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A general formulation of nonperturbative quantum dynamics of solutes in a condensed phase is
proposed to calculate linear and nonlinear vibrational line shapes. In the weak solute-solvent
interaction limit, the temporal absorption profile can be approximately factorized into the population
relaxation profile from the off-diagonal coupling and the pure-dephasing profile from the diagonal
coupling. The strength of dissipation and the anharmonicity-induced dephasing rate are derived in
Appendix A. The vibrational energy relaxation~VER! rate is negligible for slow solvent
fluctuations, yet it does not justify the Markovian treatment of off-diagonal contributions to
vibrational line shapes. Non-Markovian VER effects are manifested as asymmetric envelops in the
temporal absorption profile, or equivalently as side bands in the frequency domain absorption
spectrum. The side bands are solvent-induced multiple-photon effects which are absent in the
Markovian VER treatment. Exact path integral calculations yield non-Lorentzian central peaks in
absorption spectrum resulting from couplings between population relaxations of different
vibrational states. These predictions cannot be reproduced by the perturbative or the Markovian
approximations. For anharmonic potentials, the absorption spectrum shows asymmetric central
peaks and the asymmetry increases with anharmonicity. At large anharmonicities, all the
approximation schemes break down and a full nonperturbative path integral calculation that
explicitly accounts for the exact VER effects is needed. A numerical analysis of the O–H stretch of
HOD in D2O solvent reveals that the non-Markovian VER effects generate a small recurrence of the
echo peak shift around 200 fs, which cannot be reproduced with a Markovian VER rate. In general,
the nonperturbative and non-Markovian VER contributions have a stronger effect on nonlinear
vibrational line shapes than on linear absorption. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1812748#

I. INTRODUCTION

Vibrational phase and energy relaxation of molecules in
solution plays an essential role in chemical and biological
processes. The energy transfer in and out of vibrational
modes is closely related to reaction dynamics in condensed
phases. To probe the solute-solvent interactions, extensive
experimental studies have been carried out using time re-
solved laser spectroscopy, in particular, ultrafast laser
spectroscopy.1–12 Here we consider a simple model of vibra-
tional relaxation of a dilute diatomic solute in a solvent. For
this system, the Hamiltonian can be separated into solute,
solvent, and solute-solvent interaction contributions. The
standard approach to vibrational phase and energy relaxation
is based on perturbation theory and Fermi’s golden rule.13 In
this approach, the vibrational energy relaxation~VER! rate
constant between a pair of system eigenstates is proportional
to the Fourier transform of the quantum force-force correla-
tion function calculated at the corresponding energy gap. In
reality, the classical force correlation function from conven-
tional molecular dynamics simulations is often used.14–23

This approach does not yield quantitative agreement with
experimental results although semiempirical quantum correc-
tion factors can significantly improve the agreement.16,18,24

Another standard approach uses a classical description of the
solute oscillator and a generalized Langevin equation to de-
scribe the coupling of the vibration to the bath.25,26 This ap-
proach is valid at high temperatures or at low frequencies. In
the limit of strong solute-solvent interactions, the contribu-
tion of the higher-order perturbations is crucial and these
approaches break down.

Optical line shapes in condensed phases have been the
subject of extensive experimental and theoretical studies.
Kubo, Anderson and many others introduced the stochastic
line shape theory to study two-level electronic trans-
itions.27–29 Modern femtosecond laser techniques can probe
the intermolecular and intramolecular vibrations directly.
Spectral line shapes from nonlinear spectroscopy, such as
hole burning, photon-echo, pump-probe, provide important
information of dynamical processes in condensed phases.
Mukamel and co-workers introduced the Brownian oscillator
model to describe the coupling between a two-level system
and a stochastic bath. The theoretical formulation they devel-
oped have been applied to interpret a wide range of spectro-
scopic experiments.4,12,30–34Recently, Cho, Sung, and Silbey
have extended the Brownian oscillator model to a multilevel
system coupled to a bath with arbitrary time scales.35,36Con-
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tinuous efforts by Hynes, Skinner, Stratt, and many others
have been devoted to calculate the line shape function using
liquid theory and simulations.15–22 Yet, these theoretical
models consider pure dephasing without a full account of
VER contributions. Some recent studies include VER effects
in the Markovian limit.

It is crucial to establish a reliable method that can accu-
rately calculate vibrational line shapes and precisely predict
the VER effects without the Gaussian Markovian assump-
tions underlying the master equation approach.37,38 To ad-
dress solute-solvent interactions and maintain a quantum de-
scription, the vibrational degree of freedom has to be treated
exactly. In this paper, we propose a nonperturbative approach
based on Feynman’s path integral,39 and systematically in-
vestigate the VER effects in vibrational line shapes. In the
nonperturbative approach, the wave functions are propagated
through the solute eigenstate space under the influence of the
solvent. The wave function is then projected to the specified
state using the dipole operator, and computed signals of
spectroscopic measurements are averaged over all possible
trajectories of bath fluctuations. For the dissipative harmonic
oscillator, the nonperturbative approach gives analytical ex-
pressions and quantifies the errors introduced by different
approximation schemes of VER. For the dissipative Morse
potential, the nonperturbative approach demonstrates the
VER effects as a function of anharmonicity. The strength of
dissipation and the anharmonicity-induced dephasing rate are
derived in Appendix A. In the present analysis, we only con-
sider the fundamental transition between the ground and the
first excited states. A different paper will discuss spectra of
overtones and combinations inABA molecules.40

The nonperturbative formulation of quantum dynamics
we propose makes a few predictions relevant to experiments;
which are as follows:

~1! The non-Markovian effects of VER generate asym-
metric envelops in the temporal absorption profile, which are
also manifested as side bands in the absorption spectrum.

~2! Nonperturbative calculations yield non-Lorentzian
peaks in absorption spectrum. The peaks are rationalized in
terms of the couplings of population relaxations from differ-
ent vibrational states and provide an alternative explanation
of non-Lorentzian line shapes.41

~3! Nonperturbative VER effects lead to non-Lorentzian
broadening along the diagonal direction in the frequency do-
main photon-echo spectra. This phenomenon is different
from the pure-dephasing-induced line broadening discussed
in the literature.

~4! Quantum baths generate more coherence in the long-
time profile but have less effects on the short-time profile.

~5! For anharmonic oscillators, the absorption spectrum
has asymmetric central peaks, and the asymmetry increases
with anharmonicity.

~6! For O–H stretch in D2O environments, non-
Markovian VER effects generate a small recurrence in the
three-pulse photon-echo peak shift~3PEPS!.

The rest of the paper is organized as follows: In Sec. II,
we discuss the nonperturbative and perturbative calculations
of vibrational line shapes, including vibrational absorption,

population relaxation, and photon echo. Using a perturbative
expansion, the solute-solvent interaction is decomposed into
the diagonal and off-diagonal components in the solute
eigen-state space, which are responsible for phase relaxation
and population relaxation, respectively. In the limit of weak
solute-solvent interaction, the temporal absorption profile
can be approximately factorized into the population relax-
ation profile in pump-probe experiments and the pure-
dephasing profile. The well-known relation for the dephasing
rate, the population relaxation rate and the pure-dephasing
rate is recovered under the Markovian approximation. In
Sec. III, we apply both the perturbative and nonperturbative
methods to a harmonic oscillator linearly coupled to a Gauss-
ian bath in the absence of pure dephasing. The errors intro-
duced by different approximation schemes are examined
both analytically and numerically. Non-Markovian VER ef-
fects generate asymmetric envelops in the time-domain ab-
sorption signal which are manifested as side bands in the
frequency domain spectrum. These side bands are solvent-
induced multiple-photon transitions and only present in the
non-Markovian treatment. The nonperturbative VER effects
result in non-Lorentzian central peaks. In Sec. IV, we nu-
merically investigate the anharmonic effects in a dissipative
Morse oscillator spectra, which display asymmetric line
shapes. The perturbation schemes neglect the cross terms of
population relaxation and pure dephasing, and therefore de-
viate significantly from the exact results at large anharmo-
nicities. In Sec. V, we examine the VER effects on 3PEPS
experiments in a hydrogen-bonded system. The nonlinear
3PEPS measurement is a sensitive probe of the non-
Markovian VER effects. Numerical calculations reveal a
small recurrence at 200 fs, which cannot be reproduced by
the Markovian VER rate. Section VI concludes our analysis.

II. GENERAL FORMALISM

For chemical reactions occurring in solutions, solvent
molecules play an essential role in the dynamics of the sol-
ute. In the present paper, we consider a solute molecule with
one vibrational degree of freedom embedded in an environ-
ment of solvent atoms or molecules. The complete Hamil-
tonian is

H5Hs1Hb1Vsb , ~2.1!

where the vibrational mode is referred to as the systemHs ,
all the remaining degrees of freedom are considered as the
bath Hb , and the coupling between them is the solute-
solvent interactionVsb . The system Hamiltonian is diagonal-
ized by a set of eigenstatesun& with eigenenergiesEn . In the
interaction picture, the solute-solvent interaction becomes a
time-dependent operatorV(t)5ei (Hs1Hb)tVsbe

2 i (Hs1Hb)t.
The central quantity in calculating vibrational spectra is the
propagator given in the interaction picture

^nuG~ t !un&5^nue2 iHt un&

5e2 iEnte2 iH bt

3K T expS 2 i E
0

t

V(t)dt D L
n

, ~2.2!
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where T is the chronological ordering operator, and^¯&n

5^nu¯un& stands for the expectation value of the nth vibra-
tional state. Unless specified,\ is unity implicitly. In the
nonperturbative approach, the time-dependent solute-solvent
interactionV(t) is evaluated explicitly at every time step
during the course of wave function propagation. Hereun&
stands for the unperturbed system basis set while in real sys-
tems the basis set is mixed with system-bath couplings. This
mixing of wave functions is inconsequential for the standard
VER rate treatment, but has substantial effects on nonpertur-
bative VER treatment. In gas phase, onlyDn51 transition is
allowed for linear dipole operator if the system is initially in
ground state. However, the system-bath coupling modifies
the dipole interaction operator in the system basis set and
induces multiple-photon transitions. As a result, the central
peak in the absorption line shape is non-Lorentzian, and
there are also solvent-induced side bands corresponding to
Dn50, 2,... .

A. Formal definitions of vibrational line shapes

The propagator in Eq.~2.2! is used to derive expressions
of vibrational spectroscopic measurements, in particular, ab-
sorption spectrum, pump-probe signals, and photon echo.
These expressions not only are useful for present analysis,
but also provide the basis for more reliable numerical simu-
lations. We will demonstrate the latter aspect in future pub-
lications. Here we assume that each application of the laser
field results in one vibrational transition, so that the excita-
tion pathway can be established unambiguously.

1. Absorption spectrum

Among vibrational spectroscopic measurements, absorp-
tion is one of the most important probes of relaxation. The
time-domain absorption amplitude is defined as

Aabs~ t !5(
n

^^n11uG~ t !un11&rn^nuG~ t !un&†&b

5(
n

rnAn,n11,abs~ t !, ~2.3!

where ^¯)b represents the thermal average over the bath
degrees of freedom and(n is the sum over the solute vibra-
tional degree of freedom. Initially the bath is in thermal
equilibrium. The real part of the absorption amplitude is re-
lated to the free-induction decay signal, and the Fourier
transform of absorption amplitude yields the absorption
spectrum

Aabs~v!5Re E
0

`

Aabs~ t !eivtdt, ~2.4!

which can be measured by the Fourier transformed infrared
~IR! spectroscopy.

2. Pump-probe signal

In a pump-probe experiment, one molecule is excited
vibrationally and the subsequent vibrational relaxation trans-
fers vibrational energy to other degrees of freedom of the
original excited molecule and its neighboring molecules.

