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Nonperturbative vibrational energy relaxation effects on vibrational
line shapes
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A general formulation of nonperturbative quantum dynamics of solutes in a condensed phase is
proposed to calculate linear and nonlinear vibrational line shapes. In the weak solute-solvent
interaction limit, the temporal absorption profile can be approximately factorized into the population
relaxation profile from the off-diagonal coupling and the pure-dephasing profile from the diagonal
coupling. The strength of dissipation and the anharmonicity-induced dephasing rate are derived in
Appendix A. The vibrational energy relaxatiotfVER) rate is negligible for slow solvent
fluctuations, yet it does not justify the Markovian treatment of off-diagonal contributions to
vibrational line shapes. Non-Markovian VER effects are manifested as asymmetric envelops in the
temporal absorption profile, or equivalently as side bands in the frequency domain absorption
spectrum. The side bands are solvent-induced multiple-photon effects which are absent in the
Markovian VER treatment. Exact path integral calculations yield non-Lorentzian central peaks in
absorption spectrum resulting from couplings between population relaxations of different
vibrational states. These predictions cannot be reproduced by the perturbative or the Markovian
approximations. For anharmonic potentials, the absorption spectrum shows asymmetric central
peaks and the asymmetry increases with anharmonicity. At large anharmonicities, all the
approximation schemes break down and a full nonperturbative path integral calculation that
explicitly accounts for the exact VER effects is needed. A numerical analysis of the O—H stretch of
HOD in D,O solvent reveals that the non-Markovian VER effects generate a small recurrence of the
echo peak shift around 200 fs, which cannot be reproduced with a Markovian VER rate. In general,
the nonperturbative and non-Markovian VER contributions have a stronger effect on nonlinear
vibrational line shapes than on linear absorption.2@4 American Institute of Physics.
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I. INTRODUCTION This approach does not yield quantitative agreement with
experimental results although semiempirical quantum correc-
Vibrational phase and energy relaxation of molecules inion factors can significantly improve the agreeménf?4
solution plays an essential role in chemical and b_|0|0§_]|C<':1IAnother standard approach uses a classical description of the
processes. The energy transfer in and out of vibrationagolute oscillator and a generalized Langevin equation to de-
modes is closely related to reaction dynamics in condenseskribe the coupling of the vibration to the baftt® This ap-
phases. To probe the solute-solvent interactions, extensi§oach is valid at high temperatures or at low frequencies. In
experimental studies have been carried out using time rehe limit of strong solute-solvent interactions, the contribu-
solved laser spectroscopy, in particular, ultrafast lasefion of the higher-order perturbations is crucial and these
spectroscopy. **Here we consider a simple model of vibra- approaches break down.
tional relaxation of a dilute diatomic solute in a solvent. For — optical line shapes in condensed phases have been the
this system, the Hamiltonian can be separated into solutgypject of extensive experimental and theoretical studies.
solvent, and solute-solvent interaction contributions. Th&¢,po Anderson and many others introduced the stochastic
§tandard approach to.vibrational phase aqd energy relaxatiqpe shape theory to study two-level electronic trans-
is based on perturbation theory and Fermi's golden tle.  jions2™-2° Modern femtosecond laser techniques can probe
this approach, the vibrational energy relaxati¥ER) raté e intermolecular and intramolecular vibrations directly.
constant between a pair of system eigenstates is proportlongbectral line shapes from nonlinear spectroscopy, such as
to the Fourier transform of the quantum force-force correla-h0|e burning, photon-echo, pump-probe, provide important
tion function calculated at the corresponding energy gap. Ifomation of dynamical processes in condensed phases.
reality, the classical force correlation function from conven-pukamel and co-workers introduced the Brownian oscillator
tional molecular dynamics simulations is often uséd: model to describe the coupling between a two-level system
and a stochastic bath. The theoretical formulation they devel-
dpermanent address: State Key Laboratory of Molecular Reaction Dynameped have been applied to interpret a wide range of spectro-
ics, Center for Molecular Science Institute of Chemistry, Chinese Academ)écopic experimené12'3°‘34Recently Cho, Sung, and Silbey
of Science, Beijing 100080, China. . . - ' ' .
YAuthor to whom correspondence should be addressed. Electronic maiha\/e extended the Brown'a_n OSC'I_lator mOdeI to a multilevel
jianshu@mit.edu system coupled to a bath with arbitrary time sc&fe¥.Con-
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tinuous efforts by Hynes, Skinner, Stratt, and many otherpopulation relaxation, and photon echo. Using a perturbative
have been devoted to calculate the line shape function usingxpansion, the solute-solvent interaction is decomposed into
liquid theory and simulation® 22 Yet, these theoretical the diagonal and off-diagonal components in the solute
models consider pure dephasing without a full account okigen-state space, which are responsible for phase relaxation
VER contributions. Some recent studies include VER effect@ind population relaxation, respectively. In the limit of weak
in the Markovian limit. solute-solvent interaction, the temporal absorption profile
It is crucial to establish a reliable method that can accu<an be approximately factorized into the population relax-
rately calculate vibrational line shapes and precisely predication profile in pump-probe experiments and the pure-
the VER effects without the Gaussian Markovian assumpdephasing profile. The well-known relation for the dephasing
tions underlying the master equation appro¥cii.To ad- rate, the population relaxation rate and the pure-dephasing
dress solute-solvent interactions and maintain a quantum déate is recovered under the Markovian approximation. In
scription, the vibrational degree of freedom has to be treate&ec. Ill, we apply both the perturbative and nonperturbative
exactly. In this paper, we propose a nonperturbative approadmethods to a harmonic oscillator linearly coupled to a Gauss-
based on Feynman's path integtaland systematically in- ian bath in the absence of pure dephasing. The errors intro-
vestigate the VER effects in vibrational line shapes. In theduced by different approximation schemes are examined
nonperturbative approach, the wave functions are propagatd®th analytically and numerically. Non-Markovian VER ef-
through the solute eigenstate space under the influence of tfiects generate asymmetric envelops in the time-domain ab-
solvent. The wave function is then projected to the specifie@orption signal which are manifested as side bands in the
state using the dipole operator, and computed signals dfequency domain spectrum. These side bands are solvent-
spectroscopic measurements are averaged over all possitigluced multiple-photon transitions and only present in the
trajectories of bath fluctuations. For the dissipative harmonidion-Markovian treatment. The nonperturbative VER effects
oscillator, the nonperturbative approach gives analytical extesult in non-Lorentzian central peaks. In Sec. IV, we nu-
pressions and quantifies the errors introduced by differeninerically investigate the anharmonic effects in a dissipative
approximation schemes of VER. For the dissipative Morsévlorse oscillator spectra, which display asymmetric line
potential, the nonperturbative approach demonstrates thH&apes. The perturbation schemes neglect the cross terms of
VER effects as a function of anharmonicity. The strength ofPopulation relaxation and pure dephasing, and therefore de-
dissipation and the anharmonicity-induced dephasing rate aate significantly from the exact results at large anharmo-
derived in Appendix A. In the present analysis, we only con-hicities. In Sec. V, we examine the VER effects on 3PEPS
sider the fundamental transition between the ground and th@xperiments in a hydrogen-bonded system. The nonlinear

first excited states. A different paper will discuss spectra oSPEPS measurement is a sensitive probe of the non-
overtones and combinations ABA molecule<© Markovian VER effects. Numerical calculations reveal a

The nonperturbative formulation of quantum dynamicssma” recurrence at 200 fs, which cannot be reproduced by

we propose makes a few predictions relevant to experimentér;‘e Markovian VER rate. Section VI concludes our analysis.
which are as follows:

(1) The non-Markovian effects of VER generate asym—“' GENERAL FORMALISM

metric envelops in the temporal absorption profile, which are  For chemical reactions occurring in solutions, solvent

also manifested as side bands in the absorption spectrum. molecules play an essential role in the dynamics of the sol-
(2) Nonperturbative calculations yield non-Lorentzian yte, In the present paper, we consider a solute molecule with

peaks in absorption spectrum. The peaks are rationalized ighe vibrational degree of freedom embedded in an environ-

terms of the couplings of population relaxations from differ- ment of solvent atoms or molecules. The complete Hamil-
ent vibrational states and provide an alternative explanatiofynian is

of non-Lorentzian line shapés.
(3) Nonperturbative VER effects lead to non-Lorentzian H=Hs+Hp+ Vs, (2.9)
broadening along the diagonal direction in the frequency dowhere the vibrational mode is referred to as the system
main photon-echo spectra. This phenomenon is differendll the remaining degrees of freedom are considered as the
from the pure-dephasing-induced line broadening discussesath H,, and the coupling between them is the solute-
in the literature. solvent interactiorVg,,. The system Hamiltonian is diagonal-
(4) Quantum baths generate more coherence in the longzed by a set of eigenstatés) with eigenenergiek,, . In the
time profile but have less effects on the short-time profile. interaction picture, the solute-solvent interaction becomes a
(5) For anharmonic oscillators, the absorption spectruntime-dependent operatoV(t) =g'(Hs*Holty o= 1(HstHo)t,
has asymmetric central peaks, and the asymmetry increas&ie central quantity in calculating vibrational spectra is the
with anharmonicity. propagator given in the interaction picture
(6) For O—H stretch in PO environments, non- _ _iHt
Markovian VER effects generate a small recurrence in the {n[G(1)|n)=(nle”™[n)

three-pulse photon-echo peak sHBPEPS. =g IEntg=iHypt

The rest of the paper is organized as follows: In Sec. I, ¢
we discuss the nonperturbative and perturbative calculations ><<Texr( —if V(T)d7)> , (2.2
of vibrational line shapes, including vibrational absorption, 0 n
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where T'is the chronological ordering operator, afd-),  Here we treat the population transfer from the nth to (n
=(nl---|n) stands for the expectation value of the nth vibra- + 1)th vibrational states. The pump-probe signal is given as
tional state. Unless specified, is unity implicitly. In the

ponpert_urbatlve gpproach, the tlm_e—_dependent so_lute—solvent |pp=2 pol[(N+1|G(t)|n+1)[2)y . 2.5
interactionV(7) is evaluated explicitly at every time step n

during the course of wave function propagation. HE®® £ |ater applications, we also write the pump-probe signal
stands for the unperturbed system basis set while in real sygy, (t)==npnl n+1p0dt), With I, pop the population relax-
tems the basis set is mixed with system-bath couplings. Thiaﬁo’r)]p profile define(f as pop

mixing of wave functions is inconsequential for the standard

VER rate treatment, but has substantial effects on nonpertur-  I'n,pod t) ={[(n|G(t)|n)|?)s . (2.6

bative VER treatment. In gas phase, oAly=1 transitionis  The infrared-Raman technique developed by Laubereau and
allowed for linear dipole operator if the system is initially in kaiser! which uses resonant vibrational pumping by a tun-
ground state. However, the system-bath coupling modifiegpie mid-IR pulse and a subsequent probe by an incoherent
the dipole interaction operator in the system basis set angnti_Stokes Raman, provides a powerful tool to study VER.
induces multiple-photon transitions. As a result, the centrakecently advances in ultrafast laser technology allows the IR
peak in the absorption line shape is non-Lorentzian, angachnique to reach its full potential. Yet, it is important to
there are also solvent-induced side bands corresponding fyte that the anti-Stokes Raman spectra also include other
Av=0, 2,.... excitations generated by vibration-rotation couplings not in-

