the Wilemski—Fixman approximation in the diffusion-controlled regime defines an upper
bound. Inclusion of the experimental time window of the fluorescence measurement adds another
dimension to the two kinetic regimes and provides a unified perspective for theoretical analysis and
experimental investigation. We derive a rigorous generalization of the Wilemski—Fixman
approximation G. Wilemski and M. Fixman, J. Chem. Phy&), 866 (1974] and recover the IY
expansion of the average lifetime derived by WgissH. Weiss, J. Chem. Phy80, 2880(1984)].
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I. INTRODUCTION limit, reaction is extremely slow compared to relaxation, and
the system can be well approximated by equilibrium, yield-
%ng a homogeneous single-exponential decay. In the inhomo-
Sgeneous limit, the survival probability is a static average

dver the initial configurations and has a highly nonexponen-

slow reactions in glasses, fluorescence resonance ener L )

g eTEY) decay. Between the two limits, the relaxation process and
transfer(FRET), and intramolecular fluorescence quenchmgthe reaction kinetics are convoluted. The configuration
on polymers. Recent advances in single-molecule techniques ' 9

based on fluorescence spectroscopy provide powerful too ontrolled regime is dominated by the reaction kinetics, and

to measure the conformational structures and dynamics € @ﬁu&on-coqtrolled regime is determined by the co_nfor-
mational relaxation process. Although complete analytic so-

synthetic and biological polymers. The FRET and intramo—I i difficult. the fi der inh |
lecular fluorescence quenching rates depend strongly offtions are difficult, the first-order inhomogeneous cumulant

donor—acceptor or fluorophore-quencher distance, and of<Pansion and the WF approximation provide exact lower
conformational fluctuations of polymers or biomolecules.2nd upper bounds to the real survival probability function,

Hence it is of great importance to study the conformation'€SPectively. In the present work, we investigate these re-
modulated reactions, yet a unified perspective of reactioimes for Markovian and non-Markovian fluctuations of re-
kinetics modulated by fluctuating environments have nofction coordinates modulated by conformational fluctuations
been fully investigated. A widely used approximation and account for the experimental time window used to moni-
scheme to calculate intrachain reactions of polymers in dilutéor fluorescence. To address these two regimes and their
solutions was first presented by Wilemski and Fixmdme- ~ asymptotic limits, we study a Markovian process in Sec. |l
ferred here as WF approximation. Szabo, Schulten, angnd a semiflexible chain as an example of non-Markovian
Schulten provided a first passage time approach to the diffuprocesses in Sec. lll.
sion equation with Smoluchowski boundary conditions, re-  Reactions in biopolymers are often strongly coupled to
ferred to here as the SSS thedieiss developed a system- internal relaxation processes, and the fluctuations of the re-
atic perturbation analysis for diffusion-controlled reactions,action coordinate are generally non-Markovian. Reaction dy-
which recovers the WF approximation in the lowest order. namics of biopolymers in solution can be directly probed in
Recently, Portman and Wolynes applied a variational methodeal time by fluorescence spectroscdpy.’ One important
and proved that the WF approximation is an upper bound fotechnique is intramolecular fluorescence quenching, which
the survival probability. has been employed to measure contact formation between
The experimentally observed fluorescence lifetime distwo residues on an unfolded polypeptide chain by Eaton’s
tribution is the result of the competition between the reactiorgroup and other groug§-?° By varying solvent viscosity,
from a distribution of conformations and the diffusion be- Eaton and his group measure the full kinetics from the inho-
tween different conformational states. In the homogeneousogeneous limit to the homogeneous limit. In Sec. Ill, we
calculate the full kinetics of the fluorescence quenching in a
dAuthor to whom correspondence should be addressed. Electronic maiﬁemifIEXibIe Gaussian chain with a normal mode decompo-
jianshu@mit.edu sition schemé! Our calculations demonstrate that the first-

Reaction kinetics modulated by fluctuating environment
has long been a theoretical and experimental intéréSEx-
amples of such processes include ligand binding in protein
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order inhomogeneous cumulant expansion and the WF ap
proximation provide lower and upper bounds for the real T 'ﬂ‘ <K>
survival probability, respectively.

In Sec. IV, we discuss the effects of the experimental j \
time scale on fluorescence lifetime measurements and the ? 1
unified perspective it provides. The experimental time scale
he_re_ refers to the time Wi_ndow to mo_nitor fluc_)resce_nce. configuration diffusion
Within a very short time window, transient configurations 1

stay close to the static configurations, independent of the gagic limit L-K dynan:ic {i)mit
relaxation rate. Such experiments can be well described g1, <K>!

