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Abstract

Recent works on neural contextual bandit have achieved compelling performances
thanks to their ability to leverage the strong representation power of neural net-
works (NNs) for reward prediction. Many applications of contextual bandit involve
multiple agents who collaborate without sharing raw observations, giving rise to
the setting of federated contextual bandit. Existing works on federated contextual
bandit rely on linear or kernelized bandit, which may fall short when modeling
complicated real-world reward functions. In this regard, we introduce the feder-
ated neural-upper confidence bound (FN-UCB) algorithm. To better exploit the
federated setting, we adopt a weighted combination of two UCBs: UCBa allows
every agent to additionally use the observations from the other agents to accelerate
exploration (without sharing raw observations); UCBb uses an NN with aggregated
parameters for reward prediction in a similar way as federated averaging for su-
pervised learning. Notably, the weight between the two UCBs required by our
theoretical analysis is amenable to an interesting interpretation, which emphasizes
UCBa initially for accelerated exploration and relies more on UCBb later after
enough observations have been collected to train the NNs for accurate reward
prediction (i.e., reliable exploitation). We prove sub-linear upper bounds on both
the cumulative regret and the number of communication rounds of FN-UCB, and
use empirical experiments to demonstrate its competitive performances.

1 Introduction

The stochastic multi-armed bandit is a prominent method for sequential decision-making problems
due to its principled ability to handle the exploration-exploitation trade-off [4, 7, 25]. In particular,
the stochastic contextual bandit problem has received enormous attention thanks to its widespread
real-world applications such as recommender systems [27], advertising [32] and healthcare [17].
In every iteration of a stochastic contextual bandit problem, an agent receives a context (i.e., a
d−dimensional feature vector) for each one of the K arms, selects one of the K contexts/arms, and
observes the corresponding reward. The goal of the agent is to sequentially pull the arms in order to
maximize the cumulative reward (or equivalently, minimize the cumulative regret) in T iterations.

To minimize the cumulative regret, linear contextual bandit algorithms assume that the rewards can
be modelled as a linear function of the input contexts [13, 37] and select the arms via classic methods
such as upper confidence bound (UCB) [4] or Thompson sampling (TS) [41], hence introducing
the Linear UCB [1] and Linear TS [2] algorithms. The potentially restrictive assumption of a linear
model was later relaxed by kernelized contextual bandit algorithms [9, 43], which assume that the
reward function belongs to a reproducing kernel Hilbert space (RKHS) and henceforth model the
reward function using kernel ridge regression or Gaussian process (GP) regression. However, this
assumption may still be restrictive [48] and the kernerlized model may fall short when the reward
function is very complicated and difficult to model. To this end, neural networks (NNs), which excel
at modelling complicated real-world functions, have been adopted to model the reward function in
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contextual bandit, leading to neural contextual bandit algorithms [48] such as Neural UCB [48] and
Neural TS [47]. Thanks to their ability to use the highly expressive NNs for better reward prediction
(i.e., exploitation), Neural UCB and Neural TS have been shown to outperform both linear and
kernelized contextual bandit methods in practice [47, 48]. Moreover, the cumulative regrets of Neural
UCB and Neural TS have been analyzed by leveraging the theory of the neural tangent kernel (NTK)
[3, 8, 20], hence making these algorithms both provably efficient and practically effective.

The contextual bandit algorithms discussed above are only applicable to problems with a single agent.
However, many modern applications of contextual bandit involve multiple agents who (a) collaborate
with each other for better performances yet (b) are unwilling to share their raw observations (i.e., the
contexts and rewards). For example, companies may collaborate to improve their contextual bandit-
based recommendation algorithms, without sharing their sensitive user data [19]; hospitals deploying
contextual bandit methods for personalized treatment may collaborate to improve their treatment
strategies, without sharing their sensitive patient information [11, 12]. These applications naturally
fall under the setting of federated learning (FL) [23, 28, 29, 34], which facilitates collaborative
learning of supervised learning models (e.g., NNs) without sharing the raw data. In this regard, a
number of federated contextual bandit algorithms have been developed, which allow bandit agents
to collaborate in the federated setting [11, 16, 19, 44]. Specifically, [44] adopted the Linear UCB
policy, and developed a mechanism to allow every agent to additionally use the observations from the
other agents to accelerate exploration, while only requiring the agents to exchange some sufficient
statistics instead of their raw observations. However, these previous works have only relied on
either linear [16, 19, 44] or kernelized [11, 12] methods, which, as we have discussed above, may
lack the expressive power to model complicated real-world reward functions [48]. Therefore, this
naturally brings up the need to use NNs for better exploitation (i.e., reward prediction) in federated
contextual bandit, i.e., the need for a federated neural contextual bandit algorithm.