A. Formal definitions of vibrational line shapes cluded in our model.

The propagator in Eq2.2) is used to derive expressions
of vibrational spectroscopic measurements, in particular, ab> Photon echo
sorption spectrum, pump-probe signals, and photon echo. The photon-echo measurement is a sensitive probe of
These expressions not only are useful for present analysispmogeneous dephasing and an important example of non-
but also provide the basis for more reliable numerical simudinear spectroscopy. In two-pulse photon-e¢BBE) experi-
lations. We will demonstrate the latter aspect in future pub-ments, two coherent laser pulses interact with a sample at a
lications. Here we assume that each application of the lasawvell-controlled time separation. The first pulse creates a co-
field results in one vibrational transition, so that the excita-herent ensemble of atomic or molecular polarization, which

tion pathway can be established unambiguously. dephases during the waiting time interval. The second pulse
partially rephases the lost coherence and creates an echo sig-
1. Absorption spectrum nal. The simple version of a photon-echo experiment is a

Among vibrational spectroscopic measurements, absorg€sonant third-order process with zero intermediate waiting
tion is one of the most important probes of relaxation. Thefime. The three-pulse photon-ecf@B measurement with

time-domain absorption amplitude is defined as a finite waiting time is discussed later in Sec. V. Let us as-
sume that the spectral resolution is sufficiently high to re-

A (t)= n+1l6tn+1 nla®m solve all the possible excitation pathways ina mglecular. sys-

avd ) ; « GO )en(nIG(OIN) )y tem. For the purpose of demonstration, we consider a simple

excitgtion pathway,pnn— pn+1n—Pn.n+1— Pnn, Which is
= PrAnnsLand ), (2.3  described by
" Accndt1.to)=((nle”™2n)(n+1]e" """ In+1)
where (---), represents the thermal average over the bath Mt ot int N
degrees of freedom an¥, is the sum over the solute vibra- x(n[e”"n) (n+1[e ™2 n+1)")y .
tional degree of freedom. Initially the bath is in thermal (2.7
equilibrium. The real part of the absorption amplitude is re- . . . .
lated to the free-induction decay signal, and the FourierBy carrying out a series of detection experiments, one can

transform of absorption amplitude yields the absorptionObtaln the real part, the imaginary part, or the amplitude of

spectrum Agend i ty) in Eq. (2.7), respectively.

[

Ad 0)=Re f A s(t)eiwtdt' (2.4) 4. Path integral evaluation

0 The expressions of the vibrational spectroscopic mea-
which can be measured by the Fourier transformed infraredurements provide the basis for numerical evaluations. In
(IR) spectroscopy. these calculations, we generate time trajectories of system-
bath interaction/(t) and evaluate the propaga@(t) along
each trajectory. Then, we calculate the spectroscopic signals
and average over all the trajectories. For a classical bath, one

In a pump-probe experiment, one molecule is exciteccan exactly simulate the bath degree of freedom using con-
vibrationally and the subsequent vibrational relaxation transventional molecular dynamics techniques, generate a time-
fers vibrational energy to other degrees of freedom of thelependent force through the system-bath coupling, and
original excited molecule and its neighboring molecules.propagate the quantum vibrational degree of freedom ex-

2. Pump-probe signal
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actly. Due to the intrinsic complexity of quantum baths, an (3) For a quantum Gaussian bath, integration of the bath
exact simulation of the bath modes is not yet avail4bBut ~ modes leads to influence functionals which couples the sys-
for vibrational line shapes, as shown later, a quantum reprgem variables at different times. As a numerical technique,
sentation of bath degrees of freedom is not necessary at roothe influence functional formalistbecomes tedious when
temperatures. Hence, we can propagate quantum vibrationalultiple excitations are involved. As an alternative, the
degree of freedom under classical force of the bath. Anotheinethod proposed by Cao, Ungar, and VBteamples the
technique, the surface hopping method, is used widely té3aussian random force directly without introducing the in-
treat a classical anharmonic bath coupled to a quanturfiuence functional formalism and propagates the system un-
systenf®=#" In the present paper we focus on a Gaussiarfler the influence of quantum forces. This method is particu-
bath linearly coupled to the system. Linearized dissipativdarly adequate for complicated multiple-time propagation of
models have been applied extensively to study dynamic proa Vibrational system.

cesses in condensed phases, including activated dynamigs, perturbative expressions: Factorization

electron and proton transfer, diffusion, and vibrational en-and cumulant expansion

ergy relaxation. For a Gaussian bath, several numerical tech- Factorization

niques can be applied, which are as follows. In the perturbative approach, we decompose the system-

Path couplingV(t) into the diagonal and the off-diagonal

(1) For a Uhlenbeck process, the force-force correlatio : . g ) -
operators in the vibrational eigenspace, giving

function is exponential, i. eGC(t)=(5f%),e” . The propa-
gation of random force is a Markovian process satisfying VD(t):; (V())a[n)(n| (2.99
Gi(f,t|f/ t) =7 G(f t|f" t")G(f",t"|f',t")df", where

the Green’s function of random force is a Gaussian distribu-and
tion Vop(t)=V(t) = Vp(t). (2.9b

The corresponding propagator can be written as
Gi(F,t|f/ ") =[2m(52)(1— e 2Vt 1))]-12
(f—fre ?71)2
Xp[ 26 (1—e )| ><7exp( —i fvo.)(r)dr> In)
2.9 °

<n|G(t)In>~eiEnteiHbt<n|Texp( —i JIVD(T)dq-
0

:eiEnteiHthEXF{ =i fot<VD(7')>nd7')

The equilibrium distribution of the random force . (f ) ‘
=[2m(5F%),] Y2 exd —%2(5f%),], assuming that the ><<Texp{—if VOD(r)dr)> . (2.10
random force has a zero mean. With the Markovian property, 0 n
one can generate a number of random force trajectories by, Eq. (2.10, we decompose the exponential function of two
first generatingf(to) from the equilibrium distribution and  time-dependent operators into the product of the two corre-
then using Eq(2.8) to generate the random forces at subsesponding exponentials, which is valid only ¥(t) and
quent time steps. The quantum system of vibrational/,(t) commute. The approximation neglects the contribu-
degrees of freedom is propagated along each trajectory, anbn from [Vp(t),Vop(t)], which is generally nonzero for
vibrational line shapes are calculated exactly. The bath ave&nharmonic potentials. In Sec. IV we demonstrate quantita-
age is obtained through an average over all the trajectoriesively that[ Vp(t),Vop(t)] increases with anharmonicity and
(2) For a set of linearly coupled harmonic oscillators, results in large deviations between the perturbative and the
one can always identify the normal coordinates of the batlexact results.
through an orthogonal transform, and each normal mode isa We now apply the decomposition in E(.10 to the
Uhlenbeck process. For example, we use biexponential fricvibrational line shapes in Sec. Il A and derive the perturba-
tion kernel in the O—H relaxation. Hence, one can first gentive expressions for the temporal absorption profile, popula-
erate the normal coordinates using the methodlinand tion relaxation profile, and photon echo. The absorption am-
then generate the bath modes using the orthogonal transformlitude in Eq.(2.3) can be rewritten as

. t t t T
An,n+1,ab£t)%e'9”:"+1I<TGXF( —i Jown'nﬂ(q’)dr) ><Texp( —i JOVOD(T)dT)> <Texp( —i JOVOD(T)dT)> >
b

n+1 n

%eiQn,n+1t<TeX[(—if;wn,n+1(7)d7)>b<<TeXF( f;VoD(T)dT)>n+l>b<<TeX[< f;von(r)dr)>n>T,

b

(2.11)

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2

(2.12

11254  J. Chem. Phys., Vol. 121, No. 22, 8 December 2004 Yang, Shao, and Cao
where Q,.,1=E,.1—E, is the frequency gap and [t ;
@nn+1(1) =(Vp())nr1—(Vo(t))y is the diagonal fre- X<(n|ex%—|f0VOD(T)dT>|n> >
guency difference induced by the solute-solvent interaction. b

In Eqg. (2.11), we first decouple the bath averages of the [t

diagonal and the off-diagonal parts, then perform the bath <n|<exp< —I fOVOD(T)dT>> [n)

average on each propagator separately. As discussed in Eq. b

(2.10), the first approximation neglects the commutator be-Comparing the above equation with EQ.11), we realize
tween Vp(t) and Vop(t'). The second approximation ne- that

glects the cross terms betwegn the propagators and is correct A apdt) <€ Pnneat T pod Dln+ 1pod 1)

only for weak solute-solvent interactions. o ' '

With the propagator in Eq2.10, the population relax- XAnn+1,def t), (2.13
ation profile in Eq.(2.6) reduces to

where A 14 1. deft) = (exd —i[ownn-1(Dd7])y is the contri-
bution from pure dephasing. Equati¢@.13) demonstrates
that temporal absorption profile can be approximately factor-
ized into the population relaxation profile and the pure-
dephasing profile. As a result, the off-diagonal part of the
2 interaction,Vop(t), contributes to population relaxation, and
In,pop(t)%< > the diagonal part of the interactioN,5(t), contributes to
b pure dephasing.

t Inserting Eq.(2.10 into the photon-echo expression de-

%<(n|exp(—|f0VOD(T)dr>|n)>

t
<n|Texr{ —i fOVOD(T)dT) [n)

fined in Eq. (2.7) and following the same factorization
b scheme as Ed2.11), we arrive at

ex;{(ifwzw;nﬂ(f)df)—(iﬁlwn,m(r)dr) <Texp(—iftl+t2vo.3(f)d7>>
tg b n
T +ty T
><<Texp(—if;1v0D(T)dT>> <Texp(—if:vof,(7)d7)> <TeXp(—iftl tVOD(T)o|T>> D
n h b

n+1 n+1

~ei“”:"+1(t2_tl)<exr{(if:lﬂzwn,nJrl(T)dT)—( Jotlwn,nﬂ(T)dT) > <<Texl{ —tht1+t2V0D(T)dT)> >
1 b 1 nl p

ty ty t
X<<Tex[<_|J VOD(T)dT)> > <<'TEX[<—IJ' VOD(T)d'T)> >
0 n+1 b 0 n/ p
ty+ty t
><<<7exp(—if vOD(T)dT)> > , (2.14
B! n+1

b

Agchd ty, )= ei“n,n+1(t2—t1)<

where the photon-echo signal is also decomposed into the [t 2
population relaxation contribution from the off-diagonal in-  !'n,pog )= [{N| ex;{ —i fOVOD( T)dT) In)

teraction and the pure-dephasing contribution from the diag- b

onal interaction. ~|exd —h,(t)]|2, (2.15

wherehy(t) =[5/ 5(n[(Vop(t) Voo(tz) )pln)dty dt, charac-
terizes the population relaxation from the nth vibrational
To further simplify the analysis, we truncate the solute-state. The last approximation switches the exponential func-
solvent interaction to second order of bath fluctuation, whichtion and quantum expectation value after invoking the cumu-
is valid for weak solute-solvent interactions or fast bath redant expansion, and assumes a diagonal form of
laxations. First, the temporal profile for population relaxation(Vop(t1)Vop(to))r While neglecting its off-diagonal ele-
from the nth vibrational state is approximated by taking thements.
bath averagé:--), for each propagator in Eq2.12) sepa- Similarly, application of the second-order cumulant ex-
rately, giving pansion to the pure-dephasing profile leads to