within the configuration-controlled regime. For long experi-
mental time, the configuration-controlled picture breaksF!C: 1"- dA" ”,'UStfa“g”d,fcf’f the tWOt k|i|n3tic f!?gimesvdt{;]e,COﬂﬁgUfaﬁO(;!'
down even for the slow relaxing regions. The long time klﬁ;r:go ed regime and diiiusion-controfled regime, and fhelr corresponding
netics is dominated by the relaxation process and is de-
scribed by the diffusion-controlled regime. By varying the
length of the observation time, we can observe both kinetic
regimes. rate while the fast relaxation maintains the population shape.
In Appendix A, we generalize the WF approximation and Between the two limits, the kinetics can be described by the
show that the WF approximation is exact to the first order ofreaction dominated configuration-controlled regime and the
1/D. In addition, we obtain the IV expansion of the average relaxation dominated diffusion-controlled regime. Increasing
lifetime and recover the perturbation result by WeissA  the diffusion coefficient, the overall kinetics traverses from
more detailed discussion of the generalized WF approximathe configuration-controlled regime to the diffusion-
tion and its applicability criteria are addressed in paper Il ofcontrolled regime. Although these two regimes are not
this serie? In Appendix B, we discuss the relation between clearly separated, the boundary falls roughly into the region
the experimental time scale and the apparent distribution ofthere the reaction and relaxation time scales become com-
the measured quantity obtained by single-molecule experiparable.
ments. Let us now study the Markovian fluctuations of the re-
action coordinate. The reaction rate is given in quadratic
— y2 ; ; ;
I MARKOVIAN PROCESSES: Two REivEs (o KUl vl 1 e reacon coodnate The
OF LIFETIME DISTRIBUTION 0 . . ’ .
remove the divergence of the static average lifetime. The
Chemical reactions influenced by fluctuating environ-fluctuation of the reaction coordinate is controlled by a one-
ments can be described by the Smoluchowski equatiodimensional diffusive environment; =D d,[ d,+ dy(BU)].
coupled to a reactive sink D=4 is the diffusion coefficient3U=x?/(26) is the po-
- tential of mean force, and is the variance of the fluctua-
P(t)=LP(1)=KP(1). @ tions. The relaxation is an Ornstein—Uhlenbeck process with
L characterizes the relaxation of the fluctuating environmentthe survival probability given by'823
andK is the first-order reaction rate coefficient. Initially, the
system is prepared in thermal equilibrium, i.8(0)=P, s \/ 4s
=Pg4. The overall population depletion is monitored over t)=
time.q Exact solutions to this equation can be obtained for (s+1)*~(s=1)%exif ~2\st]

only a few specific forms of the reaction r&té. Let us now A

discuss the calculation of the lifetime distribution function. Xexp{ ~|7 (57D +kolty. ()

We take the trace of the Laplace transfoRftiz) and write

the survival probability as s=1+4x6/\ represents the coupling of the time scales
R 1 associated with environmental relaxation and reaction kinet-
S(z)= <z—£—+K> (2 ics. Next we expand the square root in E8). and express

the survival probability as a combination of eigenmodes. The
The brackets: - -) represent a spatial average over the equi-average lifetime, i.e., the averaged sum of the eigenmode
librium distribution. FromS(z) the Laplace transform of the lifetimes, is
lifetime distribution is obtainedf(z)=1-z92z)=((K—- L)

X(z—L+K) ™). The average lifetime, expressed as the first o 4s 2 (2n—1)!l [s—1\?"
morgent of the lifetime distribution function, ist) (t= fo S(tdt= (s+1)2 nZO 2nnl s+1
= [otf(t)dt=S(0).

Figure 1 illustrates the configuration-controlled regime, 1 4
the diffusion-controlled regime, and their corresponding lim- X N(s—1)/2+ko+2n\s’ @)

its. In the static limit, the population is depleted indepen-
dently at every configuration without relaxation. In the dy- The lowest eigenvalua=0 yields the long-time exponent.
namic limit, the population is depleted with a homogeneoudNe discuss now the different dynamic scenarios:
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A. Static limit: Inhomogeneous average 3.5 ——rrrmm |

The static limit case is displayed in Fig. 1. Sluggish en- 3]
vironments such as glassé&sgK, have slow relaxation rates
that depend only on the initial configuration. The survival _ 2.5
probability is the inhomogeneous average of the survival £
probabilities associated with each transient configuration,& 2[
S(t) =(exd —Kt]). In this limit, the lifetime distribution &
1
-

function is f(t)=(Ke k'), and the calculation of the aver- =

age lifetime requires the inhomogeneous average of the tim 1L == static limit

scale for each initial configuratiodt)=(K~1). Larger ex- | [+~ -+ configuration-controlled| =™ = ™ ™ *
perimental time windows probe the configurations that relax 0.5} (A= —Ag)i(fa}ffsfgrlflcléittlfo‘hed -
gradually and essentially sample the configuration-controlled | [L—— dynamic limit

regime. The effects of the experimental time window in the  §5p;r " T — 100
dynamic regimes experienced by the chain conformation are b

elaborated in S_ec_- V. _ N _ FIG. 2. The average lifetime for the Markovian fluctuations of reaction
The static limit of the survival probability with a qua- coordinate studied in Sec. I, wheke=1, ko=0.1, andé=1. The diffusion

dratic rate is obtained in the limit of—0 in Egs.(3) coefficient D is equal toX. The inhomogeneous cumulant expansion in
configuration-controlled regime defines a lower bound for the survival prob-

ability and agrees well with the exact calculation as the reaction approaches
(5) the static limit. The WF approximation in the diffusion-controlled regime

S(t)= ———exg —Kkot].
V1+2k6t defines an upper bound and agrees with the exact calculation and the reac-
o . tion approaches the dynamic limit.
The averaged lifetime is
T ko ko
(tO)=\/z——=|1-Erfl \/ 5—| |exp 5— S .
2kok 6 2k0 2x0 pansion is the lower bound for the exact calculation and re-

duces to the static limit in the limit dd =X 6—0.