Here we treat the population transfer from the nth to (n
11)th vibrational states. The pump-probe signal is given as

I pp5(
n

rn^u^n11uG~ t !un11&u2&b . ~2.5!

For later applications, we also write the pump-probe signal
as I pp(t)5(nrnI n11,pop(t), with I n,pop the population relax-
ation profile defined as

I n,pop~ t !5^u^nuG~ t !un&u2&b . ~2.6!

The infrared-Raman technique developed by Laubereau and
Kaiser,1 which uses resonant vibrational pumping by a tun-
able mid-IR pulse and a subsequent probe by an incoherent
anti-Stokes Raman, provides a powerful tool to study VER.
Recently advances in ultrafast laser technology allows the IR
technique to reach its full potential. Yet, it is important to
note that the anti-Stokes Raman spectra also include other
excitations generated by vibration-rotation couplings not in-
cluded in our model.

3. Photon echo

The photon-echo measurement is a sensitive probe of
homogeneous dephasing and an important example of non-
linear spectroscopy. In two-pulse photon-echo~2PE! experi-
ments, two coherent laser pulses interact with a sample at a
well-controlled time separation. The first pulse creates a co-
herent ensemble of atomic or molecular polarization, which
dephases during the waiting time interval. The second pulse
partially rephases the lost coherence and creates an echo sig-
nal. The simple version of a photon-echo experiment is a
resonant third-order process with zero intermediate waiting
time. The three-pulse photon-echo~3PE! measurement with
a finite waiting time is discussed later in Sec. V. Let us as-
sume that the spectral resolution is sufficiently high to re-
solve all the possible excitation pathways in a molecular sys-
tem. For the purpose of demonstration, we consider a simple
excitation pathway,rnn→rn11,n→rn,n11→rnn , which is
described by

Aecho~ t1 ,t2!5^^nue2 iHt 2un&^n11ue2 iHt 1un11&

3^nue2 iHt 1un&†^n11ue2 iHt 2un11&†&b .

~2.7!

By carrying out a series of detection experiments, one can
obtain the real part, the imaginary part, or the amplitude of
Aecho(t1 ,t2) in Eq. ~2.7!, respectively.

4. Path integral evaluation

The expressions of the vibrational spectroscopic mea-
surements provide the basis for numerical evaluations. In
these calculations, we generate time trajectories of system-
bath interactionV(t) and evaluate the propagatorG(t) along
each trajectory. Then, we calculate the spectroscopic signals
and average over all the trajectories. For a classical bath, one
can exactly simulate the bath degree of freedom using con-
ventional molecular dynamics techniques, generate a time-
dependent force through the system-bath coupling, and
propagate the quantum vibrational degree of freedom ex-

11252 J. Chem. Phys., Vol. 121, No. 22, 8 December 2004 Yang, Shao, and Cao

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



actly. Due to the intrinsic complexity of quantum baths, an
exact simulation of the bath modes is not yet available.42 But
for vibrational line shapes, as shown later, a quantum repre-
sentation of bath degrees of freedom is not necessary at room
temperatures. Hence, we can propagate quantum vibrational
degree of freedom under classical force of the bath. Another
technique, the surface hopping method, is used widely to
treat a classical anharmonic bath coupled to a quantum
system.43–47 In the present paper we focus on a Gaussian
bath linearly coupled to the system. Linearized dissipative
models have been applied extensively to study dynamic pro-
cesses in condensed phases, including activated dynamics,
electron and proton transfer, diffusion, and vibrational en-
ergy relaxation. For a Gaussian bath, several numerical tech-
niques can be applied, which are as follows.

~1! For a Uhlenbeck process, the force-force correlation
function is exponential, i. e.,C(t)5^d f 2&be2gt. The propa-
gation of random force is a Markovian process satisfying
Gf( f ,tu f 8,t8)5*2`

` Gf( f ,tu f 9,t9)Gf( f 9,t9u f 8,t8)d f9, where
the Green’s function of random force is a Gaussian distribu-
tion

Gf~ f ,tu f 8,t8!5@2p^d f 2&b~12e22g(t2t8)!#21/2

3expF2
~ f 2 f 8e2g(t2t8)!2

2^d f 2&b~12e22g(t2t8)!
G .

~2.8!

The equilibrium distribution of the random force isPeq( f )
5@2p^d f 2&b#21/2 exp@2f2/2^d f 2&b#, assuming that the
random force has a zero mean. With the Markovian property,
one can generate a number of random force trajectories by
first generatingf (t0) from the equilibrium distribution and
then using Eq.~2.8! to generate the random forces at subse-
quent time steps. The quantum system of vibrational
degrees of freedom is propagated along each trajectory, and
vibrational line shapes are calculated exactly. The bath aver-
age is obtained through an average over all the trajectories.

~2! For a set of linearly coupled harmonic oscillators,
one can always identify the normal coordinates of the bath
through an orthogonal transform, and each normal mode is a
Uhlenbeck process. For example, we use biexponential fric-
tion kernel in the O–H relaxation. Hence, one can first gen-
erate the normal coordinates using the method in~1! and
then generate the bath modes using the orthogonal transform.

~3! For a quantum Gaussian bath, integration of the bath
modes leads to influence functionals which couples the sys-
tem variables at different times. As a numerical technique,
the influence functional formalism48 becomes tedious when
multiple excitations are involved. As an alternative, the
method proposed by Cao, Ungar, and Voth49 samples the
Gaussian random force directly without introducing the in-
fluence functional formalism and propagates the system un-
der the influence of quantum forces. This method is particu-
larly adequate for complicated multiple-time propagation of
a vibrational system.

B. Perturbative expressions: Factorization
and cumulant expansion
1. Factorization

In the perturbative approach, we decompose the system-
bath couplingV(t) into the diagonal and the off-diagonal
operators in the vibrational eigenspace, giving

VD~ t !5(
n

^V~ t !&nun&^nu ~2.9a!

and

VOD~ t !5V~ t !2VD~ t !. ~2.9b!

The corresponding propagator can be written as

^nuG~ t !un&'e2 iEnte2 iH bt^nuT expS 2 i E
0

t

VD(t)dt D
3T expS 2 i E

0

t

VOD(t)dt D un&

5e2 iEnte2 iH btT expS 2 i E
0

t

^VD(t)&ndt D
3K T expS 2 i E

0

t

VOD(t)dt D L
n

. ~2.10!

In Eq. ~2.10!, we decompose the exponential function of two
time-dependent operators into the product of the two corre-
sponding exponentials, which is valid only ifVD(t) and
VOD(t) commute. The approximation neglects the contribu-
tion from @VD(t),VOD(t)#, which is generally nonzero for
anharmonic potentials. In Sec. IV we demonstrate quantita-
tively that @VD(t),VOD(t)# increases with anharmonicity and
results in large deviations between the perturbative and the
exact results.

We now apply the decomposition in Eq.~2.10! to the
vibrational line shapes in Sec. II A and derive the perturba-
tive expressions for the temporal absorption profile, popula-
tion relaxation profile, and photon echo. The absorption am-
plitude in Eq.~2.3! can be rewritten as

An,n11,abs~ t !'e2 iVn,n11tK T expS 2 i E
0

t

vn,n11(t)dt D L K T expS 2 i E
0

t

VOD(t)dt D L
n11

K T expS 2 i E
0

t

VOD(t)dt D L
n

†L
b

'e2 iVn,n11tK T expS 2 i E
0

t

vn,n11(t)dt D L
b
K K T expS E

0

t

VOD(t)dt D L
n11

L
b

K K T expS E
0

t

VOD(t)dt D L
n
L

b

†

,

~2.11!
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where Vn,n115En112En is the frequency gap and
vn,n11(t)5^VD(t)&n112^VD(t)&n* is the diagonal fre-
quency difference induced by the solute-solvent interaction.
In Eq. ~2.11!, we first decouple the bath averages of the
diagonal and the off-diagonal parts, then perform the bath
average on each propagator separately. As discussed in Eq.
~2.10!, the first approximation neglects the commutator be-
tween VD(t) and VOD(t8). The second approximation ne-
glects the cross terms between the propagators and is correct
only for weak solute-solvent interactions.

With the propagator in Eq.~2.10!, the population relax-
ation profile in Eq.~2.6! reduces to

I n,pop~ t !'K U^nuT expS 2 i E
0

t

VOD(t)dt D un&U2L
b

'K ^nuexpS 2 i E
0

t

VOD(t)dt D un&L
b

3K ^nuexpS 2 i E
0

t

VOD(t)dt D un&†L
b

5U^nu K expS 2 i E
0

t

VOD(t)dt D L
b

un&U2

. ~2.12!

Comparing the above equation with Eq.~2.11!, we realize
that

An,n11,abs~ t !'eiVn,n11tAI n,pop~ t !I n11,pop~ t !

3An,n11,dep~ t !, ~2.13!

where An,n11,dep(t)5^exp@2i*0
t vn,n11(t)dt#&b is the contri-

bution from pure dephasing. Equation~2.13! demonstrates
that temporal absorption profile can be approximately factor-
ized into the population relaxation profile and the pure-
dephasing profile. As a result, the off-diagonal part of the
interaction,VOD(t), contributes to population relaxation, and
the diagonal part of the interaction,VD(t), contributes to
pure dephasing.

Inserting Eq.~2.10! into the photon-echo expression de-
fined in Eq. ~2.7! and following the same factorization
scheme as Eq.~2.11!, we arrive at

Aecho~ t1 ,t2!'eiVn,n11(t22t1)K FexpF S i E
t1

t11t2
vn,n11* (t)dt D 2S i E

0

t1
vn,n11(t)dt D G K T expS 2 i E

t1

t11t2
VOD(t)dt D L

n

3K T expS 2 i E
0

t1
VOD(t)dt D L

n11
K T expS 2 i E

0

t1
VOD(t)dt D L

n

†K T expS 2 i E
t1

t11t2
VOD(t)dt D L

n11

† G L
b

'eiVn,n11(t22t1)K expF S i E
t1

t11t2
vn,n11(t)dt D 2S E

0

t1
vn,n11(t)dt D G L

b
K K T expS 2 i E

t1

t11t2
VOD(t)dt D L

n
L

b

3K K T expS 2 i E
0

t1
VOD(t)dt D L

n11
L

b

K K T expS 2 i E
0

t1
VOD(t)dt D L

n
L

b

†

3K K T expS 2 i E
t1

t11t2
VOD(t)dt D L

n11
L

b

†

, ~2.14!

where the photon-echo signal is also decomposed into the
population relaxation contribution from the off-diagonal in-
teraction and the pure-dephasing contribution from the diag-
onal interaction.

2. Second-order cumulant expansion

To further simplify the analysis, we truncate the solute-
solvent interaction to second order of bath fluctuation, which
is valid for weak solute-solvent interactions or fast bath re-
laxations. First, the temporal profile for population relaxation
from the nth vibrational state is approximated by taking the
bath averagê¯&b for each propagator in Eq.~2.12! sepa-
rately, giving

I n,pop~ t !'U^nu K expS 2 i E
0

t

VOD(t)dt D L
b

un&U2

'uexp@2hn~ t !#u2, ~2.15!

wherehn(t)5*0
t *0

t^nu^VOD(t1)VOD(t2)&bun&dt1 dt2 charac-
terizes the population relaxation from the nth vibrational
state. The last approximation switches the exponential func-
tion and quantum expectation value after invoking the cumu-
lant expansion, and assumes a diagonal form of
^VOD(t1)VOD(t2)&b while neglecting its off-diagonal ele-
ments.

Similarly, application of the second-order cumulant ex-
pansion to the pure-dephasing profile leads to
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An,n11,dep~ t !5K expF2 i E
0

t

vn,n11~t!dtG L
b

'exp@2 i ^vn,n11&bt2g~ t !#, ~2.16!

where g(t)5*0
t *0

t^dvn,n11(t1)dvn,n11(t2)&bdt1 dt2 is the
line shape function and̂vn,n11&b is the Stokes shift. Com-
bining the population relaxation profile and the pure-
dephasing signal, the absorption amplitude in Eq.~2.11! re-
duces to

An,n11,abs~ t !'e2 iVn,n11t exp@2 i ^vn,n11&bt2g~ t !