2. Second-order cumulant expansion
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t r
An,n+1,de;(t):<exﬁ{_i fown,n+1(7')d7' > hn(t)mft’ (2.20b
b
- . _ where T . 1=[0(6wqn+1(t) 6wy n41(0))pdt and T,
X ~i(@nn+1)ut =90, (219 =2f(°)°<n|(r{/r:3Dl(r)\/oo<D(0)>b|n)dr are usual?y complex, with
where g(t) =[5/ 5( Swn n+1(t1) Swnni1(t2))pdty dt, is the  the real part being the population relaxation rate and the
line shape function an@w, 1), is the Stokes shift. Com- imaginary part being the frequency shift. Consequently, the
bining the population relaxation profile and the pure-population relaxation profile is approximated by an exponen-
dephasing signal, the absorption amplitude in 8411 re-  tjal function lnpoft) ~exg—Re()t], and the pure-

duces to dephasing profile becomesA, .1 gedt) ~exd—I" 1t
Anns1apbt)~€ a1t exf —i(wp e 1)pt—g(t) —i{@nn+pt]- IN EQ.(2.17), the .absorptlpn profile is approxi-
e e mated byA 41 a0dt) ~eXd —iQn 1~ onniDpt—Thnsat]
—hy () —hye 1 ()] (217 with T =(Cr+T,40)2+T] 1. Thus, the time-
The 2PE signal in Eq2.14) after the second-order cu- delpte_ndent expression of E®.13 recovers the well-known
mulant expansion becomes refation
i - : k,+k
Acend t1,tp) ~ e nn+ 10271 exi(wp s )p(tr—ty) kn,n+1:nTn+l+kr’1,n+1’ (2.21

—2g9*(t1) —g(tp) —g*(tp) +g* (t +t
9" (L) —0(tz) =07 (t2) + g7 (L t2) wherek,=Re(;) is the population relaxation raté, .,

Xexd —hny1(ty) —ha(ty) —hi(ty) =Re(’),,1) is the pure-dephasing rate, ani, .,
. =Re(nn+1) is the dephasing rate. Under the Markovian ap-
—hha(t)]. (2.18 proximation, the photon-echo signal is readily simplified as

In the limit h,(t)—0, Eq.(2.18 reduces to the well-known

Agcnd t1,tp) ~e'Pnn+ille"Wexd —i(w t,—t
2PE expression for a two-level systém. generalization of ecndt:2) H=i(@nnsa)o(tot)

Eg. (2.18 to an arbitrary number of vibrational states in the =T peato— T ata]
limit of h,(t)—0 was recently proposed by Sung and . .
Silbey.36 Their treatment includes diagonal matrix elements Xex;{ _ Fpat Ty _ Fatlh
only while VER effects are absent. 2 ! 2 2
In many cases, composite approximation schemes are
i I (2.22
adopted to explain the vibrational measurements. The de- S S ]
composition relation in Eq2.13 and the second-order cu-  Considering that pure dephasing in anharmonic poten-
mulant expansion yield tials is much faster than population relaxation, we can ap-
" proximate the population relaxation with the Markovian rate
Ann+1,a06) ~[n pod )+ 1,p04t)] and the pure-dephasing signal with second-order cumulant
><exnt_igln,n-%—lt_i<wn,n+l>bt_g(t)]- expansion
) » ] (219 ) An,n-%—l,abzr;t)%e_mn'mjLt ex;{ _i<wn,n+1>bt_g(t)
The advantage of this decomposition is that the population
relaxation profile is measured from pump-probe experiments r* r
. . . . n n+1
and contains nonperturbative information of VER. As we —7t— 5 tl. (2.23

will demonstrate later that the decomposition yields results
close to nonperturbative calculations, accurately reproducingor the dissipative harmonic oscillator discussed later in Sec.
the short-time oscillations. But this approximation neglectslV, the diagonal couplings are 0 an, ;1 4e{t)=1, and
the cross terms between the population relaxations from thequation(2.23) becomes identical to the Markovian approxi-
nth and the 1+ 1)th states and the coupling between popu-mation. For a dissipative Morse potential in Sec. V, the de-
lation relaxation and pure dephasing, and does not contaiviations of Egs.(2.19 and (2.23 from the nonperturbative
any phase information of VER. Because of these approximaresults increase with anharmonicity.
tions, Eqg.(2.19 cannot reproduce asymmetric absorption
spectra for anharmonic systems. D. Inconsistency of the Markovian rate

approximation of VER

C. Markovian approximation Let us now discuss the physical meaninghgft). Usu-

The essence of Markovian approximation is that the really the solvent relaxation ratey, the VER rate, pure-
laxation of the vibrational degree of freedom is much slowerdephasing rate, and the vibrational frequency satisfy
than the relaxation of bath modes. Under the Markovian), ,,1>k; ,,1>k,>7v. The population relaxation process
limit, the line shape function and the population relaxationoccurs through the resonance between the vibrational fre-
exponent are linearly increasing with time, i.e., quency and the bath spectrum while the dephasing rate cor-

g(O~T" .t (2.208 responds to the bath .spec_trum at zero fre.quency. Given the

nn+1t ' fact thaty<Q, ,.,, vibrational relaxation is much slower
and than pure dephasing, henkg ., >k, and the line shapes
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are usually dominated by pure dephasing. In this case, vibrazcoupled to a classical bath. The classical bath assumption is
tional relaxation is either ignored or approximated with aoften adopted because one can always separate the degrees
Markovian rate. However, this argument is not self-of freedom into those with low frequenciéso<kgT, which
consistent because the Markovian rate approximation is onlgnay be treated classically as the bath, and those with high
valid at sufficient long time while the vibrational line shape frequenciesh w>kgT, which must be treated quantum me-
generally depends on the full time history of the off-diagonalchanically as the system. The Hamiltonian is thus given by
contribution.

To illustrate this point, we consider a linear system-bath

coupling f(t)q, which will be further investigated in later 2
sections. The second-order cumulant expansion gives H= ZJF EwngJr f(t)a, (3.
5f2 2 t
ha(t)= >, w f (t—7)e McosQ,rd7.  (2.29
mZn h 0

o where f(t) is a Gaussian random force resulting from the

In- the ~ limit = of = a fast bath, hn(t)  path degree of freedom. The bath relaxation is described by
~ Y(Emen( 6 2)p0nn/ 7 *Q5y) and yields a Markovian rate. the friction kernelC(t)=(5f(t) 5f(0)),, where the sub-

In the limit of a frozen bath y—0, hy(t)  script represents a classical bath. Quantum effects of the
~ 3 e ST 0am( 1 — COSQet) A0, Which leads to side  Gayssian bath are discussed in Sec. Ill E. In numerical cal-
bands withAw= )y, around the central peak in the vibra- cyjations, we assume an exponentially decaying friction ker-
tional line shapes. As we mentioned in Sec. II, the side bandgg| Co(t)=(5f2), exgd—]. (5f?), is the mean square

are induced by the system-bath coupling. Apparemilyt) is  fluctuation of the random force and is a probe of the average
intrinsically oscillatory over the complete time domain while strength of the solute-solvent interaction. The linear solute-
the Markovian approximation impliefs,(t)—0 andk,—0,  solvent coupling here has no diagonal contribution; thus,
which is obviously inadequate to describe the VER contributhere is no pure-dephasing contribution and all the vibra-
tion. The slow bath assumption renders the Markovian detional line shapes are generated by VER. The analytical so-
scription of the VER effects inadequate. lutions offer us a good benchmark of the accuracies of vari-

ous approximations.

I1l. ANALYTICAL SOLUTIONS OF DISSIPATIVE A. Exact path integral calculation

HARMONIC OSCILLATOR . . . .
Now we discuss the exact calculations of the vibrational

For the purpose of illustration, we first model the vibra- line shapes defined in Sec. Il. The propagator of the forced
tional degree of freedom as a harmonic oscillator linearlyharmonic oscillator &

. ] M ®o i/-l’wO 2 2 _
G(qz!t'qllo)_ 27i% sin (l)ot eXp" 27 sin wot[(q2+ql)cosw0t 2q1q2]]

ipwg | 2q; (¢ . 20, ft .
Xexp{ m m fof(T)Sln wo(t—7)d7+ m Of(T)SIn wordT
o |_2 ”tf f(+')s in wor'dr dr’ 3.2
X ex 2% Sin wgl M2wg o) (7)f(7")sin wo(t—7)Sin wor'd7 d7' | }. (3.2
|
The transition moments between a pair of vibrational eigenand
states are given by
o o] ’ 1 t .
Gmn(t):ei/ﬁEmtf_ j_ (UG (. :qL.0) g(t)——_zwoﬁ fo f(r)exdiwor]dr. (330
X ¢n(01)da, dgs, _In Egs. (3.3, ¢n(q) is the nth eigenfunction and,{’ are
incomplete Fourier transforms of the random force at the
Goo(t) ' (=)™ min! Nt et fundamental frequency. The diagonal transition moment
~ Jmint =6 (m=n)t(n—r)! AO™HAED™, Gyt) for the ground state is given byGogt)
=exd — () (t)]. For the rest of this paper, we only consider
with |=maxXm,n}, the fundamental transition between the ground state

=|0) and the first excited statge)=|1) unless specified
(3.39 otherwise. A different paper will discuss spectra of overtones

—lwgr]dT, A i 0 i
and combinations i\BA molecules® The absorption am-

1 t
(0= fof(ﬂexp[
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plitude for [g)—le) is thus Ageandt)=((ele"™[€) I odt)=[1+2(asst az) +4(ayiapn—aly)]
x(gle"™Mg)",. We apply Eq.(3.3) twice for m=n=0

2
andm=n=1, respectively, and obtain the absorption ampli- X[+ 2(ayt az) +3(ant az)

tUdeAge,abit):eiiwot(l'*"9z)|z= 1(6Xd—?{(t)§’(t)]>b. For a ' — A ayyap— a?y) + 8( gt ap)(aiam— ady)
Gaussian bath, the average can be directly calculated with )
the cumulant expansion, giving +16(apan—ai)]. (3.5

In the long-time limit, it is straightforward to show that both

B | g.pop @Nd 1 ¢ pop deCays as™*.
Ageapdt) =€~ "0 1+2(ay+ ap) In the absence of pure dephasing, the decomposition re-
lation Eq. (2.13 becomes |A, ni1.apdt)|*~1n podt)
I'h+1,p041), Which is obtained under the weak coupling as-
sumption. To explicitly check its validity, we compare the
decomposition relation with the exact results from the path
integral calculations. To be specific, we expand H@s4)
and(3.5) in orders of{ 5f2),,

|Age,abd D)~ 1—4( 11+ a) +13(ag+ ay))?
— 12 ayyaz— aty) +O((5F)p),

2\1-3R2
+4(apan—a)] 71+t aptay)),

where

1 t (7
aij(t):mf fo<f(T)f(T’)>bt//i(r)¢r;(f’)drdr’,

0
(3.6
Ig,pop(t)I e,pop(t)% 1-4(ataxp) +1¥a+ a22)2

Horth ons 1 — 168(argyap— afp) + O((5%)y).
Here, yy(r) and y(7) are short-hand notations for cagr These two quantities are equal only up to first order in

and sinwgt, respectively. Given the exponential friction ker- 5 . . .