For ko— 0, the survival probability has a power-law decay
S(t)=1/Jy1+ 2«6t and a divergent average lifetime.

. (6)

C. Diffusion-controlled reaction regime:
Wilemski—Fixman approximation

B. Configuration-controlled regime: . e .
Inhomogeneous cumulant expansion Let us now discuss the diffusion-controlled regime.

] ) ) ) o Here, the relaxation time is shorter than the typical the reac-
The configuration-controlled regime displayed in Fig. 1iion time. Expansion of {— £+K) ! followed by the en-
is now addressed. Environmental fluctuations in viscous solsemple average renders the survival probability

vents are greatly reduced, but not negligible. The effects of
the survival probability are evaluated with an inhomoge-
neous first-order cumulant expansion

S()=((e JoKman, )

o 1 1 1 N
S(2)= 5= S {(K)+ 5(KG@K)

1 -
. —;(KG(Z)KG(Z)K>+"'. ©)]
%<exp{—f <K(7)>inhon‘d7' > (7) R
0 (--+) represents the ensemble average @g) = 1/(z— L) is
(***)inhom Stands for the inhomogeneous average over trajedhe Laplace transform of the Green's functi@{t) for the
tories at a given initial configuration. environmental relaxation. We now derive a closure3(z).

In the short time limit, expgnsion of the configuration- First let us separate out the asymptotic limit 6{z) as
controlled rate (K(7))innom Yields S(t)=(exH—K(olt  G(2)=G'(2)+Peg/z With Pe/z=lim, oG(z). The sur-
—DJK(x)t?]) and corresponds to a summation over the in-yjya| probability is approximated as
homogeneous Gaussian line shapes in spectroscopy.

The average lifetime, a weighted average over the in- 1 1 1 [(K)? -,
homogeneous reaction times, is(t)~([K(xg)] * S(Z)_E_§<K>+§ z +(KG'K)
X expf ~DeRK (x)/K (%)}

The survival probability with a quadratic reaction rate is 1 [(K)® ~, (K) ~, 2,
evaluated by a first-order cumulant expansion = ?JFZ(KG K)—~ +(KG'KG'K) |+

1
S(t)= ————=exp[—[ko+ kO0(1—e~ 2Y]tl. 1 k k(k )\ k(k \?
() \/m p{ [ 0 ( )]} %E__Z_{—_Z E+kX -5 E+kX) N
(8) z VA Z

The average lifetimét)=S(0), is displayed in Fig. 2. The _ 14 kx(2) 10
plot shows that the first-order inhomogeneous cumulant ex- Z1+ky(2)]+k’
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k=(K) is the homogeneous average of the reaction rate an@verage lifetime obtained is in agreement with Weiss’s
x(D)=(KG' (t)K)/k?=(KG(t)K)/k?—1. x(t), the memory work.2® A more detailed discussion of the WF approximation
function measures the relaxational effect of the reactive sysand its validity regime are presented in paper Il of this

tem. The Laplace transform of the lifetime distribution func- series’
tion is obtained from Eq(10) The WF approximation for the quadratic reaction-rate
" process considered in E) yields

N 11 1 1 1%

f(2)
(14
with the average lifetime
X 1+ 3(0)k The homogeneous average ratkisk6+Kky. As shown in
(t)=S(z=0)= — (12) Fig. 2, the WF approximation approaches the exact average
lifetime for large \. Direct expansion of the exact average

These results have been derived by Wilemski and Fixmafifetime in Eq. (4) for large\ yields

using a different approact? Let us now make several ob-

. 1 1k%* 1 k%67 )
servations. ty=-+- — — ——(3Kk%6%+ 6Kk 0Kyt Kg)
’ ’ ~ 322 H i k A k2 )\2 2k3
(1) (KG'KG'K)~k>x“(z) applies at small reaction
rates and fast relaxation times, i.§(0)k<1. This is con-
sistent with the stochastic rate model discussed in Ref. 23. i
. - . +0 (15
The survival probability was derived there from a second \3
cumulant expansion of the stochastic rate Equation(14) reduces to the WF approximation of the aver-
S(t)= (e Kbdy age lifetime up to the first order in X/ The negative sign in
1 front of the 1A? term supports the fact that the WF approxi-
—extd — (KM + = | (SK(t) SK(t)dtdto+- - mation always gives the upper bound to the survival prob-
F{ (K 2 J (3K (1) K(tp))dtudty ability. This is confirmed for a non-Markovian fluctuation of

~exif —kt+K2(O)t]. 13 the reaction coordinate by a numerical calculation in Sec. Il
The average lifetime(t)~k[1—kx(0)] *~1/k+x(0), re-  D. Dynamical limit: Homogeneous average

covers Eq.(12).
a{12) Let us now discuss the case where the relaxation time is

WE (tfm)ecl)rrl tihs%(r;))Tg/g(i:elf)uSHI;TL:Z(tZrz;?Jr\i\(/;)I f:%?agzﬁt much shorter than the reaction time. This kinetic scenario
y n ' P y corresponds to a phenomenological Poisson process with a

decays exponentially and corresponds to a homogeneoys

Lorentzian line sh bserved in optical T ,[lomogeneous reaction rdte= (K). In this limit, the average
orentzia € shape observe optical Specroscopy. e time js 1k, and the survival probability reduces to exp
the inhomogeneous limit, we have shown earlier in Sec

IB that the survival probability is given byS(t) (—kt). The average lifetime approaches the dynamic limit

. from above a® increases, and the homogeneous average is
— _ _ 2
—<exp_[ Kot DaZXK(XO)t D- Th's erendence correspondsa lower bound for the system. This limit illustrated in Fig. 2
to an inhomogeneous Gaussian line shape.