2hn* ~ t !2hn11~ t !#. ~2.17!

The 2PE signal in Eq.~2.14! after the second-order cu-
mulant expansion becomes

Aecho~ t1 ,t2!'eiVn,n11(t22t1) exp@ i ^vn,n11&b~ t22t1!

22g* ~ t1!2g~ t2!2g* ~ t2!1g* ~ t11t2!#

3exp@2hn11~ t1!2hn~ t2!2hn* ~ t1!

2hn11* ~ t2!#. ~2.18!

In the limit hn(t)→0, Eq. ~2.18! reduces to the well-known
2PE expression for a two-level system.4 A generalization of
Eq. ~2.18! to an arbitrary number of vibrational states in the
limit of hn(t)→0 was recently proposed by Sung and
Silbey.36 Their treatment includes diagonal matrix elements
only while VER effects are absent.

In many cases, composite approximation schemes are
adopted to explain the vibrational measurements. The de-
composition relation in Eq.~2.13! and the second-order cu-
mulant expansion yield

An,n11,abs~ t !'@ I n,pop~ t !I n11,pop~ t !#1/2

3exp@2 iVn,n11t2 i ^vn,n11&bt2g~ t !#.

~2.19!

The advantage of this decomposition is that the population
relaxation profile is measured from pump-probe experiments
and contains nonperturbative information of VER. As we
will demonstrate later that the decomposition yields results
close to nonperturbative calculations, accurately reproducing
the short-time oscillations. But this approximation neglects
the cross terms between the population relaxations from the
nth and the (n11)th states and the coupling between popu-
lation relaxation and pure dephasing, and does not contain
any phase information of VER. Because of these approxima-
tions, Eq. ~2.19! cannot reproduce asymmetric absorption
spectra for anharmonic systems.

C. Markovian approximation

The essence of Markovian approximation is that the re-
laxation of the vibrational degree of freedom is much slower
than the relaxation of bath modes. Under the Markovian
limit, the line shape function and the population relaxation
exponent are linearly increasing with time, i.e.,

g~ t !'Gn,n118 t, ~2.20a!

and

hn~ t !'
Gn

2
t, ~2.20b!

where Gn,n118 5*0
`^dvn,n11(t)dvn,n11(0)&bdt and Gn

52*0
`^nu^VOD(t)VOD(0)&bun&dt are usually complex, with

the real part being the population relaxation rate and the
imaginary part being the frequency shift. Consequently, the
population relaxation profile is approximated by an exponen-
tial function I n,pop(t)'exp@2Re(Gn)t#, and the pure-
dephasing profile becomesAn,n11,dep(t)'exp@2Gn,n118 t
2i^vn,n11&bt#. In Eq. ~2.17!, the absorption profile is approxi-
mated byAn,n11,abs(t)'exp@2iVn,n112i^vn,n11&bt2Gn,n11t#
with Gn,n115(Gn* 1Gn11)/21Gn,n118 . Thus, the time-
dependent expression of Eq.~2.13! recovers the well-known
relation

kn,n115
kn1kn11

2
1kn,n118 , ~2.21!

where kn5Re(Gn) is the population relaxation rate,kn,n118
5Re(Gn,n118 ) is the pure-dephasing rate, andkn,n11

5Re(Gn,n11) is the dephasing rate. Under the Markovian ap-
proximation, the photon-echo signal is readily simplified as

Aecho~ t1 ,t2!'eiVn,n11(t22t1)exp@2 i ^vn,n11&b~ t22t1!

2Gn,n118 t22Gn,n118* t1#

3expF2
Gn111Gn*

2
t12

Gn1Gn11*

2
t2G .
~2.22!

Considering that pure dephasing in anharmonic poten-
tials is much faster than population relaxation, we can ap-
proximate the population relaxation with the Markovian rate
and the pure-dephasing signal with second-order cumulant
expansion

An,n11,abs~ t !'e2 iVn,n11t expF2 i ^vn,n11&bt2g~ t !

2
Gn*

2
t2

Gn11

2
tG . ~2.23!

For the dissipative harmonic oscillator discussed later in Sec.
IV, the diagonal couplings are 0 andAn,n11,dep(t)51, and
equation~2.23! becomes identical to the Markovian approxi-
mation. For a dissipative Morse potential in Sec. V, the de-
viations of Eqs.~2.19! and ~2.23! from the nonperturbative
results increase with anharmonicity.

D. Inconsistency of the Markovian rate
approximation of VER

Let us now discuss the physical meaning ofhn(t). Usu-
ally the solvent relaxation rateg, the VER rate, pure-
dephasing rate, and the vibrational frequency satisfy
Vn,n11.kn,n118 .kn.g. The population relaxation process
occurs through the resonance between the vibrational fre-
quency and the bath spectrum while the dephasing rate cor-
responds to the bath spectrum at zero frequency. Given the
fact thatg!Vn,n11 , vibrational relaxation is much slower
than pure dephasing, hencekn,n118 @kn and the line shapes
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are usually dominated by pure dephasing. In this case, vibra-
tional relaxation is either ignored or approximated with a
Markovian rate. However, this argument is not self-
consistent because the Markovian rate approximation is only
valid at sufficient long time while the vibrational line shape
generally depends on the full time history of the off-diagonal
contribution.

To illustrate this point, we consider a linear system-bath
coupling f (t)q, which will be further investigated in later
sections. The second-order cumulant expansion gives

hn~ t !5 (
mÞn

^d f 2&bqnm
2

\2 E
0

t

~ t2t!e2gtcosVmntdt. ~2.24!

In the limit of a fast bath, hn(t)
'gt((mÞn^d f 2&bqnm

2 /\2Vmn
2 ) and yields a Markovian rate.

In the limit of a frozen bath g→0, hn(t)
'(mÞn^d f 2&bqnm

2 (12cosVmnt)/\
2Vmn

2 , which leads to side
bands withDv5Vmn around the central peak in the vibra-
tional line shapes. As we mentioned in Sec. II, the side bands
are induced by the system-bath coupling. Apparentlyhn(t) is
intrinsically oscillatory over the complete time domain while
the Markovian approximation implieshn(t)→0 andkn→0,
which is obviously inadequate to describe the VER contribu-
tion. The slow bath assumption renders the Markovian de-
scription of the VER effects inadequate.

III. ANALYTICAL SOLUTIONS OF DISSIPATIVE
HARMONIC OSCILLATOR

For the purpose of illustration, we first model the vibra-
tional degree of freedom as a harmonic oscillator linearly

coupled to a classical bath. The classical bath assumption is
often adopted because one can always separate the degrees
of freedom into those with low frequencies\v<kBT, which
may be treated classically as the bath, and those with high
frequencies\v.kBT, which must be treated quantum me-
chanically as the system. The Hamiltonian is thus given by

H5
p2

2m
1

1

2
v0

2q21 f ~ t !q, ~3.1!

where f (t) is a Gaussian random force resulting from the
bath degree of freedom. The bath relaxation is described by
the friction kernelCcl(t)5^d f (t)d f (0)&b , where the sub-
script represents a classical bath. Quantum effects of the
Gaussian bath are discussed in Sec. III E. In numerical cal-
culations, we assume an exponentially decaying friction ker-
nel, Ccl(t)5^d f 2&b exp@2gt#. ^d f 2&b is the mean square
fluctuation of the random force and is a probe of the average
strength of the solute-solvent interaction. The linear solute-
solvent coupling here has no diagonal contribution; thus,
there is no pure-dephasing contribution and all the vibra-
tional line shapes are generated by VER. The analytical so-
lutions offer us a good benchmark of the accuracies of vari-
ous approximations.

A. Exact path integral calculation

Now we discuss the exact calculations of the vibrational
line shapes defined in Sec. II. The propagator of the forced
harmonic oscillator is39

G~q2 ,t;q1 ,0!5A mv0

2p i\ sin v0t
expH imv0

2\ sin v0t
@~q2

21q1
2!cosv0t22q1q2#J

3expH 2
imv0

2\ sin v0t F 2q1

mv0
E

0

t

f ~t!sin v0~ t2t!dt1
2q2

mv0
E

0

t

f ~t!sin v0tdtG J
3expH 2

imv0

2\ sin v0t F 2

m2v0
2 E

0

tE
0

t

f ~t! f ~t8!sin v0~ t2t!sin v0t8dt dt8G J . ~3.2!

The transition moments between a pair of vibrational eigen-
states are given by

Gmn~ t !5ei /\ EmtE
2`

` E
2`

`

fm~q2!G~q2 ,t;q1,0!

3fn~q1!dq1 dq2

5
G00~ t !

Am!n!
(
r 50

l
~21!m1nm!n!

~m2r !! ~n2r !!
~ i z!n2r~ i z8!m2r ,

with l 5max$m,n%,

z~ t !5
1

A2mv0\
E

0

t

f ~t!exp@2 iv0t#dt, ~3.3a!

and

z8~ t !5
1

A2mv0\
E

0

t

f ~t!exp@ iv0t#dt. ~3.3b!

In Eqs. ~3.3!, fn(q) is the nth eigenfunction andz,z8 are
incomplete Fourier transforms of the random force at the
fundamental frequency. The diagonal transition moment
G00(t) for the ground state is given byG00(t)
5exp@2z(t)z8(t)#. For the rest of this paper, we only consider
the fundamental transition between the ground stateug&
5u0& and the first excited stateue&5u1& unless specified
otherwise. A different paper will discuss spectra of overtones
and combinations inABA molecules.40 The absorption am-
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plitude for ug&→ue& is thus Age,abs(t)5^^eue2 iHt ue&
3^gue2 iHt ug&†&b . We apply Eq.~3.3! twice for m5n50
andm5n51, respectively, and obtain the absorption ampli-
tudeAge,abs(t)5e2 iv0t(11]z)uz51^exp@2zz(t)z8(t)#&b . For a
Gaussian bath, the average can be directly calculated with
the cumulant expansion, giving

Age,abs~ t !5e2 iv0t@112~a111a22!

14~a11a222a12
2 !#23/2~11a111a22!,

where

a i j ~ t !5
1

mv0\ E
0

tE
0

t

^ f ~t! f ~t8!&bc i~t!c j~t8!dt dt8,

i , j P$1,2%. ~3.4!

Here,c1(t) andc2(t) are short-hand notations for cosv0t
and sinv0t, respectively. Given the exponential friction ker-
nel, a i j (t) can be evaluated explicitly. We find that the en-
velop of Age,abs(t) exhibits a power-law decay in the long-
time limit, i. e., Age,abs(t)'e2 iv0t(11Gget/2)22, with Gge

equal to the dephasing rate defined later in the Markovian
limit ~see Sec. III C!.

We use the transition amplitudes in Eq.~3.3! to evaluate
the population relaxation signal in pump-probe experiments
I n,pop(t) analytically. For instance, the population relaxation
profiles for the ground and the first excited states are

I g,pop~ t !5@112~a111a22!14~a11a222a12
2 !#21/2

and

I e,pop~ t !5@112~a111a22!14~a11a222a12
2 !#25/2

3@112~a111a22!13~a111a22!
2

24~a11a222a12
2 !18~a111a22!~a11a222a12

2 !

116~a11a222a12
2 !2#. ~3.5!

In the long-time limit, it is straightforward to show that both
I g,pop and I e,pop decays ast21.