To develop a federated neural contextual bandit algorithm, an important technical challenge is how
to leverage the federated setting to simultaneously: (a) accelerate exploration by allowing every
agent to additionally use the observations from the other agents without requiring the exchange of
raw observations (in a similar way as [44]), and (b) improve exploitation by further enhancing the
quality of the NN for reward prediction through the federated setting, without requiring centralized
training using the observations from all agents. In this work, we provide a theoretically grounded
solution to this challenge by deploying a weighted combination of two upper confidence bounds
(UCBs). The first UCB (denoted as UCBa) incorporates the neural tangent features (i.e., the random
features embedding of the NTK) into the Linear UCB-based mechanism adopted by [44], which
achieves the first goal of accelerating exploration. The second UCB (denoted as UCBb) adopts an
aggregated NN, whose parameters are the average of the parameters of the NNs trained by all agents
using their local observations, for better reward prediction (i.e., better exploitation in the second goal).
Hence, UCBb improves the quality of the NN for reward prediction in a similar way as the most
classic FL method of federated averaging (FedAvg) for supervised learning [34]. Notably, our choice
of the weight between the two UCBs, which naturally arises during our theoretical analysis, has an
interesting practical interpretation (Sec. 4): more weights are given to UCBa in earlier iterations,
which allows us to use the observations from the other agents to accelerate the exploration in the early
stage; more weights are assigned to UCBb only in later iterations, after every agent has collected
enough local observations to train its NN for accurate reward prediction (i.e., reliable exploitation).

In this work, we introduce the first federated neural contextual bandit algorithm, named federated
neural-UCB (FN-UCB) (Sec. 4). We derive an upper bound on its total cumulative regret from all
N agents: RT = Õ(d̃

√
TN + d̃maxN

√
TN),1 in which d̃ is the effective dimension of the contexts

from all agents and d̃max represents the maximum among the N individual effective dimensions
of the contexts from the N agents (Sec. 3). The communication complexity (i.e., total number of
communication rounds in T iterations) of FN-UCB can be upper-bounded byCT = Õ(d̃

√
N). Lastly,

we use both synthetic and real-world contextual bandit experiments to explore the interesting insights
about our FN-UCB and demonstrate its effective practical performances (Sec. 6).

1The Õ ignores all logarithmic factors.
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2 Related Works

Federated learning (FL) has received enormous attention in recent years [23, 28, 29, 34]. A number
of recent works have extended the classic K-armed bandit (i.e., the arms are not associated with
feature vectors) to the federated setting. [30] and [31] focused on incorporating privacy guarantees
into federated K-armed bandit in both centralized and decentralized settings. [38] proposed a
setting where the goal is to minimize the regret of a global bandit whose reward of an arm is the
average of the rewards of the corresponding arm from all agents, which was later extended by adding
personalization such that every agent aims to maximize a weighted combination between the global
and local rewards [39]. Subsequent works on federated K-armed bandit have focused on other
important aspects such as decentralized communication via the gossip algorithm [49], the security
aspect via cryptographic techniques [10], uncoordinated exploration [46], and robustness against
Byzantine attacks [14]. Regarding federated linear contextual bandit, [44] proposed a distributed
linear contextual bandit algorithm which allows every agent to use the observations from the other
agents by only exchanging the sufficient statistics to calculate the Linear UCB policy. Subsequently,
[16] extended the method from [44] to consider differential privacy and decentralized communication,
[19] considered a setting where every agent is associated with a unique context vector, [26] focused
on asynchronous communication, and [21] considered the robustness against Byzantine attacks.
Federated kernelized/GP bandit (also named federated Bayesian optimization) has been explored by
[11, 12], which focused on the practical problem of hyperparameter tuning in the federated setting.

Since the pioneering works of [48] and [47] which, respectively, introduced Neural UCB and Neural
TS, a number of recent works have focused on different aspects of neural contextual bandit. [45]
reduced the computational cost of Neural UCB by using an NN as a feature extractor and applying
Linear UCB only to the last layer of the learned NN, [24] analyzed the maximum information gain
of the NTK and hence derived no-regret algorithms, [18] focused on the batch setting in which the
policy is only updated at a small number of time steps, [35] aimed to reduce the memory requirement
of Neural UCB, [33] performed an empirical investigation of neural bandit algorithms to verify their
practical effectiveness, [6] adopted a separate NN for exploration in neural contextual bandit, [5]
applied the convolutional NTK, [22] used perturbed rewards to train the NN to remove the need for
explicit exploration, and [36] incorporated offline policy learning into neural contextual bandit.