. L is obtained naturally from the diffusion-controlled reaction
(3) Evident from Eq.(10), the key approximation to the . : in th . . -
C - ; . In the |
WF expression i¥KG'KG'K)~k332(2).> For localized regime discussed in the previous subsection. In the limit

reactionsK —K(r ) 8(r — ), the WF approximation and Eq. A\—o for the Markovian process considered in Eg), the

(10) are exact. This situation has been studied in the conteﬁgxglgéﬁ é%zzb(;“etzar; duces t8(t) =exp(~ki), yielding the

of solvent-controlled electron transfer, where the nonadia-
batic electron transfer occurs at the transition state. The
diffusion-controlled electron transfer rate was first studied b))lII\II'TNR%:]/I%AL\EESYA@NFPLE(SEEE?:EEIS\;CE QUENCHING
Zusman and recently reexamined by Cao and 35[1@ ON A SEMIFLEXIBLE GAUSSIAN CHAIN
(4) For moderate values of the diffusion coefficient, the
long-time decay is still dominated by the fundamental relax- ~ Formation of a specific contact between two residues on
ation mode and has a single-exponential decay. For fihite a polypeptide chain is a fundamental process in protein fold-
the depletion rate at long time is generally different from theing. Fluorescence quenching has recently been employed to
homogeneous average rdteand is different from the WF study the intramolecular contact in polymer chains by mea-
approximation. A detailed discussion of the long-time decaysuring the average lifetime of fluorescert€e?® In the
rate is given in Sec. IV. diffusion-controlled regime, the internal relaxation of the
(5) The WF approximation in the diffusion-controlled polymer chain is controlled by solvent viscosity, and it pro-
regime provides an upper bound for the survival probabilityvides an effective way to decouple the relaxation process
(see Ref. 9 by Portman and WolyneQuantitatively, the WF  from the quenching process.
approximation is exact to the first order irDLfor both Mar- Without explicit considerations of the excluded volume
kovian and non-Markovian processes. A mathematical prooéffect and geometrical constraints, ideal polymers are flex-
is given in Appendix A for an arbitrary reaction rate using theible at all length scales and are described by Gaussian statis-
generalized WF approximation. TheDl/expansion of the tics. However, most single molecule experiments on bio-
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molecules are performed at length scales where the polyme/ 1 - T y T T - T
exhibits some rigidity, and semiflexibility is key to under- SRR
stand the measurements of single polymer dynamics. In Ref. I ’\'j~.,§\
21, we extended the Gaussian chain model to include the [ N TSI
chain stiffness and studied the Brownian dynamics of the | ST \\\\\
semiflexible chain with a normal mode decomposition of the i ".\ T~ -
Langevin equation. The equilibrium properties of semiflex- %’3 | N T~
ible chains were studied by Kratky and Porod, Harris and N T
Hearst, Freed, Fixman and Kovac, Ha and Thirumalai, and prvo = N
0-35 . . | it .

many others®~**The non-Markovian features of the internal - — .- D=0.08D, N,
relaxation make it hard to solve the full kinetic equation — — D=5.12D, N,
analytically. Here we decompose non-Markovian fluctuations | |-*** D=40.0D, N

. . . . - =+ dynamic limit N
of the reaction coordinate into a sum of Markovian processes o1 : ; : . , | S

and investigate the coupled reaction and relaxation using — © 1 L2 3 4 5
. time (reduced unit)
path integral methods.
Eaton and co-workers measured the quenching rate fanG. 3. Path integral simulations of the survival probabilt) for the
tryptophan-cysteine pairs using(R) = exr[— y(R—aO)] intramolecular fluorescence quenching experimeﬂﬁ/&ﬁD0 is the time unit.
with y=a, 1 The terma, is the contact radiugy, is the The persistence length,=2, chain lengttN= 10, and the quenching rate at

uenching rate at contact. amlis the reaction coordinate contact is estimated from the experiments of Eatoml. in Ref. 19 to be
q 9 ! go=>5.6. All the survival probability functions for various solvent viscosities

described by the fluorophore-quencher distaho@R) falls reduce to homogeneous single-exponential decay for large observation time.

off exponentially as a function of the reaction coordinate.

For a tryptophan-cysteine pairgo=4.2ns' and a,

=0.4 nm®* For a Gaussian chain, with two amino acids, . . .

tryptophan and cysteine attached at the end points, the equrlz_e_spe(;tlvely. So all Fhe pormal coordinates are Markovian

librium distribution of the end-to-end distance is V.V'th d|ﬁer§nt re_laxat|on t'.mes.' On the other hand, the reac-
tion coordinate is a combination of these normal coordinates