In the absence of pure dephasing, the decomposition re-
lation Eq. ~2.13! becomes uAn,n11,abs(t)u2'I n,pop(t)
I n11,pop(t), which is obtained under the weak coupling as-
sumption. To explicitly check its validity, we compare the
decomposition relation with the exact results from the path
integral calculations. To be specific, we expand Eqs.~3.4!
and ~3.5! in orders of^d f 2&b ,

uAge,abs~ t !u2'124~a111a22!113~a111a22!
2

212~a11a222a12
2 !1O~^d f 6&b!,

~3.6!
I g,pop~ t !I e,pop~ t !'124~a111a22!115~a111a22!

2

216~a11a222a12
2 !1O~^d f 6&b!.

These two quantities are equal only up to first order in
^d f 2&b . For a harmonic oscillator linearly coupled to a clas-
sical bath, the diagonal couplingVD(t) is zero; hence, the
only approximation introduced in Eq.~2.11! is the indepen-
dent bath average for each propagator. The difference
2(a11

2 1a22
2 12a12

2 ) between the two expressions in Eq.~3.6!
is a quantitative measure of this assumption. The positive
definite difference indicates that the decomposition relation
overestimates the absorption profile in the second order of
^d f 2&b .

The transition moments in Eq.~3.3! allow us to calculate
the exact~2PE! signal in Eq.~2.7! as

Aecho~ t1 ,t2!5eiv0(t22t1)~11]z1
!uz151

3~11]z2
!uz251@det M ~z1 ,z2!#21/2, ~3.7!

where the matrixM (z1 ,z2) is

M ~z1 ,z2!5F 112z1a11~ t1 ,t1! 2z1a12~ t1 ,t1! 2Az1z2a11~ t1 ,t2! 2Az1z2a12~ t1 ,t2!

2z1a12~ t1 ,t1! 112z1a22~ t1 ,t1! 2Az1z2a12~ t2 ,t1! 2Az1z2a22~ t1 ,t2!

2Az1z2a11~ t1 ,t2! 2Az1z2a12~ t2 ,t1! 112z2a11~ t2 ,t2! 2z2a12~ t2 ,t2!

2Az1z2a12~ t1 ,t2! 2Az1z2a22~ t1 ,t2! 2z2a12~ t2 ,t2! 112z2a22~ t2 ,t2!

G , ~3.8!

with a i j (t1 ,t2)5@2mv0\#21*0
t1*0

t2^ f (t) f (t8)&b

3c i(t)c j (t8)dt dt8 defined similarly as in Eq.~3.4!.

B. Perturbation

We now investigate the perturbation method. The diago-
nal matrix element of the propagator is given by

^nue2 iHt un&5e2 ivnt^nuT expF2 i E
0

t

f ~t!q~t!dtG un&,

~3.9!

where q(t) is the time-dependent position operator in the
interaction picture. We note that, because ofVD(t)50, the
factorization in Eq.~2.10! becomes exact. We first neglect
the cross terms between propagators and perform the bath
average over each propagator separately, giving
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An,n11,abs~ t !

'e2 iv0tK ^n11uT expS 2 i E
0

t

f (t)q(t)dt D un11&L
b

3K ^nuT expS 2 i E
0

t

f (t)q(t)dt D un&L
b

†

. ~3.10!

Next, we exchange the order of the bath average and the
expectation value over vibrational states, and perform the
second-order cumulant expansion for the Gaussian bath

An,n11,abs~ t !

'e2 iv0t^n11u

3expF2E
0

tE
0

t

q~t!q~t8!^ f ~t! f ~t8!&bdt dt8G
3un11&^nuexpF2E

0

tE
0

t

q(t)q~t8)

3^ f ~t! f ~t8!&bdt dt8#G un&. ~3.11!

Finally, we take the expectation value of the exponent, which
is only accurate when the exponent is diagonal, giving

An,n11,abs~ t !'e2 iv0t exp@2hn11~ t !2hn* ~ t !#, ~3.12!

where hn(t)5 (1/\2) *0
t *0

t^ f (t) f (t8)&b^nuq(t)q(t8)un&
characterizes the population relaxation process from the nth
vibrational state. For a harmonic oscillator,hn(t) can be
evaluated explicitly to be m\v0hn(t)52(n11/2)
3*0

t dt*0
tdt8^ f (t) f (t8)&bcosv0(t2t8). Particularly by set-

ting n50 in this expression, we obtain the second order
cumulant expansion result forAge,abs(t) as

Age,abs~ t !'e2 iv0t exp„22@a11~ t !1a22~ t !#…, ~3.13!

wherea11(t) anda22(t) are defined in Eq.~3.4!.
Compared to the exact path integral expression, the

second-order cumulant expansion is accurate up to first order
in the bath fluctuation̂d f 2&b . The essential difference is the
absence of the cross terma12 in the second-order cumulant
expression result. To facilitate the comparison with the exact
expression, we expand the square of Eq.~3.13! to second
order, giving

uAge,absu25124~a111a22!18~a111a22!
2

1O~^d f 6&b!. ~3.14!

The overall deviation from the exact result is 5(a111a22)
2

212(a11a222a12
2 ), which is a combination of all the ap-

proximations in Eqs.~3.10!, ~3.11!, and ~3.12!. It is readily
shown that this difference is positive definite, indicating that
the second-order cumulant expansion always underestimates
the absorption profile.

Applying the approximations in Eqs.~3.10!, ~3.11!, and
~3.12! to Eq. ~2.6!, the population relaxation profile dis-

cussed in Sec. II A isI n,pop(t)'u exp@2hn(t)#u2. Setting n
50 andn51, we obtain the second-order cumulant expan-
sion of the population relaxation at the ground and the first
excited states, respectively,

I g,pop~ t !'exp„2@a11~ t !1a22~ t !#… ~3.15a!

and

I e,pop~ t !'exp„23@a11~ t !1a22~ t !#…. ~3.15b!

Combination of these two expressions leads to Eq.~3.13!.
These perturbative expressions, which neglect the cross
terms among propagators and invoke separate bath averages
of propagators, differ from the exact results in Eq.~3.5!.

Similarly, the photon-echo signal from the second-order
cumulant expansion can be derived as

Aecho~ t1 ,t2!'eiv0(t22t1) exp„22@a11~ t1!1a22~ t1!

1a11~ t2!1a22~ t2!#…, ~3.16!

where there is no contribution from pure dephasing. Again,
this expression gives the correct expansion up to first order
in bath fluctuations, thus is only applicable to weak solute-
solvent interactions.

C. Markovian approximation

Under the Markovian approximation, the population re-
laxation profiles are given byI n,pop(t)'exp@2Re(Gn)t#. For
the dissipative harmonic oscillator,Gn is given as

Gn52 E
0

`

^nu^VOD~ t !VOD~0!&bun&dt

52 E
0

`

^ f ~ t ! f ~0!&b~e2 iv0tqn,n11
2 1eiv0tqn,n21

2 !dt,

~3.17!

whereqn,n115qn11,n5A(n11)\/2mv0 is the off-diagonal
element of the position operator. In this limit, we readily
work out the two population relaxation rates from the ground
state and the first excited state, respectively, yielding

Gg5kg5
g

v0
21g2

^d f 2&b

m\v0
, Ge5ke5

g

v0
21g2

3^d f 2&b

m\v0
.

~3.18!

Then, the average population relaxation rate iskge5(kg

1ke)/2. It is straightforward to obtain the absorption profile
and the echo signal at the Markovian limit,

Age,abs~ t !'e2 iv0t expF2
Gg1Ge

2
t G ,

~3.19!

Aecho~ t1 ,t2!'eiv0(t22t1) expF2
^d f 2&b

m\v0

g~ t11t2!

v0
21g2 G .
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D. Numerical results and discussions

To demonstrate the differences between the nonperturba-
tive and perturbative approaches, we calculate the vibrational
line shapes for a dissipative harmonic oscillator described by
the Hamiltonian in Eq.~3.1!. The results are plotted in Figs.
1, 2, and 3. To facilitate the comparison with the Morse
potential discussed in Sec. IV, we take the same frequency in
reduced unit,v05120, and the same effective mass inre-
duced unit, m50.5, which were used in simulations by
Tuckerman, Bader, and Berne.25,26 The effective \ is
0.029 534. The friction kernel of the bath fluctuation is as-
sumed to be single exponential, i. e.,^d f (t)d f (0)&
5^d f 2&b exp@2gutu#, which is a simplified description of en-

vironmental fluctuations. The decay rateg510 is 1/12 of the
reduced frequency and the mean square fluctuation of the
random force iŝ d f 2&50.3m\v0

3.

1. Non-Markovian effects of VER

In Fig. 1, we illustrate the absorption profileAge,abs(t)
and its Fourier transformsAge,abs(v)5Re*0

`eivtAge,abs(t)dt
from the path integral method in Eq.~3.4!, the second-order
cumulant expansion in Eq.~3.13!, and the Markovian ap-
proximation in Eq.~3.19!. As indicated in Sec. III B, the
perturbative and the exact results are identical up to first
order in the bath fluctuation̂d f 2&b . The perturbative ap-
proach only provides qualitative agreements and does not
reproduce the line shape quantitatively. The Markovian ap-
proximation only captures the overall decay of the absorp-
tion profile. In the long-time limit, both perturbation and
Markovian approximation yield exponential decaying envel-
ops for the absorption amplitude with the decay ratekge

5(kg1ke)/2, whereas the exact result gives a power-law
decaying envelop oft22 ~see Sec. III A!. Hence, the exact
result is more coherent than the perturbative and the Markov-
ian approximations. This difference becomes more promi-
nent for stronger solute-solvent interactions.

As shown in Fig. 1, both the nonperturbative and the
second-order cumulant expansion results have asymmetric
envelops while the Markovian result is symmetric. This non-
Markovian effect is an important feature of VER effects. To
illustrate this point, we examine the second-order cumulant
expansion expression for the population relaxation in Eq.
~3.15!. The exponent of the population relaxation profile is
an incomplete Fourier transform of the friction kernel at the
fundamental frequency, giving

2@a11~ t !1a22~ t !#

5
^d f 2&b

2mv0\ F v0
22g2

~v0
21g2!2 1

gt

v0
21g2

2
~v0

22g2!cosv0t22v0g sin v0t

~v0
21g2!2 e2gtG . ~3.20!

Equation ~3.20! is intrinsically oscillatory with the funda-
mental frequencyv0 . As a result, the absorption amplitude
is smaller on the negative side than on the positive side,
generating an asymmetric temporal profile. Under the Mar-
kovian approximation, the exponent is simplified to be linear
in time. Then, the oscillatory feature is completely removed,
yielding a symmetric profile. Apparently the exponent is pro-
portional to the mean square fluctuation of the bath,^d f 2&b ,
and the asymmetry is more prominent for stronger solute-
solvent interactions.

The asymmetric feature is also demonstrated in the Fou-
rier spectrum. The exact and the second-order cumulant ex-
pansion results show small side bands at zero frequency and
the second harmonic frequency while the Markovian ap-
proximation is a perfect Lorentzian. These side bands are
generated by the oscillations in the exponent. To illustrate
this point, we further expand the perturbative expression of
Eq. ~3.13!, yielding

FIG. 1. Comparison of the temporal absorption profile of the dissipative
harmonic oscillator calculated with the exact path integral expression in Eq.
~3.4! ~solid line!, the second-order cumulant expansion in Eq.~3.13! ~dashed
line!, and the Markovian approximation in Eq.~3.19! ~dotted line!. The
corresponding frequency domain line shapes are given in the lower panel~b!
with the details of the central peak in the inset. The parameters arev0

5120, g510, and^d f 2&b50.3m\v0
3.

FIG. 2. Examination of the decomposition relation given by Eq.~2.13! with
for the dissipative harmonic oscillator. The exact results, the cumulant ex-
pansion, and the Markovian approximation of the VER signalI g,popI e,pop are
shown in the inset. The parameters are the same as in Fig. 1. For a linearly
coupled harmonic oscillator, there is no pure dephasing,uAge,dep(t)u251.
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Age,abs~ t !'e2 iv0t expF2
2^d f 2&b~v0

22g2!

mv0\~v0
21g2!2

2
Gg1Ge

2
tG

3 (
n50

`
~21!n

n! S ^d f 2&b

mv0\~v0
21g2!2 e2gt

3@~2v0
21g2!cosv0t22gv0sin v0t# D n

.