3 Background and Problem Setting
We use [k] to denote the set {1, 2, . . . , k} for a positive integer k, use 0k to represent a k-dimensional
vector of 0’s and 0k×k to denote an all-zero matrix with dimension k × k. Our setting involves N
agents with the same reward function h defined on a domain X ⊂ Rd. We consider centralized and
synchronous communication: the communication is coordinated by a central server, and every agent
exchanges information with the central server during a communication round. In every iteration
t ∈ [T ], every agent i ∈ [N ] receives K context vectors Xt,i = {xkt,i}k∈[K] and chooses one of
them xt,i ∈ Xt,i. After that, a noisy observation is produced yt,i = h(xt,i) + ε where ε is an
R-sub-Gaussian noise. We will analyze the total cumulative regret from all N agents in T iterations:
RT ,

∑N
i=1

∑T
t=1 rt,i, in which rt,i , h(x∗t,i)− h(xt,i) and x∗t,i , argmaxx∈Xt,i

h(x).

We use f(x; θ) to denote the output of a fully connected NN for input x with parameters θ (of
dimension p0), and use g(x; θ) to denote the corresponding gradient. We focus on NNs with ReLU
activations, and use L ≥ 2 and m to denote its depth and width (of every layer), respectively. We
follow the initialization technique from [47, 48] to initialize the NN parameters θ0 ∼ init(·). Of
note, as a common ground for collaboration, we let all N agents share the same initial parameters
θ0 when training their NNs and calculating their neural tangent features: g(x; θ0)/

√
m (i.e., the

random features mapping of the NTK [47]). Furthermore, we use H to denote the (TKN)×(TKN)-
dimensional NTK matrix on the set of all TKN contexts [47, 48]. Similarly, we also define Hi as
the (TK)× (TK)-dimensional NTK matrix for agent i, which only makes use of the TK contexts
observed by agent i. We defer the details on the definitions of H and Hi’s, the NN f(x; θ), and the
initialization scheme θ0 ∼ init(·) to Appendix A due to the limited space.

Next, using h to denote the (TKN)-dimensional vector of h = [h(xkt,i)]t∈[T ],i∈[N ],k∈[K], we define
B as an absolute constant such that

√
2h>H−1h ≤ B. This is related to the commonly adopted

assumption in kernelized bandit that h lies in the RKHSH induced by the NTK [9, 40] (or equivalently,
that the RKHS norm of h, ‖h‖H, is upper-bounded by a constant), because

√
h>H−1h ≤ ‖h‖H

3



Algorithm 1 FN-UCB (Agent i)

1: inputs: λ = 1+2/T , D = O( T
Nd̃

), θ0 ∼ init(·), Wsync = 0p0×p0 , Wnew,i = 0p0×p0 , Bsync = 0,
Bnew,i = 0p0 , αt = 0, V local

t,i = λI , V −1sync,NN = (1/λ)I , Vlast = λI , tlast = 0, θsync,NN = θ0.
2: for t = 1, 2, . . . , T do
3: V t,i = λI +Wsync +Wnew,i, θt,i = V

−1
t,i (Bsync +Bnew,i)

4: Calculate UCBat,i(x) = 〈g(x; θ0)/
√
m, θt,i〉+ νTKN

√
λ
∥∥g(x; θ0)/√m∥∥V −1

t,i

5: If αt 6= 0, calculate UCBbt,i(x) = f(x; θsync,NN) + νTK
√
λ
∥∥g(x; θ0)/√m∥∥V −1

sync,NN

6: Choose xt,i = argmaxx∈Xt,i
(1− αt)UCBat,i(x) + αtUCBbt,i(x)

7: Query xt,i to observe yt,i
8: Update Wnew,i =Wnew,i + g(xt,i; θ0)g(xt,i; θ0)

>/m, Bnew,i = Bnew,i + yt,ig(xt,i; θ0)/
√
m

9: Update V local
t,i = V local

t,i + g(xt,i; θ0)g(xt,i; θ0)
>/m

10: if (t− tlast) log
det(λI+Wsync+Wnew,i)

detVlast
> D then

11: Send a synchronisation signal to the central server to start a communication round
12: if a communication round is started then
13: Train an NN with gradient descent using all agent i’s local observations: Dt,i =

{(xτ,i, yτ,i)}τ∈[t], with θ0 as the initial parameters, η as the learning rate, J as the number
of iterations and equation (1) as the loss function, to obtain θit