2m(R2)] 372 3R2 and is generally non-Markovian. In this work, we carry out
PedR) = 3 47R%exp — |’ (16) path integral simulations of the fluorescence quenching pro-
2(R%) cess on a semiflexible chaif®”-*® The total time is dis-

ecretized into slicedMA=t. In our simulation, initial con-
ijequrations of the normal coordinates are generated according
to the equilibrium distribution in Eq(19) and propagated

with (R?) the mean square fluorophore-quencher distanc
The normal mode representation of the end-to-end distan

vector is s . . . o
within each time slice according to the Green’s function in
N—-1 Eqg. (20). For each time step, we determine the end-to-end
R= 21 CpXp (17)  distance vector with E¢17) and the quenching rate accord-
=

ingly. Formally, the survival probability is

with ¢,=—[(—1)P—1]/2cospn/2N). The normal mode
representation of the internal relaxation Smoluchowski op-  S(t)= lim deM—l"'f dXge™ m-4

eratorL is Moo
D 9 XG(Xy-1,(M=1)A;Xy_2,(M—2)A)
27 TXp( kBTr?_xp“"X”)' 19 -6 KWAG(X1,4:X0,0)Peg( Xo) (21)

L determines the Green’s function and equilibrium distribu—Wlth X a short notation of the normal coordinates}.

tion of each normal coordinate. A detailed derivation is given . In. experments, the surV|'vaI probabilig(t) or.quantum
in Ref. 21. The equilibrium distribution and the Green’s yield is monitored over a wide range of experimental time

. . scales, and the average lifetime is obtained by integration of
function of the normal coordinates are , .
S(t) up to the experimental time

N—1 - N—1 2
27kgT) 2 DINIED W texp
Peq(Xp)—pljl ( . ) T T okeT (19 (t)zfo S(t)dt. (22
and Equation(22) reduces tcfS(z= 0) aste,, approaches infinity.
, The configuration-controlled regime and the diffusion-
G(Xp,tlxp.t") controlled regime are explained in detail. We calculate sur-
N-1 vival probabilities and their corresponding average lifetimes

27TkBT
)\p

-3/2
- H [ (1—e—2kp’§p<t—t’>)} for various solvent viscosities. The survival probability func-
p=1 tions are shown in the master plot of Fig. 3, and the average
SN2\ [x _x_(0)ero/épt-t)]2 I?fef[ir_ne for the_full range from the static limit to the dynamic
xexp — _P=17Pt7P 7P . (20 limit is plotted in Fig. 4. In both plots, a specific solvent at a

2kgT[1—e~2p/5p(tt)] viscosity of 10 cp and 293 K is taken as a reference state,
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20 T T T UL R | LI B S B S I LB 1 T T T T v T T ]
= - = static limit i (a) D=0.01D ]
I | +— ~ configuration-controlled [ o ’
49— path integral simulation * = |
15| | &~ —A diffusion-controlled \ . 7 1
© = = » dynamic limit \
£ -
g
b= . | . | . | 1
% 10 10 20 30 40
& " T T T " r T .
o A
= ! (b) D=0.04D
e
177
801 ‘ Oll ‘ ‘l ‘ lIO I IHWIIOO 01 * I * ’ I nlk
/D, 10 ' 1'0 2|o ' 3|0 ' 40
L ) _ _ i ¢) D=0.16D
FIG. 4. The average lifetimé) calculated by path integral simulations for [ © ¢
a fixed experimental time,,;=40 in the reduced time unit. Other param- s | S :
eters are the same as in Fig. 3. The WF approximation holds for fast intra- S B
chain relaxation while the inhomogeneous cumulant expansion holds for s ke, i
slow intra-chain relaxation. The long-time kinetics is always described by - =
the WF approximation for the diffusion-controlled regime. o1 . ] . ! S~ -
"o 10 20 30 40

time (reduced unit)

ap=0.4nm is the natural length unit, a|a$/6D0~25 ns is FIG. 5. Comparison of the survival probability functions calculated by path

the Corresponding time unit. In the reference state th%ltegral simulation and first-order inhomogeneous cumulant expansion. As
' ' e intra-chain relaxation becomes slow, anrd0, the inhomogeneous cu-

quenching rate at the_ contactqg=>5.6. These numbers_ are mylant expansion better approximates the real survival probability. As the
used to match experimental values from Eaton’s stutfies. observation time increases, the overall kinetics is dominated by the homo-

The average lifetime from E22) is evaluated in a time  geneous decay.
window of t.,,=40 and plotted in Fig. 4. That the average
lifetime falls below the static limit is a clear indication of the
reaction slowdown in the absence of sufficient relaxation
This feature is more evident in Fig. 3: The survival probabil-
ity in the static limit is the upper bound for the survival

provides a better approximation at lower solvent diffusion
coefficients. The exact survival probability is bounded from
below by inhomogeneous averaging. At larger observation
probability with nonzero .d.iffusion coefficients, an'd inhomo- time, thg exact sgrvival probabil?ty gi/ields aghomogeneous
geneous gﬁect§ are 5|gn|f|cant fo'r shortpbservatlon times. IHecay, consistent with our observations in Fig. 3. A more
the long-time limit, the kinetics is dominated by homoge- detailed discussion of the experimental time scale will be
neous decay. ' . . . addressed in Sec. IV.