nel, a;;(t) can be evaluated explicitly. We find that the en- <.5f Jo- Fora har.monlc oscnlat'or Ilnea.rly coupled to a clas-
velop of Age andt) exhibits a power-law decay in the long- sical bath, t'he cﬁagpnal COUp“r.MD(t) IS 2610, hgnce, the
time limit, 1. e., Age abs(t)%e_iwot(1+rget/2)_21 with Ty, only approximation introduced in E@2.1)) is the indepen-

equal to the dephasing rate defined later in the Markovia@emz bat? a"egage for each propagator._ Th_e difference
limit (see Sec. Ill G (a1t aj,t+ 2a7,) between the two expressions in £8.6)

We use the transition amplitudes in B8.3) to evaluate is a quantitative measure of this assumption. The positive
the population relaxation signal in pump-p'robe experiment efinite difference indicates that the decomposition relation
In.poi(1) analytically. For instance, the population relaxation overestimates the absorption profile in the second order of

. . . 52y,
rofiles for the ground and the first excited states are ( b . .
pro 9 The transition moments in E¢3.3) allow us to calculate

the exact(2PE signal in Eq.(2.7) as

ije{1,2. (3.4)

lg,p0d 1) =[1+2(a11+ az) + 4 asaz—ady)] M2 Accndty tp)=e'eole™(1+4, )|, -
X(1+322)|12=1[detM(Zlazz)]illzv (37)

and where the matrixM(z,,2z,) is

14275 a94(t9,t) 2z aq5(t1,ty) 2VZ1Zpa14(11,t0)  2VZ1Zpaq0(1g,1p)
2z aq5(11,t1) 1+2zZ ap)(t1,t1)  2VZ3Zpa5(to,ty)  2NZ3Zpap(ty 1))

M(z;,25)= , (3.8
(2172 2V21Zpa14(t1,t0)  2NZaZpano(tp ty) 1+ 2Zpa00(ts,ty)  2Zpa5(t, 1)
2VnZpan)(t1,t)  2VZazZoany(ty,ty)  2Zpanu(ta ty) 14 2Zpa05(tp,t)
|
with o (t1, 1) =[2pawhi] [ HE (D (7)) y Y [t
X ii(7)i;(7")dr d' defined similarly as in Eq(3.4). (nle”"™n)=e"*n"(n| T ex "fo f(na(ndr|[n),
(3.9

where q(t) is the time-dependent position operator in the
interaction picture. We note that, becauseVgf(t) =0, the
factorization in Eq.(2.10 becomes exact. We first neglect

We now investigate the perturbation method. The diagothe cross terms between propagators and perform the bath
nal matrix element of the propagator is given by average over each propagator separately, giving

B. Perturbation
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Anntzapdt) cussed in Sec. Il A idy, podt)~| exd—hy(t)]°. Settingn
. =0 andn=1, we obtain the second-order cumulant expan-
%eiwot<<n+ 1|Texr{ _iJ f(r)q(r)dr||[n+ 1>> sion of the population relaxation at the ground and the first
0 b excited states, respectively,
t T
X T =i f d . 31
<<”' ex"( Ifo (Ma(7) T) '”>>b (319 |g.por ) ~€Xp(~ [a3y(1) + azA1)]) (3153

Next, we exchange the order of the bath average and thand
expectation value over vibrational states, and perform the

second-order cumulant expansion for the Gaussian bath
Ie,po&t)%exq_:%[all(t)*'a’zz(t)])- (3.150h

Annt1,apét) Combination of these two expressions leads to Bql3.
These perturbative expressions, which neglect the cross
terms among propagators and invoke separate bath averages
t(r of propagators, differ from the exact results in E8.5).
XeXF{ - fo fo a(ng(r ){f(n)f("))pd7 d7’ Similarly, the photon-echo signal from the second-order
cumulant expansion can be derived as

~e teot(n+1]

t (7
<+ et - [ [Tatmace)

Accnd t,tp) ~e'@0ota™) exp(—2[ ay5(ty) + apx(ts)

X {(f(r)f(7"))pd7 d7']{|n). (3.12) +ag(ty) +azx(ta)]), (3.16

. . . where there is no contribution from pure dephasing. Again,
Finally, we take the expectation value of the exponent, Wh'Cths expression gives the correct expansion up to first order

is only accurate when the exponent is diagonal, giving in bath fluctuations, thus is only applicable to weak solute-
solvent interactions.

Anns+andt)~e 0 exil —hn 4 (O —h7 (D], (812 C. Markovian approximation

— trr ’ ’
where  hn(t)= (1/4%) [of(f(7) F('))s(nla(7)a(")n) Under the Markovian approximation, the population re-

characterizes the population relaxation process from the nt'?;\xation profiles are given b, poft)~ex —~Re@)t]. For
. . . . n,po n/tl-
vibrational state. For a harmonic oscillatdr,(t) can be the dissipative harmonic oscillatdr,, is given as

evaluated explicity to be wphwgh,(t)=2(n+1/2)
X [hdrfid7'(f(7)f(7'))pcoswy(m— 7). Particularly by set-

ting n=0 in this expression, we obtain the second order o
cumulant expansion result fd¥e ,pdt) as I'n=2 fo (n[{Vop(t)Vop(0))p|n)dt

Ageandt) =0t exp(—2[apy(t) +az(t)]),  (3.13 =2 fo (F()F(0))p(e " 0lgh \, y+€'@0lgh | ))dt,
whereaq4(t) and a,,(t) are defined in Eq(3.4).

Compared to the exact path integral expression, the (3.1

second-order cumulant expansion is accurate up to first Ord(\a/\ghere _ — J(nF 1)i2iay is the off-diagonal
in the bath fluctuatio 5f2),, . The essential difference is the Anne1=Gn+in . 9

. element of the position operator. In this limit, we readily
absence of the cross termy, in the second-order cumulant : .
. - . . ork out the two population relaxation rates from the ground
expression result. To facilitate the comparison with the exac . . . -
. State and the first excited state, respectively, yielding
expression, we expand the square of E2j13 to second

order, giving y (%), y  3(5f%),
, , Fg_kg_wg-i- v uhaogy' Fe_ke_w(z)-l— y? phog
|Age.and”=1—4( a1t az) +8(ayt+ az)) (3.18
+0((5f%p). (3.149  Then, the average population relaxation ratekig= (Kq

+ke)/2. It is straightforward to obtain the absorption profile

The overall deviation from the exact result isdg(+ ay,)? ¢ SR
and the echo signal at the Markovian limit,

—12(aq 09— @), Which is a combination of all the ap-
proximations in Egs(3.10, (3.11), and(3.12. It is readily

: r,+r
shown that this difference is positive definite, indicating that A, 4pdt)~e 0! exp{ — -9 %4
the second-order cumulant expansion always underestimates 2
the absorption profile. ) (3.19
! NI . (812) Y(t1+1,)
Applying the approximations in Eg$3.10), (3.11), and Acchdt1,ty)~el@olta"t) exg — ——.
(3.12 to Eq. (2.6), the population relaxation profile dis- phoy wpt+y
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1 T T T vironmental fluctuations. The decay rate- 10 is 1/12 of the
- (a) 1 reduced frequency and the mean square fluctuation of the
5 random force ig 6f2)=0.3uh w.

1. Non-Markovian effects of VER

B ‘ | . ] In Fig. 1, we illustrate the absorption profifge andt)

0 0.4 0.8 and its Fourier transformsyge apd @) = Re [€“'Ageapdt) dt

t (reduced unit) from the path integral method in E¢B.4), the second-order

T - T y cumulant expansion in Eq3.13, and the Markovian ap-

proximation in Eq.(3.19. As indicated in Sec. Il B, the

i perturbative and the exact results are identical up to first

order in the bath fluctuatioisf?),. The perturbative ap-

150 | proach only provides qualitative agreements and does not

reproduce the line shape quantitatively. The Markovian ap-

proximation only captures the overall decay of the absorp-

0 B B tion profile. In the long-time limit, both perturbation and
0 l(go(reduced ung) 300 Markovian approxim_ation yielq expoqential decaying envel-

ops for the absorption amplitude with the decay rkge

i it e i o P oot Eoge K12 Whereas he et reslt s 2 porierian

(3.4) (solid line), the second-order cumulant efpansion%n Eiqlg) (dashed qdecayl_ng envelop of ™= (see Sec. lll A. Hence’ the exact

line), and the Markovian approximation in E.19 (dotted ling. The  e€Sultis more coherent than the perturbative and the Markov-

corresponding frequency domain line shapes are given in the lower (mnel ian approximations. This difference becomes more promi-

with the details of the central peak in the inset. The parametersvgre nent for stronger solute-solvent interactions.

=120, y=10, and(572),=0.3u 5. As shown in Fig. 1, both the nonperturbative and the
second-order cumulant expansion results have asymmetric
envelops while the Markovian result is symmetric. This non-

D. Numerical results and discussions Markovian effect is an important feature of VER effects. To

To demonstrate the differences between the nonperturbétuusm’lt.e this pomt,'we examine the sgcond-order cumulant
pansion expression for the population relaxation in Eg.

. . . . X
t!ve and perturbatl\(e gpproaches, we CalCl.Jlate the V|b.rat|on e&.la. The exponent of the population relaxation profile is
line shapes for a dissipative harmonic oscillator described by~ . s

T R n incomplete Fourier transform of the friction kernel at the
the Hamiltonian in Eq(3.2). The results are plotted in Figs. fundamental frequency. givin
1, 2, and 3. To facilitate the comparison with the Morse q Y. gving
potential discussed in Sec. IV, we take the same frequency B[ a14(t) + ay(t)]
reduced unit,wg=120, and the same effective mass inre-

®)

abs(m)

ge,

1< 0.1

2

2 2_
duced unit, »=0.5, which were used in simulations by _ (6fp | @o—v n "
Tuckerman, Bader, and Berfe?® The effective % is 2uoh | (w5+72)?  waty?
0.029 534. The friction kernel of the bath fluctuation is as- .
; - ; (02— 9?)coSs wot — 2wgy Sin wet
sumed to be single exponential, i. e{sf(t)5f(0)) _ %o 20 0 apea (3.20
=(62), exd —t|], which is a simplified description of en- (w5t 7%)?

Equation (3.20 is intrinsically oscillatory with the funda-
mental frequencywy. As a result, the absorption amplitude

1 ' — ' ' is smaller on the negative side than on the positive side,
R generating an asymmetric temporal profile. Under the Mar-
03t ) 05{_‘-.. o m‘::m“ 11 kovian approximation, the exponent is simplified to be linear
Soaps e Markovian ] in time. Then, the oscillatory feature is completely removed,
o ~§ozi“f“‘f<‘.k 17 yielding a symmetric profile. Apparently the exponent is pro-
. B MALS TPt S ETENT SR portional to the mean square fluctuation of the ba#i?),, ,
™1 - - i and the asymmetry is more prominent for stronger solute-
SV Tllgfzﬁjw‘:;‘“@,,imm) ] solvent interactions. . .
; The asymmetric feature is also demonstrated in the Fou-
c' , T — rier spectrum. The exact and the second-order cumulant ex-

014 0.6 0.8 1 i i

* (ceduced unit) pansion results ShOW small side band_s at zero frequgncy and
the second harmonic frequency while the Markovian ap-

FIG. 2. Examination of the decomposition relation given by @qL3 with proximation is a perfect Lorentzian. These side bands are

for the dissipative harmqmc oscnlaFor. The exact result_s, the cumulant ex'generated by the oscillations in the exponent. To illustrate
pansion, and the Markovian approximation of the VER sidgald e popare

shown in the inset. The parameters are the same as in Fig. 1. For a linearfjiS Point, we fL_"ther expand the perturbative expression of
coupled harmonic oscillator, there is no pure dephagifigy geft)|?= 1. Eq. (3.13, yielding
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FIG. 3. The time-domain echo signdis the left col-
umn) and their frequency domain contouis the right

1 column for the dissipative harmonic oscillator. From
top to bottom, the plots are the nonperturbative calcu-

lation and the second-order cumulant expansion, re-
140 spectively. The parameters used in the calculations are
the same as in Fig. 1.
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2<5f2>b(w(2)— ¥?) mulant expansion. The quantitative relations(in and (2)
- provide a possible way to measure the two parametéfs)
and y, of the bath fluctuations.