~3.21!

After collecting the Fourier components at zero, the first and
the second harmonic frequencies, we identify several fea-
tures in the absorption line shape, which are as follows:

~1! The central peak atv0 is a Lorentzian with width
equal to the dephasing ratekge .

~2! The peaks atv50 and 2v0 are slightly asymmetric
with width kge1g.

~3! In the limit v0@g, the ratio of the peak at 2v0 ~or
zero frequency! to the major peak atv0 is directly propor-
tional to the dimensionless bath fluctuations

Ã~2v0!

Ã~v0!
5

Ã~0!

Ã~v0!
'

^d f 2&b

m\v0
3

kge

kge1g
. ~3.22!

The Markovian approximation neglects the constant term
22^d f 2&b(v0

22g2)/mv0\(v0
21g2)2 in the exponent and

generates a higher peak atv5v0 than the second-order cu-

mulant expansion. The quantitative relations in~1! and ~2!
provide a possible way to measure the two parameters,^d f 2&
andg, of the bath fluctuations.

2. Non-Lorentzian line shapes

Compared to the exact result of nonperturbative calcula-
tions, the absorption spectrum from the second-order cumu-
lant expansion reproduces the line shapes atv50, v0 , and
2v0 . Yet, the central peak of the exact spectrum atv0 is
substantially different from a Lorentzian. Given the long-
time power-law decay profile of the exact absorption profile,
Age,abs(t)'e2 iv0t(11Gget/2)22 with Gge5kge , the central
peak is a Meijer G function and has a height of 2/kge and a
width of kge/2. The non-Lorentzian absorption spectrum was
also obtained by Kosloff and Rice from dynamical semi-
group techniques that go beyond the weak coupling limit.41

In their analysis, the non-Lorentzian peak is attributed to
double quantum transition resulting from the quadratic
system-bath coupling where both population and pure
dephasing are present. Apparently, the dissipative harmonic
oscillator discussed in the present paper is linearly coupled to
the bath without pure dephasing contribution; hence, the
non-Lorentzian shape we obtained results from couplings of
population relaxations. This is a different interpretation of
the absorption line shape.

The non-Lorentzian line shapes are also obtained in the
photon-echo profile. Figure 3 is a comparison of the time-
domain echo signals and their frequency domain line shapes.
The two time-domain echo signals in the left column are
obtained from the nonperturbative path integral method and
the second-order cumulant expansion, respectively. The line

FIG. 3. The time-domain echo signals~in the left col-
umn! and their frequency domain contours~in the right
column! for the dissipative harmonic oscillator. From
top to bottom, the plots are the nonperturbative calcu-
lation and the second-order cumulant expansion, re-
spectively. The parameters used in the calculations are
the same as in Fig. 1.
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shapes in the right column are the corresponding absolute
value spectra obtained from34

uAecho~v1 ,v2!u

5U E
0

`E
0

`

eiv1t12 iv2t2Aecho~ t1 ,t2!dt1 dt2U. ~3.23!

The second cumulant expansion has a symmetric 2D Lorent-
zian line shape and is almost identical to the Markovian line
shape~not shown in Fig. 3!. The close resemblance in the 2D
Fourier spectra indicates the same long-time behavior for
both approximations. The exact result, as shown in the ab-
sorption profile, decays in a power-law form oft22 at long
times. The Fourier spectrum shows a much wider distribu-
tion along the diagonal direction than the antidiagonal direc-
tion. In the dissipative harmonic oscillator we discussed
here, the pure dephasing rate is zero, hence the elongated line
shape along the diagonal direction can only result from
population relaxation, which is different from the pure-
dephasing-induced broadening discussed in the literature.4

Compared to linear absorption spectrum, the nonlinear pho-
ton echo is much more sensitive to the nonperturbative ef-
fects.

3. Decomposition relation: Comparison of different
approximations for VER

In Fig. 2, the decomposition relation in Eq.~2.13! is
examined for the same parameter as those in Fig. 1. As we
discussed in Sec. III A, the decomposition expression, ob-
tained with the factorization approximation, is only accurate
up to first order in̂ d f 2&b and overestimates the absorption
intensity. This is clearly indicated by the deviation of
I n,pop(t)I n11,pop(t) from uAn,n11,abs(t)u2. Compared to the
exact result, the factorization approximation reproduces the
short-time oscillations correctly and exhibits a slower decay
profile in the long time. Hence, the composite approximation
scheme of Eq.~2.19! in Sec. II B overestimates the absorp-
tion profile. The second-order cumulant expansion of the
VER contribution derived in Eq.~3.15! clearly underesti-
mates the absorption profile and decays faster than the exact
result. The Markovian approximation is appropriate only for
an estimation of the decay rate. Consequently, the composite
approximation scheme of Eq.~2.23! reduces to the Markov-
ian approximation in the absence of pure dephasing and fails
to capture any non-Markovian features of VER. For the case
of anharmonic potentials investigated later in Sec. IV, the
pure-dephasing profile imposes a monotonic decaying en-
velop, where Eq.~2.19! agrees better with the exact result.

These calculations clearly demonstrate the limitations of
the perturbative approach and the Markovian approximation.
The perturbative expressions, which are obtained under the
assumption of weak solute-solvent interactions, can provide
a qualitative description of vibrational line shapes, but can-
not accurately reproduce the details. The Markovian approxi-
mation oversimplifies the timedependence with simple relax-
ation rates and fails to capture the VER effects. That is why
a more rigorous nonperturbative approach is important and
necessary for studying vibrational line shapes in condensed
phases.

E. Quantum bath

To demonstrate the quantum effects, we plot several ab-
sorption profiles in Fig. 4 and compare with the classical
results. The details of the derivation are elaborated in Appen-
dix B. Here we set the real part of the quantum force-force
correlation equal to the classical force-force correlation func-
tion used in Fig. 1, i.e.,C1(t)5^d f 2&b exp@2gutu#, and as-
sume the same parameters therein. The Fourier transform of
C1(t) is C̃1(v)52g^d f 2&b /(v0

21g2), and the imaginary
part of the quantum force-force correlation function is deter-
mined from Eq.~B3!,

C2~ t !5
1

p E
0

`

tanh
b\v0

2
C̃1~v!sin vt dv. ~3.24!

As shown in Fig. 4, the quantum absorption profiles are gen-
erally more coherent than the classical ones in the long-time
limit and have weaker effects on the short-time profile. The
perturbative approach yields closer resemblance to the exact
result at lower temperatures. The asymmetry in the absorp-
tion profile from the vibrational energy relaxation remains
prominent for quantum baths.

FIG. 4. Comparison of ReAge,abs(t) calculated with the exact path integral
expression~solid line!, the second-order cumulant expansion~dashed line!,
and Markovian approximation~dotted line! for the dissipative harmonic
oscillator coupled to a quantum Gaussian bath.b5b\v0 is the tempera-
ture parameter. The real part of the quantum force-force correlation is the

same as in Fig. 1 and the imaginary part is given by2 iC̃2(v)

5tanh(b\v0/2)C̃1(v). The high temperature limitb\v0→0 is Fig. 1~a!.
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IV. DISSIPATIVE MORSE OSCILLATOR:
A NUMERICAL EXAMPLE

Let us now consider a numerical example of anharmonic
potentials and investigate the vibrational line shapes for a
Morse oscillator linearly coupled to a Gaussian bath. The full
Hamiltonian is given by

H5
p2

2m
1De~12e2bq!21 f ~ t !q, ~4.1!

whereDe is the dissociation energy. Again the classical bath
is represented by a Gaussian random forcef (t) and the bath
relaxation is characterized by the friction kernelCcl(t)
5^ f (t) f (0)&b . For simplicity, we study the transition be-
tween the ground and first excited states. To facilitate the
comparison with early studies in literature,26 the Lennard-
Jones fluid of Argon are used as the reference units with
parameters e/kB5120 K, m56.632310226 Kg, and s
53.41 Å. In these units, the dissociation energy isDe

5207.36e52.15 eV. The diatomic molecule consists of two
atoms with the same mass as Argon coupled by a Morse
potential, giving the effective massm50.5 m520.0 amu.
b54.167s2151.22 Å21, and the fundamental frequency
v05A2Deb

2/m5120Ae/ms25296 cm21. \ in the re-
duced unit is\* 5\(ms2e)21/250.029 534. To compare
the nonperturbative and perturbative approaches, we calcu-
late the vibrational line shapes for a solute-solvent interac-
tion of ^d f 2&b50.3m\v0

3. The bath relaxation is an expo-
nentialCcl(t)5^d f 2&be2gt with g510.

The perturbative absorption profile with second-order
cumulant expansion is given in Eq.~2.17!, and the pure-
dephasing and population relaxation cumulants are

g~ t !5
1

\2 E
0

tE
0

t

^d f ~t!d f ~t8!&b~^q&n112^q&n!2dt dt8,

~4.2!

hn~ t !5
1

\2 E
0

tE
0

t

^d f ~t!d f ~t8!&b

3 (
mÞn

qnm
2 eiVmn(t2t8)dt dt8,

where qnm is the matrix element ofq. In the Markovian
limit, Eq. ~2.17! reduces to An,n11,abs(t)'e2 iVn,n11t

3exp@2Gn,n118 t21
2(Gn1Gn11)t#, whereGn,n118 andGn are the

pure-dephasing rate and the population relaxation rate given
by

Gn,n118 5
~^q&n112^q&n!2

\2 E
0

`

^d f ~t!d f ~0!&bdt,

~4.3!

Gn5 (
mÞn

2qnm
2

\2 E
0

`

^d f ~t!d f ~0!&beiVmntdt.

A. Asymmetric envelops in the temporal
absorption profile

As shown in Fig. 5~a!, the second-order cumulant expan-
sion illustrates the presence of asymmetric signals at short
times but fails to reproduce the long-time decaying envelop.
Similar to the dissipative harmonic oscillator studied in Sec.
III, the appearance of asymmetry in the absorption profile
clearly demonstrates the VER effects from the off-diagonal
elements of the solute-solvent interaction. For the exponen-
tial frictional kernel,g(t) andhn(t) are evaluated explicitly
as

g~ t !5
^d f 2&b

\2 ~qn11,n112qnn!
2
gt211e2gt

g2 ,

hn~ t !5
^d f 2&b

\2 (
mÞn

qnm
2 F Vmn

2 2g2

~Vmn
2 1g2!2 1

gt

Vmn
2 1g2

2
~Vmn

2 2g2!cosVmnt22Vmng sin Vmnt

~Vmn
2 1g2!2 e2gtG .

~4.4!

According to Eq.~4.4!, the pure-dephasing profile decays
monotonically while the VER profile is an oscillatory func-
tion. The bath relaxation rate is significantly smaller than the
energy gap, i.e.,g!v0 , and the vibrational energy gap falls
far into the tail of the spectral density of bath relaxation. The
pure-dephasing rate is equivalent to a Fourier transform with
zero frequency and is located at the center of the spectral
density of bath relaxation. Consequently, the pure-dephasing
rate is much larger than the population relaxation rate in the
long-time limit. At short times, hn(t)1hn11(t)@g(t);
hence, the VER dominates at short times and the asymmetric
envelop becomes more prominent. The Markovian approxi-
mation employs simple rate approximation and completely
removes the oscillatory feature in population relaxation and
produces a symmetric profile over the complete time range.