In the conflguratlon_-controlled regime, an inhomoge- In the diffusion-controlled regime, the memory function
neous cumulant expansion of H) yields x(t) is obtained directly from path integral simulations and
the average lifetime is evaluated with E{.2). Figure 4
shows that the WF approximatioft) = 1/k+ x(0), is an up-
per bound for the average lifetime. The exact result is ap-

Yo ed
<K(T)>inhom:?exf{ (E_ 1) YRod(1) +ya,

2yRa(0) 2yRad(1) proached from above as the relaxation rate increases. For fast
1 1+ e 7o+ (e 70 — 1) diffusion, (ty=1/k+ x(0) converges to the dynamic limit
with the order of 1D. The scaling of the average lifetime is
(1— a)VyRob(t) dem_onstrated in the inset of Fi_g. 6. The_log—log ploj¢0)
+|1—alErf e precisely follows the D scaling. In Fig. 6, we use the
o

memory functiony(t) from the simulation to calculate the
—e27Rod(V|1 4 ¢ survival probability with the WF approximation. The nu-
merical implementation is as follows. First, we rewrite Eq.

(1+a)VyRo(1) ) (10) as
X Erf
V2a . 1 1. .
i o YR %) 3 (2= tK R (@~ S@2x(@)
R I L
#(t)=(R(t)R(0))/{R?) is the distance—distance correlation + ksz(Z)S(Z)- (24)

function given in Ref. 21. Figure 5 compares inhomogeneous
cumulant expansion of the survival probability and the pathThen, we invoke the inverse Laplace transform and obtain
integral calculation. The configuration-controlled reactionthe iteration scheme
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1 ; T : T y The mechanism of population depletion from its depen-
of . by 4] dence onD andte,, is illustrated in Fig. 7. At small time
08 s + . ] windows, only transient configurations can be probed no
Z =k L I matter how fast the relaxation is and the static limit is re-
EM I trieved. At larger experimental times, transient configurations
5 oo ® are no longer frozen, yet the relaxation perturbs slightly the
.;‘ ’ ] transient configuration and the kinetics is typically in the
5 04 _ T configuration-controlled regime. The inhomogeneous cumu-
2 ot nsegrs caleulaton (5/D,=40) 1 lant expansion gives here the correction to the inhomoge-
+ = » « Wilemski-Fixman approximation (D/D=40)
02k W\ '\, — — - Path integral calculation (D/D,=100) = neous limit. As illustrated in Fig. 7, the effective range of the
: Lz Wilemski-Fixman approximation (DD=100)] | configuration-controlled regime depends inversely on the re-
P . > L | . laxation rate. In the slow relaxation region, static configura-

0 loﬁme (,educedunit)zo 30 tions dominate the kinetics for a wide range of time. In the

fast relaxation region, the static configurations relax quickly

FIG. 6. (a) The survival probability functions calculated and compared for into other configurations This behavior is cIearIy demon-
path integral simulation and WF expansion. In the long time, the WF ap- :

proximation always predicts a single-exponential decay, yet with a smalle?tratEd in our numerical calculation for fluorescence quench-

decay rate than the actual survival probability obtained from the path inteing processes. The survival probabilities from the inhomoge-
gral simulation. The difference in rate decreases with the diffusion coeffi-neous cumulant expansion agree well with the exact results

cient. (b) A log-log plot of the contact formation timg(0)=/ox()dtvs  for small D and at short times, but the expansion fails to
the diffusion coefficienty(0) scales as D) in the diffusion-controlled re-

gime. describe the long-time decay. That is seen clearly in Fig. 5.
Now we expand Eq(7) to the second inhomogeneous
cumulant
—kt ‘ “ —K(t1—t5) t t
S(t)y=e “+k Odtl . dtx[e” 12 x(ty) S(t)~( ex —f <K(T)>mhomd7'+f (t—17)
0 0
5 t tq ty
—S(ty—to) x(t2) ]+ k JothO dtzfo dts X (8K (7) 6K (0) Yinhond ™ > (26)
x[e Kty (t,—t3)S(ta)]. (25  For the expansion to be valid, the second cumulant has to be

Figure 6 shows that the survival probability calculated usinggMaller than the first cumulant for every initial position.

the WF approximation approaches the exact results at Iarg(§”Ch criterig cannot be satis'fie'd in the Iong-timg limit. Gen-
diffusion coefficients. erally speaking, in th&—0 limit, the slow-reacting popu-

lation is first diffused to the fast-reacting region and then

depleted at longer times. Hence the long-time decay is al-
IV. EXPERIMENTAL TIME SCALE: ways dominated by the diffusion process. At small fluctua-
A UNIFIED PERSPECTIVE tions, we evaluate the survival probability using a full cumu-
lant expansion instead of the inhomogeneous cumulant

In the previous two sections, we explored the relation ion. Thi 0 is similar to the G . tochasti
between the relaxation and the reaction time scales. In reafXPansion. 1his scenario IS similar to the L;aussian stochastic

ity, finite experimental time windows play an important role rate model discussed in Ref. 23. The average lifetime is ob-

in the kinetic interpretations. For example, in ﬂuorescencéaIned from the second cumulant expansidi)=k1

K3 1 2 i
guenching experiments we monitor the time range of popu- kx(0)] 1K+ x(0), which reduces to the WF results

lation decay to obtain the average lifetime. In FRET experi—for d|_ﬁu5|on-controlle(_j_re_actlon_s. _The_ se<_:ond cumulant ex-
ansion over the equilibrium distribution in E6) gener-

ments, an appropriate observation window is used to monito? o )
the quantum yield and determine the donor—acceptoftes the same result. The transition from the short-time to the
distance314 ong-time behavior was discussed by Pechukas and Anker-

hold in the context of Agmon—Hopfield kinetid$.For an

ergodic system, the average of lifetime over an extreme large
tep experimental time generates the homogeneous limit. This has