A t)~e iwo exp{
geard g (@3t 7

Iy+T, }
2. Non-Lorentzian line shapes
d __1\n 2
x> ) ( (of 2>b —— Compared to the exact result of nonperturbative calcula-
n=o N\ poefi(wgty) tions, the absorption spectrum from the second-order cumu-
n lant expansion reproduces the line shapes a0, w,, and
X[(— w2+ y?)C0S wot — 2ywesin wet] | 2wg. Yet, the central peak of the exact spectrumwatis

substantially different from a Lorentzian. Given the long-
(3.2  time power-law decay profile of the exact absorption profile,

Ageandt)~e 10 (14T yt/2) 2 with I'ye=kge, the central

After collecting the Fourier components at zero, the first and?€ak is a Meijer G function and has a height dt2/and a
the second harmonic frequencies, we identify several feawidth of kqe/2. The non-Lorentzian absorption spectrum was

tures in the absorption line shape, which are as follows: ~ also obtained by Kosloff and Rice from dynamical semi-
_ _ _ _ group techniques that go beyond the weak coupling it
(1) The central peak ab, is a Lorentzian with width |n their analysis, the non-Lorentzian peak is attributed to

equal to the dephasing rakge. . ~ double quantum transition resulting from the quadratic
~ (2) The peaks at»=0 and 2v, are slightly asymmetric  system-bath coupling where both population and pure
with width kge+ 7. dephasing are present. Apparently, the dissipative harmonic

(3) In the limit wo> 1y, the ratio of the peak atd, (or  oscillator discussed in the present paper is linearly coupled to
zero frequencyto the major peak a is directly propor-  the bath without pure dephasing contribution; hence, the

tional to the dimensionless bath fluctuations non-Lorentzian shape we obtained results from couplings of
population relaxations. This is a different interpretation of
A(2wy)  A0) (52, Kge the absorption line shape.
— == ~ 3 . (3.22 The non-Lorentzian line shapes are also obtained in the
A(wg) Alwy) Moy Kgety photon-echo profile. Figure 3 is a comparison of the time-

domain echo signals and their frequency domain line shapes.
The Markovian approximation neglects the constant ternThe two time-domain echo signals in the left column are
—2(6f2)p(w3— ¥ wwohi(wi+ ¥?)? in the exponent and obtained from the nonperturbative path integral method and
generates a higher peak @t wq than the second-order cu- the second-order cumulant expansion, respectively. The line
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shapes in the right column are the corresponding absolute 1 T T T
value spectra obtained froth : b=0.2

|Aech<{wlvw2)|
=‘ fo fo el d2 Aty t)dty dty|. (3.23

The second cumulant expansion has a symmetric 2D Lorent-
zian line shape and is almost identical to the Markovian line
shapeg(not shown in Fig. 3 The close resemblance in the 2D
Fourier spectra indicates the same long-time behavior for
both approximations. The exact result, as shown in the ab-
sorption profile, decays in a power-law form ©f? at long
times. The Fourier spectrum shows a much wider distribu-
tion along the diagonal direction than the antidiagonal direc-
tion. In the dissipative harmonic oscillator we discussed
here, the pure dephasing rate is zero, hence the elongated line
shape along the diagonal direction can only result from
population relaxation, which is different from the pure-
dephasing-induced broadening discussed in the liter&ture.
Compared to linear absorption spectrum, the nonlinear pho-
ton echo is much more sensitive to the nonperturbative ef-
fects.

3. Decomposition relation: Comparison of different
approximations for VER 0

0.8

04
t (reduced unit)

In Fig. 2, the decomposition relation in EQR.13 is
examined for the same parameter as those in Fig. 1. As WelG. 4. Comparison of Réy.a{t) calculated with the exact path integral
discussed in Sec. Il A. the decomposition expression Ongpressior(solid ling), the second-order cumulant expansidashed ling

ST S Markovi imati ling for the dissipative harmoni
tained with the factorization approximation, is only accurateanOI arkovian approximationdotted ling for the dissipative harmonic

. . . . oscillator coupled to a quantum Gaussian bath= 3% w, is the tempera-
up to first order in( 5f2>b and overestimates the absorption wre parameter. The real part of the quantum force-force correlation is the
intensity. This is clearly indicated by the deviation of same as in Fig. 1 and the imaginary part is given ByC.(w)
I po ) I+ 1,p0dt) from |An,n+1,ab{t)|2- Compared to the =tanh@hwy2)C,i(w). The high temperature limj8%wo— 0 is Fig. 1a).
exact result, the factorization approximation reproduces the
short-time oscillations correctly and exhibits a slower decay
profile in the long time. Hence, the composite approximation
scheme of Eq(2.19 in Sec. Il B overestimates the absorp- £+ Quantum bath
tion profile. The second-order cumulant expansion of the  To demonstrate the quantum effects, we plot several ab-
VER contribution derived in Eq(3.195 clearly underesti- sorption profiles in Fig. 4 and compare with the classical
mates the absorption profile and decays faster than the exa@sults. The details of the derivation are elaborated in Appen-
result. The Markovian approximation is appropriate only fordix B. Here we set the real part of the quantum force-force
an estimation of the decay rate. Consequently, the compositrrelation equal to the classical force-force correlation func-
approximation scheme of E¢2.23 reduces to the Markov- tion used in Fig. 1, i.e.C,(t)=(5f%), exd —1/t|], and as-
ian approximation in the absence of pure dephasing and failsume the same parameters therein. The Fourier transform of
to capture any non-Markovian features of VER. For the casg (1) is C;(w)=2( 5t /(w3+9?), and the imaginary
of anharmonic potentials investigated later in Sec. IV, thepart of the quantum force-force correlation function is deter-
pure-dephasing profile imposes a monotonic decaying ennined from Eq.(B3),
velop, where Eq(2.19 agrees better with the exact result.

These calculations clearly demonstrate the limitations of 1 (=
the perturbative approach and the Markovian approximation.  C,(t)=— f tanh
The perturbative expressions, which are obtained under the ™ Jo
assumption of weak solute-solvent interactions, can provide
a qualitative description of vibrational line shapes, but canAs shown in Fig. 4, the quantum absorption profiles are gen-
not accurately reproduce the details. The Markovian approxierally more coherent than the classical ones in the long-time
mation oversimplifies the timedependence with simple relaxiimit and have weaker effects on the short-time profile. The
ation rates and fails to capture the VER effects. That is whyperturbative approach yields closer resemblance to the exact
a more rigorous nonperturbative approach is important andesult at lower temperatures. The asymmetry in the absorp-
necessary for studying vibrational line shapes in condensetibn profile from the vibrational energy relaxation remains
phases. prominent for quantum baths.

Bhaog .
5 Ci(w)sin wt dw. (3.29
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IV. DISSIPATIVE MORSE OSCILLATOR: 1 T 1 T
A NUMERICAL EXAMPLE o5 @ - ©

g o - ; —
i ]

Let us now consider a numerical example of anharmonic 2 Oy\/\/\ﬂ/‘w“_ °£/ \/VV“_"‘
potentials and investigate the vibrational line shapes for a ¥ .

0.5 e

Mors.e 0;0|Ilqtor !lnearly coupled to a Gaussian bath. The full . 05 0 L U
Hamiltonian is given by . 0.06 s : -
0.04[ &
2\
p? 002} J\ :
H=2—+De(l—efﬁq)2+f(t)qv (4.1 ) . - N
M 00 100 200 300 30 : 100 ’ 200 : 300
® (reduced unit)  (reduced unit)

whereD, is the dissociation energy. Again the classical bath

. . FIG. 5. Absorption line shapes of the dissipative Morse oscillator calculated
IS represented by a Gaussian random fdl(@! and the bath with the nonperturbative methogsolid line), the second-order cumulant

relaxation is characterized by the friction kern€l(t) expansion(dashed ling and the Markovian approximatiofdotted line.
=(f(t)f(0))p. For simplicity, we study the transition be- The solvent relaxation rate is assumed to e 10. The solute-solvent

tween the ground and first excited states. To facilitate thénteraction is(5f%),=0.3ufw§. At anharmonicityy.=0.004 27 in(a) and
comparison with early studies in Iiteratbﬁféthe Lennard- (b), the dissociation threshold 3,= 58.5w, and the fundamental frequency
Jones fluid of Argon are used as the reference units wit%
parameters e/kg=120 K, m=6.632x10 ?°Kg, and o
=3.41 A. In these units, the dissociation energy Dg
=207.3G=2.15 eV. The diatomic molecule consists of two
atoms with the same mass as Argon coupled by a Mors&. Asymmetric envelops in the temporal
potential, giving the effective masg=0.5 m=20.0 amu. absorption profile

B=4.167'=1.22 A”*, and the fundamental frequency  As shown in Fig. %), the second-order cumulant expan-
wo=\2DB% u=120Je/mg*=296 cm *. % in the re- sjon illustrates the presence of asymmetric signals at short
duced unit isfi* =f(mo?e) ?=0.029 534. To compare times but fails to reproduce the long-time decaying envelop.
the nonperturbative and perturbative approaches, we calc@imilar to the dissipative harmonic oscillator studied in Sec.
late the vibrational line shapes for a solute-solvent interact||, the appearance of asymmetry in the absorption profile
tion of (5f%),=0.3ufiwg. The bath relaxation is an expo- clearly demonstrates the VER effects from the off-diagonal
nential Cy(t) = (5f%),e™ 7" with y=10. elements of the solute-solvent interaction. For the exponen-

The perturbative absorption profile with second-orderija| frictional kernel,g(t) andh,(t) are evaluated explicitly
cumulant expansion is given in E@2.17), and the pure- gs

dephasing and population relaxation cumulants are

0=120. At anharmonicity . in (c) and (d), the dissociation energy is
&/3 but « and wy remain the same.