FIG. 5. Absorption line shapes of the dissipative Morse oscillator calculated
with the nonperturbative method~solid line!, the second-order cumulant
expansion~dashed line!, and the Markovian approximation~dotted line!.
The solvent relaxation rate is assumed to beg510. The solute-solvent
interaction iŝ d f 2&b50.3m\v0

3. At anharmonicityxe50.004 27 in~a! and
~b!, the dissociation threshold isDe558.5v0 and the fundamental frequency
v05120. At anharmonicity 3xe in ~c! and ~d!, the dissociation energy is
De/3 but m andv0 remain the same.
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The absorption spectrum of the Markovian approxima-
tion illustrated in Fig. 5~b! has a symmetric Lorentzian line
shape from the simple rate approximation. The perturbation
renders side bands at zero and the second harmonic frequen-
cies in addition to the central peak. This is a direct result of
the asymmetric VER signal at short times. The side bands are
solvent-induced multiple-photon transitions which are absent
in the Markovian VER treatment. Apparently, the exact result
has a non-Lorentzian central peak, differing from the Mar-
kovian approximation. Yet, the non-Lorentzian central peak
is not as sharp as that of a dissipative harmonic oscillator in
Fig. 1. This difference results from the dominant contribution
of pure dephasing, which is absent in a harmonic oscillator.
Pure-dephasing profile, when superimposed onto population
relaxation profile, generates an exponentially decaying en-
velop in the long time and results in a less sharp non-
Lorentzian peak.

B. Asymmetric central peak in absorption spectrum

In addition to the nonLorentzian peak and side bands,
the nonperturbative calculation demonstrates an asymmetric
central peak in frequency domain. Absence of these features
from the perturbative and Markovian approximations indi-
cates that they arise from neglected term in the factorization
of perturbative approach. Careful investigation of the ap-
proximations in Sec. II B reveals that the source of this
asymmetry is the cross products of the off-diagonal coupling,
^^VOD(t1)VOD(t2)&n^VOD(t1)VOD(t2)&n11&b . For an anhar-
monic potential, the frequency gapsVmn are not identical,
the frequency mismatch generates a complex envelop

function, while the negligence of cross products in the per-
turbative and the Markovian approximations only yields a
real envelop. The presence of the imaginary part of the en-
velop function creates interferences of difference frequency
components, giving an asymmetric profile. As anharmonicity
increases, the frequency mismatch becomes larger and thus
the interference becomes stronger, yielding more asymmetric
central peaks, as shown in Fig. 5~d!. Apparently, the cross
product of the off-diagonal coupling is proportional to
^d f 2&b

2 and depends strongly on the strength of bath fluctua-
tions. In Sec. V, the O–H stretch has a much weaker cou-
pling to the bath than the Morse oscillator calculated in this
section and demonstrates a less prominent asymmetric ab-
sorption spectrum.

The asymmetric and non-Lorentzian line shape is better
manifested in the nonlinear two-pulse photon-echo~2PE!
profile. As shown in Fig. 6, the exact result shows a strong
asymmetric elongation along the diagonal and is significantly
different from the Lorentzian line shape predicted by the
second-order cumulant expansion and the Markovian ap-
proximations. The Markovian approximation has identical
line shapes as the second-order cumulant expansion and is
not included here to avoid redundancy. Small irregular struc-
tures in the exact line shape is due to insufficient averaging
in Monte Carlo simulation.

C. Decomposition relation: Anharmonic effects

To check the decomposition relation, we calculate
I ge,abs(t)5uAge,abs(t)u2 and compare it with the product of
I g,abs(t), I e,abs(t) and uAge,dep(t)u2. Due to the presence of
anharmonicity, the absorption profile is dominated by pure
dephasing in the long time limit, so that the factorization
result yields close resemblance to the nonperturbative ab-
sorption profile, displayed in Fig. 7. The initial decay, the
major oscillation att'0.05, and the long-time relaxation are
closely predicted by the factorization scheme. The similarity
between the absorption intensity and the decomposed signal

FIG. 6. The time-domain echo signals~in the left column! and their fre-
quency domain contours~in the right column! for the dissipative Morse
oscillator. From top to bottom, the plots are the nonperturbative calculation
and the second-order cumulant expansion, respectively. The parameters used
in the calculations are the same as in Figs. 5~a! and 5~b!.

FIG. 7. Examination of the decomposition relation in Eq.~2.13! for the
dissipative Morse potential. Inset: The decomposed signalsI g,pop(t) ~dotted
line!, I e,pop(t) ~dashed line!, and uAge,dep(t)u2 ~solid line!. Age,abs(t),
I g,pop(t), and I e,pop(t) are the exact results calculated numerically with the
same parameters as those in Figs. 5~a! and 5~b!.
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indicates the applicability of the approximation scheme of
Eq. ~2.19! introduced in Sec. II D, which directly superim-
poses the population relaxation profile measured from pump-
probe experiments onto the pure-dephasing profile. This ap-
proach is different from the cumulant approximation where
both the population relaxation and the pure dephasing are
truncated at the second-order cumulant. Consequently, the
absorption spectrum is no longer a Lorentzian shape. As we
discussed earlier in Sec. II D, due to the omission of imagi-
nary part of the population relaxation signal, the composite
approximation scheme cannot reproduce the asymmetric
central peak of the absorption spectrum.

To investigate the anharmonic effects, we compare the
absorption intensity and the pure-dephasing signal atxe

5\v0/4De , 2xe and 3xe in Fig. 8 withv0 andm fixed. The
position operatorq of a Morse oscillator is50,51

q'2
1

b
ln@12Axe~b1b†!#

'
\

2mv0
@~b1b†!1Axe~b1b†!2#, ~4.5!

whereb andb† are the creation and annihilation operators of
the Morse oscillator, respectively, and xe

5@8Dem/(\2b2)#21/2 is the anharmonicity parameter. The
spectrum of the Morse oscillator isEn5\v0@(n11/2)
2xe(n11/2)2#, with 1/(2xe) the number of bounded states
in the potential well. For the Morse oscillator discussed here,
xe'0.004 27. The population relaxation rate is much
smaller than the pure-dephasing rate due to the large differ-
ence between the frequency gap and the bath relaxation rate.
Furthermore, the ratio betweenVD and VOD is proportional
to Axe. With increasing anharmonicity, the contribution from
pure dephasing becomes dominant; hence, the short-time os-
cillatory feature from the population relaxation is further
suppressed and the absorption profile decays faster.

D. VER effects as a function of anharmonicity

We now examine the different perturbation schemes of
VER and compare the absorption profiles at three different
anharmonicities,xe , 2xe , and 3xe in Fig. 9. The approxi-

mations employed in the second order cumulant expansion
include decoupling of the diagonalVD and the off-diagonal
VOD, independent bath averages of propagators, and cumu-
lant expansion, which are discussed in detail in Secs. II B
and III B. The factorization propagator in Eq.~2.10! neglects
the commutator betweenVD(t) and VOD(t). For the linear
coupling, the commutator can be estimated explicitly as

@VD~t!,VOD~t8!#} f ~t! f ~t8!
\

2mv0
Axe ~4.6!

and is proportional to the square root of the anharmonicity.
The negligence of this term significantly reduces the accu-
racy of the perturbative approximation at large anharmonici-
ties. Furthermore, the commutator term includes the off-
diagonal coupling and is oscillatory. Similar to the
population relaxation term, the commutator term contributes
significantly at short times and the contribution increases
with anharmonicity. The nonperturbative signal, which in-
cludes the commutator@VD(t),VOD(t)# and cross terms be-
tween different propagators, is generally more coherent than
the perturbative approximations. The difference between the
nonperturbative and the perturbative results becomes more
prominent at larger anharmonicities.

FIG. 8. The nonperturbative absorption amplitudeuAge,abs(t)u2 and the pure-
dephasing profileAge,dep(t) for different anharmonicities of a dissipative
Morse potential. Other parameters such asv0 , m, g, and^d f 2&b remain the
same as previous calculations.

FIG. 9. Comparison of the nonperturbative calculation in Eq.~2.3!, the
second-order cumulant expansion in Eq.~2.17!, and the two composite ap-
proximation schemes in Eqs.~2.19! and~2.23! at different anharmonicities.
Other parameters such asv0 , m, g, and^d f 2&b remain the same as previous
calculations. The exact results of the nonperturbative calculation are plotted
in solid lines, the second-order cumulant expansion in dashed lines, Eq.
~2.19! in solid circles, and Eq.~2.23! in open circles.
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The composite approximation of Eq.~2.19! superim-
poses the population relaxation profile from pump-probe ex-
periments onto the pure dephasing and accurately reproduces
the asymmetric temporal profile at small anharmonicities.
With increasing anharmonicity, the cross products of the off-
diagonal couplings and diagonal couplings neglected from
the decomposition in Eq.~2.19! contribute substantially to
absorption profile. Hence, the deviation from the exact result
increases with anharmonicity. The composite approximation
of Eq. ~2.23! assumes a Markovian rate for VER and yields a
symmetric absorption profile. For the anharmonicities we
studied, Eq.~2.23! does not work as well as Eq.~2.19!. The
strong deviations of the approximation schemes from the ex-
act result at large anharmonicities justify the need for the
nonperturbative treatment of vibrational line shapes.

V. O–H STRETCH IN D2O ENVIRONMENTS

Now we demonstrate the importance of VER effects in a
real system. The parameters of several VER systems are es-
timated and listed in Table I. The dimensionless bath fluctua-
tion is estimated from simulations and frequency gap fluc-
tuations assuming a Morse potential and a linear system-bath
coupling. Although real systems include vibration-rotation
couplings, intermolecular couplings, and other effects, the
linear coupling assumed in our model still serves as a quan-
titative estimation of the VER effects. To illustrate the de-
tailed contributions from VER, we perform a series of calcu-
lations for the O–H stretch in D2O environment. The
effective Hamiltonian is assumed to be the same as Eq.~4.1!
and includes a Morse oscillator linearly coupled to a Gauss-
ian classical bath. The electronic field experienced by the
O–H stretch in the hydrogen-bond network is found to fol-
low underdamped motion by computer simulations,19–22

photon-echo spectroscopy,52 and other ultrafast infrared~IR!
measurements.53–55It is shown in the literature19–22,52–57that
the relaxation time is about 30–170 fs in the short-time pro-
file while the characteristic time of the long-time decay is
roughly 0.5–2.0 ps. The two different time scales of the fric-
tional kernel arise from a hydrogen-bond stretching at short
times and a collective relaxation at long times. The ratio of
the short-time relaxation rate to the O–H stretch frequency
(;3430 cm21) is roughly 0.01–0.05. The dimensionless

bath fluctuation amplitude estimated from simulations and
experiments19–22,55 is ^d f 2&b /(m\v0

3)'1.2231022. For
simplicity, we choose a biexponential friction kernel to re-
flect the two time scales, i.e., ^d f (t)d f (0)&b

5^d f 2&b@pe2g1t1(12p)e2g2t#, where g1
21540 fs and

g2
215600 fs. The dissociation energyDe andb are obtained

from the literature61 and the parameter are summarized in
Table II. Given the Morse parameters, the number of the
bounded states in O–H bond is estimated to be 22, and the
anharmonicity parameter isxe'0.0217.

A. Solute-solvent coupling

The second-order cumulant expansion yields almost
identical temporal absorption profiles as the nonperturbative
calculation due to the weak bath fluctuations and the asym-
metric envelop from non-Markovian VER effects is rather
weak. On the other hand, the Markovian approximation as-
sumes fast relaxation of bath and is only applicable to the
long-time limit whent@g1

21 ,g2
21. The presence of the slow

relaxation in the friction kernel violates this assumption;
consequently, the Markovian approximation overestimates
the decay rate substantially and deviates significantly from
both the nonperturbative and the perturbative calculations.
These findings are illustrated in Fig. 10~a!. In Fourier space,
the weakly asymmetric envelop of the absorption profile is
reflected in the weak side bands of absorption spectrum. The
side bands are generated by the solvent-induced multiple-
photon transitions and non-Markovian VER treatment.