0 been demonstrated in the numerical calculation of fluores-

dynamic limit cence quen_chir_19 processes. Figures 3, 5, and 6 show that the
long-time kinetics is always homogeneous regardless of the
magnitude of the diffusion coefficient, yielding a single-
exponential decay.

diffusion

configuration In that case, the long-time decay of the population is
Q o determined by the lowest eigenvalue of the full kinetic equa-
D tion in Eq. (1).2” Let us now definel=Dd,[ dy+ dy(BU)]
static limit and a corresponding Hermitian operatgr-e?V/2Le™AY72,

FIG. 7. An illustrative sketch of the experimental time scale effects. The F.ra_nSformS the qriginal kinetic equation into a
boundaries drawn in the plot are only for the purpose of explanation. Schralinger-type equation
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first-order inhomogeneous cumulant expansion and from
above by the WF approximation. For comparable reaction
and relaxation times, in the long-time limit the convolution
of reaction kinetics and the internal relaxation process even-
tually reaches a fixed distribution shape and the overall re-
action is characterized by a single exponential.

Variation of the experimental time of the fluorescence
measurements allows people to explore various kinetic re-

Lowest eigen value

gimes from the inhomogeneous limit across the homoge-
neous limit. At small time windows, only static configura-
| tions are probed. At larger time windows, the relaxation
045 — process modifies the transient configurations to a
D configuration-controlled regime. Further increase in the mea-
FIG. 8. (a) The asymptotic decay rate for long experimental time. The exactlsmement tl.me .propes the. dlﬁu5|on—controllgd regime Whgre
lowest eigenvalue and the WF approximation are calculated for the MarkovlONg-time kinetics is dominated by relaxation. For ergodic
ian fluctuations of the reaction coordinate defined in Sec. Il with the samesystems, the long-time average yields the homogeneous
parameters as those in Fig. @) The lowest two eigenvalues. Their gap |imit.
increases almost linearly with for large diffusion coefficients. In Appendix A we generalize the WE approach to ad-
dress the average lifetime. A perturbation expansion over
1/D of our equations reduces to the WF approximation to the
BUX)I2pY — BUMX2pY 4 BU(X)/2 : - !
(e P) K(e P)+ (e P). @7 first order of 1D. In addition, we recover the I/ expansion
The lowest eigenvalue df — 7 is k; and the lowest eigen- of the average lifetime derived by Weis& Appendix B, we
state isy(x). The long-time decay of the population is discuss the relation between the experimental time scale and

given by the apparent distribution of the measured quantities such as
lim P(x,t)cexd —ket]e AUy (x). (29) Irlriztrl]rtr;e distribution obtained in single-molecule experi-
t—0 .

o i U2 Fluorescence quenching and fluorescence resonance en-
The overall population is proportional & 1(x) and _ ergy transfe(FRET), can probe the details of the motions of
decays in the long-time limit with a homogeneous rate. Theyynihetic and biological polymers. Semiflexibility, hydrody-
dominance of the lowest eigenvalue requires a large gap bepmic interactions, excluded volume effects, and experimen-
tween the lowest two eigenvalueak>1. This indicates a 5 time scales greatly affect their equilibrium and nonequi-
lower bound on the experimental time. For the Markovianjiprium properties. In paper 11 of this seri@we address the
case of the reaction g:oordmate defined in Sec. Il, the eigeNsontour-length dependence of the average lifetime due to
values are determined exactly ak,=M\(s—1)/2+Ko  semiflexibility. Theoretical studies of these effects improve

+2nAs. The gap between the lowest two eigenvaluesNs 2 o ynderstanding of the important issues related to biologi-
and is a convolution of the reaction time scale and the diffu| functions of DNA and proteins.

sion time scale. In the long time when &t>1, the popula-
tion depletion is dominated by the lowest eigenvalye
=N\(s—1)/2+kqy. As shown in Fig. 8, the dominant eigen- ACKNOWLEDGMENTS
value from the WF approximation approacligegrom below
asD increases. Both decay rates converg&+o(K) in the
fast diffusion limit. The lowest two eigenvalues are plotted in
the inset of Fig. 8, where the g&p—ky=2\s grows almost
linearly with the diffusion coefficient at large’s.
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V. CONCLUDING REMARKS

_ Reaction kinetics modulated_by enwronmental quctua—APPENDIX A GENERALIZED WF APPROXIMATION
tions are bounded by two different regimes. In the

. . . . 'AND THE WEISS EXPANSION
configuration-controlled regime, the reaction process domi-

nates, and the average lifetime becomes a weighted average A widely used approximation to calculate the average
over the inhomogeneous reaction time. The asymptotic limitifetime in the diffusion-controlled limit was first presented

of this regime is the static limit where the average lifetimeby Wilemski and Fixmart:? As demonstrated in Secs. Il and
(ty=(K~1) is an inhomogeneous average over the equilib4ll, the WF approximation is only accurate to the first order
rium distribution. In the diffusion-controlled regime, the dif- in 1/D, hence is useful for large diffusion coefficients. In
fusion process dominates, and in the WF approximation1980, Szabo, Schulten and Schulten presented an integral
(ty=1/k+ x(0) is the sum of the reaction time and the dif- expression for the first passage tifrieater, Weiss obtained a
fusion time. In the dynamic limit for fast diffusion(t) 1/D expansion of the average lifetime based on a systematic
=1/K) becomes the reciprocal of the homogeneous rateperturbation analysisHere we generalize the WF approxi-
The exact survival probability is bounded from below by themation based on a perturbative expansion scheme. In paper