(812 ,t—1+e™
g(t): h? (qn+1,n+1_qnn) 72_'
1 t (7
= — ’ _ 2 ’
0=z | [ (6151 u((@nsa— (@77 o . v

>

t)y=-—5-— 2 +
(42) n( hZ ngn Unm (Qﬁ'\n+ ')’2)2 Qﬁ’m—’_ ,),2

(Q2,— ¥)cosQmit—2Qmny Sin Q it

2 .
(Qmnt 72)2

1 t (7
=7z || (ot

. , (4.9
X > g2l )dr d7’,
m#n

According to Eq.(4.4), the pure-dephasing profile decays

where g, is the matrix element off. In the Markovian monotonically while the VER profile is an oscillatory func-
imit E“qm (217 reduces 10 A,y 1 apft)~e Cnnsit tion. The bath relaxation rate is significantly smaller than the
y . . n,n+1,a ’

><exr[—l“r’]’nﬂt—%(FnJrl“nH)t], wherel, ., andT, are the energy gap, i.e.y<wg, and the vibrational energy gap falls

pure-dephasing rate and the population relaxation rate giveﬁ"ilr into the “’%” of the _spectr_al density of bath relaxation. Th_e
by pure-dephasing rate is equivalent to a Fourier transform with

zero frequency and is located at the center of the spectral
density of bath relaxation. Consequently, the pure-dephasing
(@ nr1— (D)2 (= rate is much larger than the population relaxation rate in the
! = f (8f(7)8f(0))pdr, long-time limit. At short times, h,(t)+h,;(t)>g(1);
hence, the VER dominates at short times and the asymmetric
envelop becomes more prominent. The Markovian approxi-
ol (o mation employs simple rate approximation and completely
r,= E qgm f (8F(7)5F(0))pemrd 1. removes the oscillatory feature in population relaxation and
mzn 0 produces a symmetric profile over the complete time range.

nn+1— ﬁZ 0

4.3
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FIG. 7. Examination of the decomposition relation in Eg.13 for the
dissipative Morse potential. Inset: The decomposed sidials(t) (dotted
line), lepoft) (dashed ling and [Agegedt)|? (solid line). Ageandt),
Ig.podt), @andlg poft) are the exact results calculated numerically with the
same parameters as those in Figs) and 3b).
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function, while the negligen f cr r in th r-
FIG. 6. The time-domain echo signdi® the left column and their fre- tu ;tto ' deﬂt_] eMegk ge. ceotc O.SS F; OdUCtsl t. eldpe
quency domain contourén the right column for the dissipative Morse urbalive an € Markovian appr()_X|ma_ lons only yields a
oscillator. From top to bottom, the plots are the nonperturbative calculatiof€al envelop. The presence of the imaginary part of the en-
and the second-order cumulant expansion, respectively. The parameters usgdlop function creates interferences of difference frequency
in the calculations are the same as in Figi) ind 5b). components, giving an asymmetric profile. As anharmonicity
increases, the frequency mismatch becomes larger and thus
the interference becomes stronger, yielding more asymmetric
central peaks, as shown in Figdh Apparently, the cross
The absorption spectrum of the Markovian approxima-Product of the off-diagonal coupling is proportional to
tion illustrated in Fig. ) has a symmetric Lorentzian line (0f°); and depends strongly on the strength of bath fluctua-
shape from the simple rate approximation. The perturbatiofons: I hse(t:). \; tEe OEH stretch he'llsl‘ a muclh Yvea(l;gr Cr?_“'
renders side bands at zero and the second harmonic frequeind t the bath than the Morse oscillator calculated in this

cies in addition to the central peak. This is a direct result Ofsectlon and demonstrates a less prominent asymmetric ab-

the asymmetric VER signal at short times. The side bands ar%Orptlon spectrum.' - .
The asymmetric and non-Lorentzian line shape is better

solvent-induced multiple-photon transitions which are absent _ . . :
. . manifested in the nonlinear two-pulse photon-ecR@
in the Markovian VER treatment. Apparently, the exact resul b b 1@ep

h L tzi tral K differing f the M rofile. As shown in Fig. 6, the exact result shows a strong
as a non-Lorentzian central peax, ditiering from the ar'asymmetric elongation along the diagonal and is significantly

kovian approximation. Yet, the non-Lorentzian central peal%iﬁerent from the Lorentzian line shape predicted by the
is not as sharp as that of a dissipative harmonic oscillator ir%econd—order cumulant expansion and the Markovian ap-

Fig. 1. This difference results from the dominant Contrib“tionproximations. The Markovian approximation has identical

of pure dephasing, which is absent in a harmonic oscillatotline shapes as the second-order cumulant expansion and is
Pure-dephasing profile, when superimposed onto populatiofot included here to avoid redundancy. Small irregular struc-

relaxation profile, generates an exponentially decaying enures in the exact line shape is due to insufficient averaging
velop in the long time and results in a less sharp nonin Monte Carlo simulation.
Lorentzian peak.

B. Asymmetric central peak in absorption spectrum

In addition to the nonLorentzian peak and side bandsC. Decomposition relation: Anharmonic effects
the nonperturbanve calculation _demonstrates an asymmetric 1, check the decomposition relation, we calculate
central peak in frequency domain. Absence of these featurgs

: : L e AU e andt) =|Age.andt)|* and compare it with the product of
from the perturbative and Markovian approximations |nd|-|g’ab4t)' le apdt) and |Age,de;(t)|2- Due to the presence of

cates that they arise from neglected term in the factorizatior&nharmonicity’ the absorption profile is dominated by pure
of perturbative approach. Careful investigation of the apgephasing in the long time limit, so that the factorization
proximations in Sec. Il B reveals that the source of thisresult yields close resemblance to the nonperturbative ab-
asymmetry is the cross products of the off-diagonal couplingsorption profile, displayed in Fig. 7. The initial decay, the
((Von(t1)Voo(t2))n{Voo(t1) Voo(ta))n+1)p- FOr an anhar-  major oscillation at~0.05, and the long-time relaxation are
monic potential, the frequency gapk,,, are not identical, closely predicted by the factorization scheme. The similarity
the frequency mismatch generates a complex envelopetween the absorption intensity and the decomposed signal
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% 0.1 02 03 04 05 2Xe -
t (reduced unit)
s
FIG. 8. The nonperturbative absorption amplitlLl/:’tge,abs(t)|2 and the pure- oF } — -
dephasing profileAy qe{t) for different anharmonicities of a dissipative -
Morse potential. Other parameters suchugs u, y, and{ 5f2), remain the 05 0 -

same as previous calculations.

indicates the applicability of the approximation scheme of
Eq. (2.19 introduced in Sec. Il D, which directly superim-
poses the population relaxation profile measured from pump-
probe experiments onto the pure-dephasing profile. This ap-
proach is different from the cumulant approximation where
both the population relaxation and the pure dephasing are
truncated at the second-order cumulant. Consequently, the
absorption spectrum is no longer a Lorentzian shape. As we -1y : 0'.1 : 0.2
discussed earlier in Sec. Il D, due to the omission of imagi- t (reduced unit)

nary part of the population relaxation signal, the composite

approximation scheme cannot reproduce the asymmetri'f:‘G- 9. Comparison of the nqnpe_rturbative calculation in Eq3),_ the

central peak of the absorotion spectrum second-order cumulant expansion in E2.17), and the two composite ap-
_p ) p p_ : proximation schemes in Eq&2.19 and(2.23 at different anharmonicities.

To investigate the anharmonic effects, we compare th@ther parameters such ag, ., v, and(5t2), remain the same as previous

absorption intensity and the pure-dephasing signalyat calculations. The exact results of the nonperturbative calculation are plotted

=hwol4D, 2xe and 3y, in Fig. 8 with wy and u fixed. The in solid lines, the second-order cumulant expansion in dashed lines, Eq.
-0 e’ € N . 0 51 (2.19 in solid circles, and Eq(2.23 in open circles.

position operator of a Morse oscillator &

g~=- %m[l—mmbm
mations employed in the second order cumulant expansion
i include decoupling of the diagon#ly and the off-diagonal
~ m[(b+ b")+Vxe(b+b")?], (4.5  Vqp, independent bath averages of propagators, and cumu-
lant expansion, which are discussed in detail in Secs. I B
whereb andb' are the creation and annihilation operators ofand 11l B. The factorization propagator in EQ@.10 neglects
the  Morse  oscillator,  respectively, —and . the commutator betwee¥iy(t) and Vop(t). For the linear

=[8Deu/(h%p%)] Y2 is the anharmonicity parameter. The coupling, the commutator can be estimated explicitly as
spectrum of the Morse oscillator i€,=%wo[ (N+1/2)

— xe(n+1/2)?], with 1/(2x.) the number of bounded states , ,
in the potential well. For the Morse oscillator discussed here, [Vo(7).Vop(7) J<f(n)f(7 )2,U~wo Vxe (4.6
xe~0.004 27. The population relaxation rate is much
smaller than the pure-dephasing rate due to the large diffend is proportional to the square root of the anharmonicity.
ence between the frequency gap and the bath relaxation ratehe negligence of this term significantly reduces the accu-
Furthermore, the ratio betwedry, andVqp is proportional — racy of the perturbative approximation at large anharmonici-
to \/xe. With increasing anharmonicity, the contribution from ties. Furthermore, the commutator term includes the off-
pure dephasing becomes dominant; hence, the short-time ogiagonal coupling and is oscillatory. Similar to the
cillatory feature from the population relaxation is further population relaxation term, the commutator term contributes
suppressed and the absorption profile decays faster. significantly at short times and the contribution increases
with anharmonicity. The nonperturbative signal, which in-
cludes the commutatdiVp(t),Vop(t)] and cross terms be-
tween different propagators, is generally more coherent than
We now examine the different perturbation schemes othe perturbative approximations. The difference between the
VER and compare the absorption profiles at three differenhonperturbative and the perturbative results becomes more
anharmonicitieSy., 2xe, and 3y, in Fig. 9. The approxi- prominent at larger anharmonicities.

D. VER effects as a function of anharmonicity
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TABLE I. Relevant parameters of several VER systems.

O-H o-0° 1,° C-O stretch  HbCOF Hglf
Fundamental)o; (cm™%) 3400 2500 210.9 1714.4 1950 125
Overtone();, (cm™1) 3150 2350 207.2 1706.3 1924
Bath fluctuation( 5f2), /(uh w3) 0.0162 0.0148 0.0313 0.064 0.029 0.068
yit (fs) ~60 ~30 ~2500 34 500 65
y5 L (fs) ~1200  ~500 e 100 1200

30-H stretch in liquid DO in Refs. 52 and 55.62), is extracted from frequency gap fluctuations.

PO-D stretch in liquid HO in Ref. 56.( 5f2), is extracted from force-force correlation function simulation.
%, in Xenon solvent at 313 K and 3.0 g/énin Ref. 16.(5f2), is from force-force correlation function
simulation.

dCH,CO,H cyclic dimer in CC} solvent from Ref. 58(8f2), is extracted from frequency gap fluctuation
measurements.

Carbon monoxide hemoglobin in,D solvent from Ref. 59 5f2), is extracted from vibrational relaxation rate
measurements.

Hgl in ethanol from Ref. 60({5f2),, is extracted from force-force correlation function simulation.