For the O–H bond, the anharmonicity parameterxe is as
large as 0.0217. This is about 50 times larger than the Morse

TABLE I. Relevant parameters of several VER systems.

O–Ha O–Db I2
c C–O stretchd HbCOle HgIf

FundamentalV01 (cm21) 3400 2500 210.9 1714.4 1950 125
OvertoneV12 (cm21) 3150 2350 207.2 1706.3 1924 ¯

Bath fluctuation̂ d f 2&b /(m\v0
3) 0.0162 0.0148 0.0313 0.064 0.029 0.068

g1
21 ~fs! ;60 ;30 ;2500 3.4 500 65

g2
21 ~fs! ;1200 ;500 ¯ 100 1200 ¯

aO–H stretch in liquid D2O in Refs. 52 and 55.̂d f 2&b is extracted from frequency gap fluctuations.
bO–D stretch in liquid H2O in Ref. 56.^d f 2&b is extracted from force-force correlation function simulation.
cI2 in Xenon solvent at 313 K and 3.0 g/cm3 in Ref. 16. ^d f 2&b is from force-force correlation function
simulation.

dCH3CO2H cyclic dimer in CCl4 solvent from Ref. 58.̂ d f 2&b is extracted from frequency gap fluctuation
measurements.

eCarbon monoxide hemoglobin in D2O solvent from Ref. 59.̂d f 2&b is extracted from vibrational relaxation rate
measurements.

fHgI in ethanol from Ref. 60.̂d f 2&b is extracted from force-force correlation function simulation.

TABLE II. Parameters of O–H stretch. The parameters of O–H stretch are
taken from Ref. 61 and the D2O environmental parametersg1 , g2 , and
^d f 2&b are estimated from literature~Refs. 19–22 and 55!.

D 8.84310212 erg
b 2.1753108 cm21

m 1.66310224 g
v0 7.291631014 s21

g1
21 40 fs

g2
21 600 fs

p 0.8
^d f 2&b /m\v0

3 0.0122

11265J. Chem. Phys., Vol. 121, No. 22, 8 December 2004 Nonperturbative vibrational energy relaxation

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



potential discussed in Sec. IV. The dimensionless bath fluc-
tuation is about 25 times smaller than that in Sec. IV. Due to
these two effects, a weakly asymmetric central peak of the
absorption spectrum compared to Fig. 5 is observed and the
perturbation result reproduces the absorption spectrum quite
accurately.

B. VER effects in 3PEPS measurements

In the 3PEPS experiment, the integrated photon-echo
signal is collected and the photon-echo peak shift is deter-
mined as a function of the intermediate waiting time
tw .4,7,8,55 For the purpose of illustration, we consider the
same excitation path way discussed in Sec. II A. Assuming
d-function pulses, we derive the 3PE amplitude as

Aecho~ t1 ,tw ,t2!5^^e2 iH (tw1t2)&n11^e
2 iHt 1&n^e

2 iHt 2&n
†

3^e2 iH (t11tw)&n11
† &b

1^^e2 iHt 2&n11^e
2 iH (t11tw)&n

3^e2 iH (tw1t2)&n
†^e2 iHt 1&n11

† &b . ~5.1!

The integrated photon-echo signal isI echo(t1 ,tw)
5*0

`uAecho(t1 ,tw ,t2)u2dt2 . t1 is the dephasing time be-
tween the first pulse and the second pulse,tw is the waiting
time between the second and the third pulses, andt2 is the
rephasing time between the third and the probe pulses. Fol-
lowing the same perturbation scheme discussed in Sec. III B,
we separate pure dephasing from the diagonal coupling and
VER from the off-diagonal coupling. The echo signal
Aecho(t1 ,tw ,t2) is given by

Aecho~ t1 ,tw ,t2!

'e2Vn,n11(t22t1)~exp@2hn11* ~ t11tw!2hn* ~ t2!

2hn11~ tw1t2!2hn~ t1!#1exp@2hn11* ~ t1!

2hn* ~ tw1t2!2hn11~ t2!2hn~ t11tw!# !

3exp@2g* ~ t1!1g~ tw!2g* ~ t2!2g* ~ t11tw!

2g~ tw1t2!1g* ~ t11tw1t2!#, ~5.2!

whereg(t) is the line shape function andhn(t) characterizes
the population relaxation contribution from the nth vibra-
tional state. In the limittw50, Eq. ~5.2! reduces to the 2PE
expression in Eq.~2.18!. If the off-diagonal solute-solvent
interaction is negligible compared to the pure dephasing, i.e.,
hn(t)'0, Eq.~5.2! reduces to the well-known result of three-
pulse photon-echo response function for a two-level
system.4,7

In Fig. 11, we plot the integrated photon-echo signal
I echo(t1 ,tw)5*0

`uAecho(t1 ,tw ,t2)u2dt2 without VER, with the
Markovian VER rate, and with the cumulant approximation
of VER, respectively. Perturbative calculations are suffi-
ciently accurate here due to weak bath fluctuations. In Eq.
~5.2!, the pure-dephasing terms containingtw cancel out at
largetw andI echo(t1 ,tw) reaches a stable nonzero function of
t1 without VER, as shown in Fig. 11~a!. VER essentially
decreases the signal amplitude during the waiting timetw .
At short waiting times, the cumulant approximation of VER
imposes small oscillation onto the integrated echo intensity,
yet does not affect the overall shape of the integrated photon-
echo signal. The average population relaxation time is esti-
mated to be (kg1ke)

21'850 fs. At largetw , the echo in-

FIG. 10. Comparison of the nonperturbative calculation, the second-order
cumulant expansion, and the Markovian approximations for the O–H stretch
in D2O network. The parameters are summarized in Table II. The exact
results of the nonperturbative calculation are plotted in solid lines, the
second-order cumulant expansion results in dashed lines, and the Markovian
approximation in dotted lines.

FIG. 11. Comparison of the perturbative calculations of the echo intensity
I echo(t1 ,tw) ~a! without VER, ~b! with Markovian VER, and~c! with cumu-
lant approximation of VER. The waiting timetw is varied, from top to
bottom,tw50,10,20,40,1000 fs. The unit ofI echo(t1 ,tw) is fs.
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tensity approaches zero with population relaxation, as shown
in Figs. 11~b! and 11~c!, which is completely different from
the case where VER is not accounted.

A nontrivial VER contribution is demonstrated in the
peak shifts of integrated echo signal. Considering the experi-
mental resolutions, we compute the integrated echo signal
with a sliding window average of 10 fs and fitI echo(t1 ,tw)
with a Gaussian function, as shown in Fig. 12~b!. It is clear
in Fig. 12~a! that the peak shifts demonstrate different time
scales and the peak-shift amplitude decreases due to the VER
effects. The perturbation calculation with second-order cu-
mulant expansion yields small recurrence around 200 fs,
which corresponds to the frequency difference of the funda-
mental and the overtoneV122V01;250 cm21. The recur-
rence cannot be reproduced with VER rates and therefore is
a clear indication of non-Markovian VER effects. The ex-
perimentally observed recurrence at 150–170 fs includes ad-
ditional contributions from the the underdamped frictional
kernel.55 The small oscillation around 40 fs is attributed to
insufficient average from the narrow sliding window of 10 fs
and Gaussian fitting errors. Compared to the linear absorp-
tion spectrum, the nonlinear 3PEPS is a more sensitive probe
of the anharmonic effects.

VI. CONCLUSIONS

Nonperturbative and perturbative approaches are applied
to vibrational line shape calculations. The nonperturbative
approach based on Feynman’s path integral formalism di-
rectly evaluates the quantum propagator in the interaction
picture. In the perturbative approach, the solute-solvent in-
teraction is first decomposed into diagonal and off-diagonal
elements and the absorption profile is factorized into two
parts: the population relaxation profile related to the off-

diagonal coupling and the pure-dephasing profile related to
the diagonal coupling. This factorization scheme neglects the
commutator between the diagonal and the off-diagonal
coupling, an important contribution which increases with
anharmonicity. In the factorization scheme, we evaluate
the bath average for each propagator separately and
obtain the decomposition relation Aabs(t)
'eiVn,n11tAI n,pop(t)I n11,pop(t)An,n11,dep(t). Next, we apply
the second-order cumulant expansion to the decomposition
relation and derive the line shape functiong(t) and the popu-
lation relaxation functionhn(t). The approximation scheme
of Eq. ~2.19! directly superimposes the population relaxation
profile from pump-probe experiments onto the pure-
dephasing profile and can reproduce the asymmetric absorp-
tion profile. The approximation scheme of Eq.~2.23! treats
population relaxation with the corresponding Markovian
limit while evaluating the pure dephasing at the second-order
cumulant. Due to the Markovian approximation to VER, Eq.
~2.23! gives a symmetric absorption profile without side
bands in the absorption spectrum. In the VER rate descrip-
tion, the solvent relaxation is much slower than the vibra-
tional frequency gap and the line shapes are dominated by
pure dephasing. On the other hand, the Markovian treatment
of the VER contribution to line shapes requires a fast bath
relaxation which results in the inconsistency of the Markov-
ian VER rate. Finally, in the Markovian limit, the decompo-
sition relation recovers the well-known relation among the
vibrational dephasing rate, the population relaxation rate, and
the pure-dephasing rate.

Analytical solutions for a dissipative harmonic oscillator
yield quantitative estimation of the errors for different ap-
proximation schemes.I g,pop(t)I e,pop(t) differs from
uAge,abs(t)u2 at second order of bath fluctuations
^d f 2&b /(m\v0

3). Consequently, the decomposition in Eq.
~2.13! is valid for weak solute-solvent interactions and be-
comes less accurate for strong solute-solvent interactions or
for vibrational relaxation systems with small frequency gaps.
We also show that the approximation scheme of Eq.~2.19!
overestimates while the second-order cumulant expansion al-
ways underestimates the effects of friction. For the dissipa-
tive harmonic potential, non-Markovian VER effects gener-
ate asymmetric envelops in the time-domain absorption
profile and side bands in the frequency domain absorption
spectrum. The side bands are solvent-induced multiple-
photon transitions and are absent in the Markovian VER
treatment. The non-Lorentzian peak in nonperturbative treat-
ments of absorption spectrum arises from couplings of popu-
lation relaxations from different vibrational states. The non-
perturbative VER effects manifest as a non-Lorentzian
broadening along the diagonal direction in the frequency do-
main photon-echo spectra. Quantum baths have more coher-
ence in the long-time profile but show less effects on the
short-time profile and the coherence decreases with increas-
ing temperature.

For the dissipative Morse potential, the interference of
population relaxations from different vibrational states leads
to an asymmetric central peak in the absorption spectrum
with the asymmetry increasing with anharmonicity. The
second-order cumulant expansion and the Markovian ap-

FIG. 12. ~a! Comparison of the echo shifts with Markovian VER and with
cumulant VER~triangles!. I echo(t1 ,tw) is first smoothed with a sliding win-
dow average of 10 fs, and the peak shifts are then determined with Gaussian
fitting. ~b! Determination of the peak shiftt1* .
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proximation result in a symmetric Lorentzian spectrum but
can not reproduce vibrational line shapes correctly. When the
frequency gap is much larger than the bath relaxation rate,
pure dephasing dominates over population relaxation. In ad-
dition, the ratio between the diagonal coupling and the off-
diagonal coupling is proportional to the square root of anhar-
monicity; therefore, the contribution from pure dephasing
becomes dominant at large anharmonicities. All the three ap-
proximation schemes, the second-order cumulant expansion,
the composite schemes of Eqs.~2.19! and~2.23!, neglect the
cross terms of population relaxations from different vibra-
tional states and the cross terms betweenVD andVOD, and
deviate significantly from exact results at large anharmonici-
ties. Relatively speaking, Eq.~2.19! is better than Eq.~2.23!
for all the anharmonicities we study.