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



570 J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 S. Yang and J. Cao

I of this series, we discuss the relation of this generalizationrhe first moment\A(o(O) is identical tok?y(0) in the WF
with single-molecule measurements and the validity regiorapproximation. To show this, we write the Green’s function
of the WF approximatio® in the Laplace domain as z{ Ly) '=exgd—pBUI2](z

To proceed, we consider a generic scenario described by H) ~* exf 8U/2]. Using the block matrix representation in
the diffusion equationg,P=LP—KP, whereK is the reac- Eq. (A3), we evaluatey(z) as
tion rate andC is the relaxation operator proportional to the
diffusion coefficientD. We write the operatoll as DL, M2)= i<KL >_ l
where Lo=d,[ dy+ d(BU)] is the relaxation operator for k z— L
unit diffusion coefficient. For simplicity, we only consider

the one-dimensional case; the formalism is fully applicable 1
to higher dimensions. T K2 bo.K 7—DH Keo| = 7

Next we employ the adjoint operatof™ definition
which was used by Szabo, Schulten and Schulten in their 1 1
solution to diffusion with Smoluchowski boundary = — Koz =5 Ko (A7)

. a . . ; Dk zZ/ID—Hy
conditions? And we obtain the passage time for any given R R
initial position X, x(2)=(Dk? ~1Y,(2/D) reduces toYy(0)/Dk? in the limit

£ 7(%g) — K (Xg) 7(Xg) = — 1. (A1) of z—0. IE is ready to show that

21,3y -1 —1-3 -l
The average lifetime is the spatial averagerpf,) over the (D) 7V (Z/D) =k XKL(z=£) 2 Pegl
equilibrium distribution XK[(z—=L£) 1=z PgglK) — X?(2).
j g 5 (A8)
ty= P . A - . . . .
(v XoPed Xo) 7(Xo) (A2) o similar expansion was obtained by Weiss using a pertur-

Peq=Nex — U] and A is the normalization constant bative correction to the WF approximation.

is not a Hermitian operator. We define a corresponding Her-
mitian Operator:H :eXF{BU/Z]EO EX[{_BU/ZJ.27 The ad- APPENDIX B: EXPERIMENTAL TIME SCALE AND
joint operator is£* =exd BU/2]DH exd —BU/2]. We de- SINGLE-MOLECULE MEASUREMENTS

fine a functional spaceX={#(x)|J #*(x)dx=1} with inner In this appendix we discuss the effects of experimental
product (,9)=/ f(x)g(x)dx. Apparently ¢o(x)=VN  time window on fluorescence lifetime measurements. We
Xexf —BU/2]e X, andH¢y=0. The average lifetime de- consider single-molecule quantities monitored over a fixed
fined in Eq. (A2) is equivalent to (t)=(¢o.(K  time windowt,,,. A general definition of the average value
—DH) '¢) and the homogeneous average ratekis within this time window is given by Gopich and Szabd%s
=(¢0,K¢p). The survival probability in Laplace space is
obtained asS(z)=(¢g,(z+K—DH) 1¢y) in the same a= 1 texpa[x(t)“ dt (B1)
fashion. texpJ 0 o

We now derive the generalized WF approximation. As-

wherex(0)= X, is the initial condition. In principlea[ x(t
suming{ ¢, d1,¢»,...} is an orthogonal basis of, we can (0)=%, P plealx(V)]

can be any experimentally measured quantity, for example,

express the operatoks andH as block matrices the FRET rat¥ or the quantum vyield in FRET
Koo Ko 0 0 experiments? A similar scenario is discussed for two-state
=l k.l H=lo wol (A3)  dynamics of single biomolecules by Geva and Skirfher.
10 ™ 11 Based on Hochstrasser’s experimertshe distribution of
Koo is the homogeneous average rtéThe survival prob- the measured quantity is related to the underlying equilib-
ability is rium distributionP(Xo) as
8(2)=[2+k—Koy(z+K1;~DHyp) Kyl P(alte
A — 1 te><p
_ 1+O(z) (A4) =f Peq(xo)dxo<5 a—t—fo a[x(t)] Xodt>>
k+2[1+Q(2)] , exp inhom
A —1g - 3 . — i tex
whereQ)(z) =k~ 7_o(~ 1)"D DY (/D) with - g—:ei“’a< <exr{— 2 [ *"apan) xodtD >
-~ 0 .
Yn(2)=Kof (z=H1) (K~ Kk Koy 1" o inhom
. (B2)
X(z=H1p) "Kyo. (A5) . .
where the inner brackets: -)inom Stand for the inhomoge-
The average lifetime is neous average over trajectories with fixed initial configura-
- tion and the outer brackets--) denote the average over
(t>=§(0)=k’1+k’1ﬁ(0)=l+i2 Lt 0).  PedXo).
k k2a=o pntt "7 I the  static limit, te,;—0,  P(al0)

(AB) :[Peq(Xo)|&xoa(xo)rl]xo:xg with a(x})=a. For small
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