The composite approximation of E@2.19 superim- bath fluctuation amplitude estimated from simulations and
poses the population relaxation profile from pump-probe exexperiment® =22 is (5f2),/(uhw3)~1.22<1072. For
periments onto the pure dephasing and accurately reproducssnplicity, we choose a biexponential friction kernel to re-
the asymmetric temporal profile at small anharmonicitiesflect the two time scales, i.e., (6f(7)5f(0)),

With increasing anharmonicity, the cross products of the off-=(5f2),[pe "'+ (1—p)e 2], where y;'=40fs and
diagonal couplings and diagonal couplings neglected fromy, =600 fs. The dissociation ener@y, and3 are obtained

the decomposition in Eq(2.19 contribute substantially to from the literatur€* and the parameter are summarized in
absorption profile. Hence, the deviation from the exact resulTable Il. Given the Morse parameters, the number of the
increases with anharmonicity. The composite approximatiofounded states in O—H bond is estimated to be 22, and the
of Eq. (2.23 assumes a Markovian rate for VER and yields aanharmonicity parameter jg.~0.0217.

symmetric absorption profile. For the anharmonicities w
studied, Eq(2.23 does not work as well as EQ.19. The
strong deviations of the approximation schemes from the ex- The second-order cumulant expansion yields almost
act result at large anharmonicities justify the need for thédentical temporal absorption profiles as the nonperturbative

eA. Solute-solvent coupling

nonperturbative treatment of vibrational line shapes. calculation due to the weak bath fluctuations and the asym-
metric envelop from non-Markovian VER effects is rather
V. O—H STRETCH IN D,0O ENVIRONMENTS weak. On the other hand, the Markovian approximation as-

. . sumes fast relaxation of bath and is only applicable to the
Now we demonstrate the importance of VER effects in 3ong-time limit whents> y71,, L. The presence of the slow

real system. The parameters of several VER systems are &gy ation in the friction kernel violates this assumption;

timated and listed in Table I. The dimensionless bath ﬂucwa&onsequently, the Markovian approximation overestimates

tlon'|s estlmatgd fror'\n/l S|mulat|on§ ?nd dfre?uency gap ﬂléc' e decay rate substantially and deviates significantly from
tuations assuming a Morse potential and a linear system-bafy,, ,q nonperturbative and the perturbative calculations.

coupling. Although real systems include vibration-rotation-l-hese findings are illustrated in Fig. (8 In Fourier space,

qoupllngs, |_ntermolecular_ couplings, a”?' other effects, th(?he weakly asymmetric envelop of the absorption profile is
I|_ne<_ar coupllng_assumed in our model sl SEIVES as a QUalfpfiected in the weak side bands of absorption spectrum. The
titative estimation of the VER effects. To illustrate the de—Side bands are generated by the solvent-induced multiple-
tailed contributions from VER, we perform a series of calcu—photon transitions and non-Markovian VER treatment.
lations for the O—H stretch in J® environment. The For the O—H bond, the anharmonicity paramegeis as

effecpve Hamiltonian is as_sumeq to be the same ad4£(). large as 0.0217. This is about 50 times larger than the Morse
and includes a Morse oscillator linearly coupled to a Gauss-

ian classical bath. The electronic field experienced by the

O—H stretch in the hydrogen-bond network is found to fol- TABLE II. Parameters of O—H stretch. The parameters of O—H stretch are
low underdamped motion by computer simulatié?rﬁz taken from Ref. 61 and the @ environmental parameterg , v,, and
photon-echo spectroscopfand other ultrafast infraredR) ~ (9f°) are estimated from literatui@efs. 19-22 and 55

measurementS~It is shown in the literaturé—?*>*~>%hat b 8.84<10 2 erg
the relaxation time is about 30—170 fs in the short-time pro- B 2.175¢10° cm !
file while the characteristic time of the long-time decay is “ 1.66<10"% g
roughly 0.5-2.0 ps. The two different time scales of the fric- wo_ 7.2916<10%s
tional kernel arise from a hydrogen-bond stretching at short " ggofsf
times and a collective relaxation at long times. The ratio of 2 S

. . p 0.8
the short-time relaxation rate to the O—H stretch frequency (562 uh o 0.0122

(~3430 cm'Y) is roughly 0.01-0.05. The dimensionless
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FIG. 10. Comparison of the nonperturbative calculation, the second-order
cumulant expansion, and the Markovian approximations for the O—H stretch ) . . . )
in D,O network. The parameters are summarized in Table II. The exacFIG' 11. Comparison of the perturbative calculations of the echo intensity
resuits of the nonperturbative calculation are plotted in solid lines, thel ecndt1:tw) (& without VER, (b) with Markovian VER, andc) with cumu-
second-order cumulant expansion results in dashed lines, and the Markovid@nt @pproximation of VER. The waiting timg, is varied, from top to
approximation in dotted lines. bottom,t,,=0,10,20,40,1000 fs. The unit of.,{t;,t,) is fs.

potential discussed in Sec. IV. The dimensionless bath flucAechd t1:twt2)
tuation is about 25 times smaller than that in Sec. IV. Due to _a _

~ n+1(ta—tg) —h* —h*
these two effects, a weakly asymmetric central peak of the e (exf =4t +tw) —hy (t2)

absorption spectrum compared to Fig. 5 is observed and the —hpa(ty+ta) —ha(t) ]+exd —hh 4 (ty)
perturbation result reproduces the absorption spectrum quite
accurately. —hy (ty+1t2) —hppa(tz) —hp(ty+t,)1)
Xexd —g* (t) +9(ty) — g% (t2) —g* (ty +ty)
B. VER effects in 3PEPS measurements ~9(ty )+ oM (Lt to)], (5.2

. Inl _the 3”PEP§ exg)e;]imerrl]t, the inhtegratekd F?‘qf’t_on(f'ChQ/hereg(t) is the line shape function arig,(t) characterizes
signal is collected and the photon-echo peak shift Is deterg, population relaxation contribution from the nth vibra-

min4e7d8 5‘33 a function of the. intermediate Waiting timetional state. In the limit,,=0, Eq.(5.2) reduces to the 2PE
by 7 I.:or'the purpose O.f |Ilustrat|'on, we consider the expression in Eq(2.18. If the off-diagonal solute-solvent
sa}me gxcnatllon path \évay d|5ﬁussed in ST'C.d” A. Assumlngnteraction is negligible compared to the pure dephasing, i.e.,
gfunction pulses, we derive the 3PE amplitude as h,(t)=~0, Eq.(5.2) reduces to the well-known result of three-

Accnd 11ty o) = ((e HEwF 1)y (gmiHtyy (g-iHist pulse p7hoton-echo response function for a two-level
A system®
X (e Lttt oy In Fig. 11, we plot the integrated photon-echo signal
e ity leendt1,tw) = S o Accnd t1,tw ,t2)|2dt, without VER, with the
((e Jn+a(€ )n Markovian VER rate, and with the cumulant approximation
><(e*iH(tW“Z))l(e*thl)LH)b, (5.1) of VER, respectively. Perturbative calculations are suffi-

ciently accurate here due to weak bath fluctuations. In Eq.
The integrated photon-echo signal idgcndts,tw) (5.2), the pure-dephasing terms containiggcancel out at
=[5 Accndti tw,t2)[?dt,.  ty is the dephasing time be- larget,, andl{t;,t,) reaches a stable nonzero function of
tween the first pulse and the second putggeis the waiting t; without VER, as shown in Fig. 1&4). VER essentially
time between the second and the third pulses, tarid the  decreases the signal amplitude during the waiting tigpe
rephasing time between the third and the probe pulses. FoAt short waiting times, the cumulant approximation of VER
lowing the same perturbation scheme discussed in Sec. Il Bijnposes small oscillation onto the integrated echo intensity,
we separate pure dephasing from the diagonal coupling anget does not affect the overall shape of the integrated photon-
VER from the off-diagonal coupling. The echo signal echo signal. The average population relaxation time is esti-
Acchdti ty,to) is given by mated to be Ky+ ke) “1~850 fs. At larget,,, the echo in-
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20 T T T T T T diagonal coupling and the pure-dephasing profile related to
(@) the diagonal coupling. This factorization scheme neglects the
1 commutator between the diagonal and the off-diagonal
coupling, an important contribution which increases with
anharmonicity. In the factorization scheme, we evaluate
the bath average for each propagator separately and
obtain the decomposition relation  Agpdt)
memn‘nﬂt\/ln,pop(t)ln+1,pop(t)An,n+l,de;(t)- Next, we apply

the second-order cumulant expansion to the decomposition
relation and derive the line shape functigft) and the popu-
lation relaxation functiorh,(t). The approximation scheme

— — - Markovian VER

(b) 1 of Eq. (2.19 directly superimposes the population relaxation

@ 1o - 1;"“’ d;':d ] profile from pump-probe experiments onto the pure-
= s let:: cuw:me ] dephasing profile and can reproduce the asymmetric absorp-

w2 100 7 tion profile. The approximation scheme of B.23 treats

= population relaxation with the corresponding Markovian
= BOF 7] limit while evaluating the pure dephasing at the second-order

I . | 1 cumulant. Due to the Markovian approximation to VER, Eq.

0 . 4 50 100 150 200 (2.23 gives a symmetric absorption profile without side

t - X ;
1 t (fs) bands in the absorption spectrum. In the VER rate descrip-

FIG. 12.(8) ]  the echo shifts with Markovian VER and with tion, the solvent relaxation is much slower than the vibra-
. . (@ Comparison of the echo shifts wit arkovian and witl . . .
cumulant VER(triangles. | o (t, ) is first smoothed with a sliding win- tional frequepcy gap and the line shapes are QOmlnated by
dow average of 10 s, and the peak shifts are then determined with Gaussi&@tre dephasing. QI’I t_he Othe_r hand, the MarlfOV'an treatment
fitting. (b) Determination of the peak shiff . of the VER contribution to line shapes requires a fast bath
relaxation which results in the inconsistency of the Markov-
) i i i ian VER rate. Finally, in the Markovian limit, the decompo-
tensity approaches zero with population relaxation, as showgtion, rejation recovers the well-known relation among the

in Figs. 11b) and 110),' which is completely different from ;- atigna| dephasing rate, the population relaxation rate, and
the case where VER is not accounted. the pure-dephasing rate.

A nontrivial VER contribution is demonstrated in the = zp4vtical solutions for a dissipative harmonic oscillator

peak Slh'fts Olf |_ntegrated echo S'gnil' (_30n8|der|gg thﬁ EXPerie|q guantitative estimation of the errors for different ap-
mental resolutions, we compute the integrated echo signaJ, ..\ ~+ion schemes. Iy po) e pot)  differs  from

with a sliding window average of 10 fs and fifcpdt1,ty) IAceasd)|? at second order of bath fluctuations
with a Gaussian function, as shown in Fig.(i2 It is clear <5?§‘>"" /(uhod). Consequently, the decomposition in Eq.
in Fig. 12a) that the peak shifts demonstrate different time .13)bis validO for weak solute—,solvent interactions and be-
scales and the peak-shift amplitude decreases due to the V

offects. The perturbation calculation with second-order cu mes less accurate for strong solute-solvent interactions or
' be : for vibrational relaxation systems with small frequency gaps.
mulant expansion yields small recurrence around 200 f

SWe also show that the approximation scheme of E2qL
which corresponds to the frequency difference of the funda- : . bp 9)

) overestimates while the second-order cumulant expansion al-
mental and the overton8 ,,—Qy;~250 cm *. The recur-