For an O–H stretch in hydrogen-bond environments, the
Markovian approximation substantially overestimates the de-
cay rate from slow bath relaxation and results in significant
deviation from both the nonperturbative and the perturbative
calculations. Three-pulse photon-echo peak shift~3PEPS!
measurement provides a more sensitive nonlinear probe of
the VER effects. In these experiments, both the integrated
3PE signal amplitude and the echo peak shifts become
smaller due to VER effects. More importantly, the non-
Markovian VER effects generate a small recurrence around
200 fs. This recurrence corresponds to the frequency differ-
ence of the fundamentalV01 and the overtoneV12, a result
that cannot be reproduced by the Markovian VER rate. In
general, nonlinear spectroscopic measurements such as two-
pulse and three-pulse IR photon echos are more sensitive to
the nonperturbative and non-Markovian VER effects than
linear absorption.

The nonperturbative approach proposed in this paper
treats the solute-solvent interaction accurately. Combined
with the explicit treatment of the solvent degree of freedom,
the nonperturbative propagation method provides a numeri-
cal tool to calculate the vibrational spectrum in condensed
phases. The various perturbation schemes allow us to ana-
lyze contributions from different relaxation mechanisms and
compare information contents from different spectroscopic
measurements. In particular, the second-order cumulant ex-
pressions with both the pure-dephasing momentg(t) and the
VER momenthn(t) capture the essential features of vibra-
tional line shapes for most realistic systems. The nonpertur-
bative approach is essential for quantitative comparison with
experimental measurements in systems with strong dissipa-
tive or non-Gaussian environments.
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APPENDIX A: ANHARMONICITY-INDUCED
DEPHASING

We now explore the molecular origin of pure dephasing.
Taylor expansion of the solute-solvent interaction leads to

V~q2x!5V~q!1~a1a1! f ~x!1 1
2 ~aa11a1a!e~x!1¯ .

~A1!

Here, a and a1 are the annihilation and creation operators
for the vibrational mode,f (x) and e(x) are functions of
solvent coordinates. In the above equation, the first term is a
constant, the second term is the off-diagonal linear coupling,
and the third term is the diagonal quadratic coupling.

1. Harmonic oscillator

For a harmonic oscillator withHs5v0(aa11a1a)/2,
we explicitly evaluate the temporal profile of vibrational re-
laxation and dephasing from second-order cumulant expan-
sion of the solute-solvent interaction. The linear coupling to
the solvent in Eq.~A1! yields the vibrational relaxation rate

kn5k~n→n11!1k~n→n21!

5u^nua1un11u&u22E
0

`

eivn,n11^ f ~ t ! f ~0!&bdt

1u^nua1un21u&u22E
0

`

e2 ivn21,n^ f ~0! f ~ t !&bdt,

~A2!

wherevn11,n is the energy gap. The depletion rate out of the
nth vibrational state can be separated into two parts: the rate
for increasing one vibrational levelk(n→n11) and the rate
for decreasing one vibrational levelk(n→n21). The two
rate constants between a pair of adjacent levels satisfy the
detailed balance relation.

For a linear harmonic oscillator, the frequencyv0 is a
constant independent of the quantum level, therefore
vn21,n5vn,n115v0 . We can write k(n→n11)5(n
11)k1 andk(n→n21)5nk2 . Hence, the master equation
for population relaxation is

Ṗn5~n11!k2Pn111nk1Pn212Pn@~n11!k11nk2#,
~A3!

which gives] tn̄52(k22k1)n̄1k1 with n̄5(nPn the av-
erage excitation number. Thus, we recover the equilibrium
average n̄eq5k1 /(k22k1) and the reactive ratek5k2

2k15z(v0)/m, which is exactly the classical relaxation
rate for the harmonic oscillator.

From the quadratic coupling, we can calculate the
dephasing rate

kn,n115 1
2 $u^n12ua1un11&u22u^nua1un21&u2%

3E
0

`

^de~ t !de~0!&dt, ~A4!

wherede(t)5]2V2^]2V&b is the fluctuation in the curva-
ture of the solute-solvent interaction. For a harmonic oscil-
lator, the prefactor is a constant and the dephasing rate is
constant.
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Higher-order terms in the Taylor expansion of the solute-
solvent interaction potential yields off-diagonal terms such
as aa, a1aa, etc., which are responsible for multiphoton
processes. They become less important as the resonant fre-
quency is multiples of the single photon frequency and gives
much weak resonance with the low frequency bath. The lin-
ear terms can be incorporated in the first-order expression.

2. Anharmonic oscillator

For anharmonic oscillator, the energy gap decreases with
the quantum number. The low frequency solvent has a stron-
ger response at low frequency and the population relaxation
rate increases with the quantum number. The dephasing rate
is proportional to the zero frequency of the solvent spectrum
and thus is dominated by the strength of the coupling matrix.
At larger vibrational quantum numbers, the width of vibra-
tional wave function broadens due to a stronger solute-
solvent coupling. Thus, the pure-dephasing rate increases at
larger vibrational quantum numbers.

For a harmonic oscillator, the linear coupling to the sol-
vent results in vibrational relaxation, whereas the quadratic
solute-solvent coupling results in vibrational dephasing. The
situation is different for an anharmonic potential, for which
the vibrational coordinate has both an off-diagonal partqOD,
giving rise to dissipation, and a diagonal partqD , giving rise
to pure dephasing. Formally, the solute coordinate operator
can be expanded as

q5q01q1~a1a1!1q2~aa11a1a!/2

1q28~aa1a1a1!/21¯ , ~A5!

whereq0 , q1 , q2 , q28 are expansion coefficients. Combined
with Eq. ~A1!, the diagonal part of the solute-solvent inter-
action becomes

VD5
aa11a1a

2
~2q2]V1q1]2V!1¯ , ~A6!

which defines the quadratic fluctuating forcee5(2q2]V
1q1]2V). It is well-known that the pure dephasing has two
mechanisms: the quadratic coupling to the solvent and the
anharmonicity in the solute vibrational mode. Below we
demonstrate that these two mechanisms are essentially
equivalent.

We now derive the anharmonicity-induced dephasing
rate for the Morse potentialV(q)5De(12e2bq)2, whereDe

is the dissociation energy andb the inverse length scale. The
fundamental frequency of the Morse oscillator isv0

5A2Deb
2/m and the total number of the bound states isN/2

with N115A8Dem/b25xe
21 . We use the following rela-

tion from Refs. 50 and 51:

b1b1'
N11

AN
F12e2bq2

2

b2~N11!2 ~ebqp21p2ebq!G
'xe

21/2bq2xe
21/2F1

2
b2q21

b2p2

m2v0
2G , ~A7!

whereN11'N for large N. The second-order contribution
expressed with the creation and annihilation operators yields

b1b1'q1~a1a1!1bq1
2@ 1

2 ~a1a1!22~a2a1!2#,
~A8!

which has the diagonal components withq253bq1
2. Based

on the definition in Eq.~A4!, the pure-dephasing rate is

k85q2
2 E

0

`

Rê e~ t !e~0!&bdt'S 3b

2mv0
D 2

kBTĥ~0!,

~A9!

whereĥ(0)5*0
`h(t)dt is the integrated friction coefficient.

The last expression is the classical limit of the dephasing rate
first obtained by Oxtoby and later by many others.62,63To see
this, we expand the Morse potentialV(q)5Deb

2q2

2Deb
3q31¯ and identify the cubic coefficientf c

56Deb
3. Thus, the well-known result of k8

5 f c
2kBTĥ(0)/4m4v0

6 is recovered.63

It should be noted that the dephasing rate differ by a
factor of 9 if the momentum term in Eq.~A7! is neglected.
Using the exact form fora1a1 as the coupling to the sol-
vent, it is possible to introduce linear dissipation without
pure dephasing for an anharmonic oscillator. Such a coupling
is not only a nonlinear function of coordinate but also a
function of momentum. We thus conclude that for realistic
systems the anharmonicity in vibrational modes contributes
significantly to pure dephasing.

APPENDIX B: DISSIPATIVE HARMONIC OSCILLATOR
COUPLED TO A QUANTUM BATH

In this appendix, we extend the previous discussion in
Sec. III to a quantum bath. For simplicity, we assume the
same dissipative harmonic oscillator as in Eq.~3.1!. In this
case, the quantum force-force correlation function is a com-
plex function, Cqm(t)5^ f (t) f (0)&5C1(t)2 iC2(t), where
the real partC1(t) is an even function and the imaginary part
C2(t) is an odd function. The Fourier transform of the force-
force correlation function isC̃qm(v)5*2`

` eivtCqm(t)dt

5C̃1(v)2 iC̃2(v). The fluctuation-dissipation theorem re-
quires

2 iC̃2~v!5tanh
b\v

2
C̃1~v!, ~B1!

whereC̃2(v) is purely imaginary sinceC2(t) is an odd func-
tion. In the high temperature limit,C̃1(v)→C̃cl(v) and
C̃2(v)→0.

Let us consider a quantum bath consisting of a number
of harmonic oscillatorsHb5( j (pj

2/2mj1mjv j
2xj

2/2) and a
bilinear system-bath couplingHsb52q( jgjxj . For the har-
monic bath, the quantum force-force correlation function is
explicitly given as

Cqm~ t !5(
j

\

2mjv j
cj

2Fcoth
b\v j

2
cosv j t2 i sin v j t G ,

~B2!

which reduces to the classical force-force correlation func-
tion Ccl(t)5( j cj

2/bmjv j
2 cosvjt in the high temperature

limit. Completing the Fourier transforms, one can readily
show that26,64
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C̃1~v!5
b\v

2
coth

b\v

2
C̃cl~v! ~B3a!

and

2 iC̃2~v!5
b\v

2
C̃cl~v!. ~B3b!

It is straightforward to prove that the transition moments
given in Eq.~3.3! are still valid39 given that f (t) is now a
complex variable. Following the same procedure as in Sec.
III A, we derive the exact expression of the absorption pro-
file as

Age,abs~ t !5e2 iv0t

3
11a111a22

@112~a111a22!14~a11a222a12a12* !#3/2.

~B4!

This expression is almost identical to Eq.~3.4! except that
a12 is a complex function. With the quantum force-force
correlation function, we obtain the explicit expression ofa12

as

a125
1

2mv0\ E
0

t

dtE
0

t

dt8@C1~t2t8!sin v0~t1t8!

1 iC2~t2t8!sin v0~t2t8!#. ~B5!

Equation ~B5! reduces toa12 in Eq. ~3.4! in the classical
limit when C250.

In the perturbative approach, we follow the same proce-
dure as in Sec. III B and obtain

Age,abs~ t !'e2 iv0t expH 2
1

2 E
0

t

dtE
0

t

dt8@Cqm~t2t8!

3^q~t!q~t8!&e1Cqm
† ~t2t8!^q~t!q~t8!&g

†#J
'e2 iv0texpH 2

1

mv0\ E
0

t

dtE
0

t

dt8

3@2C1~t2t8!cosv0~t2t8!2C2~t2t8!

3sin v0~t2t8!#J . ~B6!

The first term in the exponent, which equals 2@a11(t)
1a22(t)#, is the classical perturbation result of Eq.~3.13!
and the second term represents the quantum effects from the
imaginary part of the force-force correlation function.

In the long-time limit, we invoke the Markovian ap-
proximation in the perturbative expression of Eq.~B6! and
obtainAn,n11,abs(t)'e2 iv0t exp@2(Gn111Gn)t/2#, whereGn

5*0
`@2(n11/2)C1(t)cosv0t2C2(t)sinv0t#dt is the popu-

lation relaxation rate from the vibrational staten. Hence, the
presence of the imaginary part of the quantum correlation
function reduces the decay rate of the envelop, creating more
coherent oscillations in absorption profile.
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