. i he eff f friction. For the dissipa-
rence cannot be reproduced with VER rates and therefore x{%/ays underestimates the effects of friction. For the dissipa

a clear indication of non-Markovian VER effects. The ex- ve harmonic potential, non- Markovi_an VER e_ffects gener-
perimentally observed recurrence at 150-170 fs includes a&i(e)ﬁlaesir:crin:itgec beannvc?sloias tr:Q ftrze ugwf-do(l)(;?na;?n ngszrrp?g:]
ditional contributions from the the underdamped frictionalg ectrum. The side bands areqsolve)r/n—induced mulg le-
kernel®® The small oscillation around 40 fs is attributed to >~ ' P

insufficient average from the narrow sliding window of 10 fs photon transitions and are absent in the Markovian VER

and Gaussian fitiing errors. Compared to the linear absor treatment. The non-Lorentzian peak in nonperturbative treat-

tion spectrum, the nonlinear 3PEPS is a more sensitive proqrggnts OT absprpti?n spe(?:frum arises from Icouplingsr?f bopu-
of the anharmonic effects. ation re gxatlons rom different ylbratlona states. The non-
perturbative VER effects manifest as a non-Lorentzian
broadening along the diagonal direction in the frequency do-
main photon-echo spectra. Quantum baths have more coher-
Nonperturbative and perturbative approaches are applieeince in the long-time profile but show less effects on the
to vibrational line shape calculations. The nonperturbativeshort-time profile and the coherence decreases with increas-
approach based on Feynman’s path integral formalism diing temperature.
rectly evaluates the quantum propagator in the interaction For the dissipative Morse potential, the interference of
picture. In the perturbative approach, the solute-solvent inpopulation relaxations from different vibrational states leads
teraction is first decomposed into diagonal and off-diagonato an asymmetric central peak in the absorption spectrum
elements and the absorption profile is factorized into twowith the asymmetry increasing with anharmonicity. The
parts: the population relaxation profile related to the off-second-order cumulant expansion and the Markovian ap-

VI. CONCLUSIONS
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proximation result in a symmetric Lorentzian spectrum butAPPENDIX A: ANHARMONICITY-INDUCED

can not reproduce vibrational line shapes correctly. When th®EPHASING

frequency gap is much larger than the bath relaxation rate,

pure dephasing dominates over population relaxation. In ad-

dition, the ratio between the diagonal coupling and the off-

diagpqal coupling is proportioqal tg the square root of a”harV(q—x)=V(q)+(a+a+)f(x)+ L(aa®+ata)e(x)+ - .

monicity; therefore, the contribution from pure dephasing (A1)

becomes dominant at large anharmonicities. All the three ap-

proximation schemes, the second-order cumulant expansiohiere,a anda” are the annihilation and creation operators

the composite schemes of E¢8.19 and(2.23, neglect the for the vibrational modef(x) and e(x) are functions of

cross terms of population relaxations from different vibra-Solvent coordinates. In the_above equ_ation, th_e first term _is a

tional states and the cross terms betw¥gnandVqp, and ~ constant, t_he secor_ld term is the off-dlagor_lal Ilnea_r coupling,

deviate significantly from exact results at large anharmonici@nd the third term is the diagonal quadratic coupling.

ties. Relatively speaking, EQR.19 is better than Eq(2.23 1. Harmonic oscillator

for all the anharmonicities we study. i , ) P
For an O—H stretch in hydrogen-bond environments, the 70" & harmonic oscillator withs=wo(aa” +a"a)/2,

Markovian approximation substantially overestimates the delV® explicitly evaluate the temporal profile of vibrational re-

cay rate from slow bath relaxation and results in significan{"’,‘x""t'Ofn r?nd cliephasllng frpm secpnd-_cIJ_Ldelr. cumulant rexpan-
deviation from both the nonperturbative and the perturbativeSlon of the S0 ute-so ve_nt mteractl_on. | he finear coupling to
calculations. Three-pulse photon-echo peak SIBREPS the solvent in Eq(A1) yields the vibrational relaxation rate
measurement provides a more sensitive nonlinear probe of K =k(n—n+1)+k(n—n—1)

the VER effects. In these experiments, both the integrated

3PE signal amplitude and the echo peak shifts become :|<n|a+|n+1|>|22fmeiwn’n+1<f(t)f(o)>bdt

smaller due to VER effects. More importantly, the non- 0

Markovian VER effects generate a small recurrence around

We now explore the molecular origin of pure dephasing.
aylor expansion of the solute-solvent interaction leads to

200 fs. This recurrence corresponds to the frequency differ- + |<n|a+|n_1|>|22fmefi‘”n—l,n<f(0)f(t))bdt,
ence of the fundament&l,; and the overtoné€l,,, a result 0
that cannot be reproduced by the Markovian VER rate. In (A2)

general, nonlinear spectroscopic measurements such as two-

pulse and three-pulse IR photon echos are more sensitive ¥herew,. 1, is the energy gap. The depletion rate out of the

the nonperturbative and non-Markovian VER effects tharth vibrational state can be separated into two parts: the rate

linear absorption. for increasing one vibrational lev&(n—n+1) and the rate
The nonperturbative approach proposed in this papelor decreasing one vibrational leve(n—n—1). The two

treats the solute-solvent interaction accurately. Combinefgte constants between a pair of adjacent levels satisfy the

with the explicit treatment of the solvent degree of freedom detailed balance relation.

the nonperturbative propagation method provides a numeri- For & linear harmonic oscillator, the frequeney is a

cal tool to calculate the vibrational spectrum in condensegonstant independent of the quantum level, therefore

phases. The various perturbation schemes allow us to anén-1n=®nn+1=wo. We can write k(n—n+1)=(n

lyze contributions from different relaxation mechanisms and™ 1)K+ andk(n—n—1)=nk_. Hence, the master equation

compare information contents from different spectroscopidOr Population relaxation is

measurements. In particular, the second-order cumulant ex:

pressions with both the pure-dephasing monggh} and the Ba=(+ 1K Pyyy+nk Py —Pol(n+ 1)k, + nki]l(AS)

VER momenth,(t) capture the essential features of vibra-

tional line shapes for most realistic systems. The nonpertuwhich givesgin=—(k_—k,)n+k, with n=3nP, the av-

bative approach is essential for quantitative comparison witlgrage excitation number. Thus, we recover the equilibrium

experimental measurements in systems with strong dissip@veragenq=k /(k_—k,) and the reactive rat&=k_

tive or non-Gaussian environments. —ky={¢(wo)/ e, which is exactly the classical relaxation

rate for the harmonic oscillator.

From the quadratic coupling, we can calculate the
dephasing rate
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Higher-order terms in the Taylor expansion of the solute- b+ b*~q1(a+a*)+,6'q§[%(a+a*)2—(a—a*)2],
solvent interaction potential yields off-diagonal terms such (AB)
asaa, a“aa, etc., which are responsible for multiphoton ] . 5
processes. They become less important as the resonant fi¢hich has the diagonal components wih=343q;. Based
quency is multiples of the single photon frequency and give@n the definition in Eq(A4), the pure-dephasing rate is
much weak resonance with the low frequency bath. The lin- o 2
ear terms can be incorporated in the first-order expression. k' =05 jo Re(e(t)e(O))bdt~(2—) kgT7(0),

M wo
(A9)

2. Anharmonic oscillator where 7(0)= [ n(t)dt is the integrated friction coefficient.

t he last expression is the classical limit of the dephasing rate
’_ﬁrst obtained by Oxtoby and later by many oth&&3To see
fhis, we expand the Morse potentiaV(q)= D.B%q?

For anharmonic oscillator, the energy gap decreases wi
the quantum number. The low frequency solvent has a stro
ger response at low frequency and the population relaxatio . . . S
rate increases with the quantum number. The dephasing rat:eDe'BS(erm and identify the cubic coefﬂuentf/c
is proportional to the zero frequency of the solvent spectrum 6?‘3'8; Thu4$, 6 _the Wellgsnown result  of k
and thus is dominated by the strength of the coupling matrix. fekeT7(0)/4u"wy s recovered. _ .

At larger vibrational quantum numbers, the width of vibra- It ShOUI_d be noted that the d(_aphasmg _rate differ by a
factor of 9 if the momentum term in E@A7) is neglected.

tional wave function broadens due to a stronger solute:"". th i foa+a* as th ling to th |
solvent coupling. Thus, the pure-dephasing rate increases (Lj{tsmg. € exact Torm foa-a - as the coupling fo he Sol-
vent, it is possible to introduce linear dissipation without

larger vibrational quantum numbers. ) . . :
For a harmonic oscillator, the linear coupling to the sol-Pure dephasing for an anharmonic oscillator. Such a coupling
s not only a nonlinear function of coordinate but also a

vent results in vibrational relaxation, whereas the quadrati s -
unction of momentum. We thus conclude that for realistic

solute-solvent coupling results in vibrational dephasing. Th T T .
situation is different for an anharmonic potential, for which systems the anharmonicity in vibrational modes contributes
' significantly to pure dephasing.

the vibrational coordinate has both an off-diagonal paxs,
giving rise to dissipation, and a diagonal pagt, giving rise

to pure dephasing. Formally, the solute coordinate OperatOAr\PPENDIX B: DISSIPATIVE HARMON LLATOR
can be expanded as - DISS ONIC OSC @)

COUPLED TO A QUANTUM BATH

=qQotq(at+tat)+ag,(aat+ata)l2
A= ot da )+ ) In this appendix, we extend the previous discussion in

+qs(aa+atat)/2+--, (A5)  Sec. Ill to a quantum bath. For simplicity, we assume the
same dissipative harmonic oscillator as in E841). In this
case, the quantum force-force correlation function is a com-
plex function, Cqp(t) =(f(t)f(0))=C,(t) —iCy(t), where
the real parC,(t) is an even function and the imaginary part

whereqq, d:, d,, 5 are expansion coefficients. Combined
with Eq. (A1), the diagonal part of the solute-solvent inter-
action becomes

aa*+a*a C,(t) is an odd function. The Fourier transform of the force-
e + 2\/) 4. 2 ) ~ .
Vo 2 (7 G20V +auV) ' (AB) force correlation function iqum(w)=f°iwe'“’thm(t)dt
which defines the quadratic fluctuating foree=(—q,9v = C1(®@)—iCy(w). The fluctuation-dissipation theorem re-

+9,02V). It is well-known that the pure dephasing has two duires

mechanisms: the quadratic coupling to the solvent and the _ Bliw -

anharmonicity in the solute vibrational mode. Below we — —iCy(w)=tanh—— Cy(w), (BY)
demonstrate that these two mechanisms are essentially

equivalent. whereC,(w) is purely imaginary sinc€,(t) is an odd func-

We now derive the anharmonicity-induced dephasingion. In the high temperature limitC;(w)— C () and
rate for the Morse potential(q) =Dq(1—e #9)2, whereD, C,(w)—0.
is the dissociation energy amlthe inverse length scale. The Let us consider a quantum bath consisting of a number
fundamental frequency of the Morse oscillator i, ¢t harmonic oscillatordH, =3 (p%/2m; + m »?x%/2) and a
=.\/2DeBZ/,u, and the total nllmeer of the bound stateBi®  pijinear system-bath couplirigjsb=] _qujgj;(j "Por the har-
with N+1=y8Deu/B°=xe ~. We use the following rela- monic bath, the quantum force-force correlation function is

tion from Refs. 50 and 51: explicitly given as
N+1 B 2 fi Bhw; o
b+b+~W 1-e Bq—m(eﬁquwzeﬁq) Cqm(t):Ej: Mo c?| coth 5 L coswjt—i sinwjt|,
(B2
—-1/2 -1/ 1 2~2 ’82p2 H H :
~Xe PAd— Xe > B+ ——|, (A7) which reduces to the classical force-force correlation func-
K @o tion Cy(t)=3;c’/Bm;w! coswt in the high temperature

whereN+1~N for large N. The second-order contribution limit. Completing the Fourier transforms, one can readily
expressed with the creation and annihilation operators yieldshow that®®*
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