14: Calculate αt,i = σ̃local
t,i,min/σ̃

local
t,i,max

15: send {Wnew,i, Bnew,i, θ
i
t, (V

local
t,i )−1, αt,i} to the central server

16: receive {Wsync, Bsync, θsync,NN, V
−1

sync,NN, αt} from the central server
17: Set Vlast =Wsync + λI , tlast = t, Wnew,i = 0p0×p0 , and Bnew,i = 0

Algorithm 2 Central Server
1: if a synchronization signal is received from any agent then
2: Send a signal to all agents to start a communication round
3: receive {Wnew,i, Bnew,i, θ

i
t, (V

local
t,i )−1, αt,i}i∈[N ]

4: Calculate θsync,NN = 1
N

∑N
i=1 θ

i
t, V

−1
sync,NN = 1

N

∑N
i=1(V

local
t,i )−1, and αt = mini∈[N ] αt,i

5: Calculate Wsync =Wsync +
∑N
i=1Wnew,i, and Bsync = Bsync +

∑N
i=1Bnew,i

6: Broadcast {Wsync, Bsync, θsync,NN, V
−1

sync,NN, αt} to all agents

[48]. Following the previous works of [47, 48], we define the effective dimension of H as d̃ ,
log det(I+H/λ)
log(1+TKN/λ) where λ > 0 is a regularization parameter. Similarly, we define the effective dimension

for agent i as d̃i , log det(I+Hi/λ)
log(1+TK/λ) and also define d̃max , maxi∈[N ] d̃i. Of note, the effective

dimension is related to the maximum information gain γ which is a commonly adopted notion in
kernelized bandit [47]: d̃ ≤ 2γTKN/ log(1 + TKN/λ), d̃i ≤ 2γTK/ log(1 + TK/λ),∀i ∈ [N ].
Consistent with previous works on neural contextual bandit [47, 48], our only assumption on the
reward function h is its boundedness: |h(x)| ≤ 1,∀x ∈ X . We also make the following assumptions
for our theoretical analysis, all of which are mild and easily achievable as discussed in [47, 48].
Assumption 1. We assume that there exists λ0 > 0 such that H � λ0I and Hi � λ0I, ∀i ∈ [N ].
We also assume that all contexts satisfy‖x‖2 = 1 and [x]j = [x]j+d/2, ∀x ∈ Xt,i,∀t ∈ [T ], i ∈ [N ].

4 Federated Neural-Upper Confidence Bound
Our FN-UCB algorithm is described in Algo. 1 (agents’ part) and Algo. 2 (central server’s part).

Overview of FN-UCB. Before the beginning of the algorithm, we sample the initial parameters θ0
and share it with all agents (Sec. 3). In every iteration t ∈ [T ], each agent i ∈ [N ] receives a set of
K contexts denoted as Xt,i = {xkt,i}k∈[K] and then uses the weighted combination of UCBat,i and
UCBbt,i to choose an arm xt,i ∈ Xt,i to pull (lines 3-6 of Algo. 1). Next, each agent i collects a noisy
observation yt,i (line 7 of Algo. 1), and then updates its local information (lines 8-9 of Algo. 1).
After that, every agent checks if it has collected enough information since the last communication
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round (i.e., checks the criterion in line 10 of Algo. 1); if yes, it sends a synchronization signal to the
central server (line 11 of Algo. 1), who then tells all agents to start a communication round (line 2 of
Algo. 2). During a communication round, every agent i uses its current history of local observations
to train an NN (line 13 of Algo. 1) and sends its updated local information to the central server (line
15 of Algo. 1); the central server then aggregates these information from all agents (lines 4-5 of
Algo. 2) and broadcasts the aggregated information back to all agents (line 6 of Algo. 2) to start the
next iteration. We refer to those iterations between two communication rounds as an epoch,2 i.e., our
FN-UCB algorithm consists of a number of epochs which are separated by communication rounds.

Of note, every agent i only needs to train an NN in every communication round, i.e., only after the
change in the (log) determinant of the covariance matrix of any agent exceeds a threshold D (line
10 of Algo. 1). This has the additional benefit of reducing the computational cost resulting from the
training of NNs. Interestingly, this is in a similar spirit as the adaptive batch size scheme from [18],
which only re-trains the NN in Neural UCB after the change in the determinant of the covariance
matrix exceeds a threshold and is shown to only slightly degrade the performance of Neural UCB.

The Two UCBs. We now introduce the details of UCBat,i and UCBbt,i in the next two paragraphs.

Firstly, UCBat,i can be interpreted as the Linear UCB policy [1] using the neural tangent features
g(x; θ0)/

√
m as the input features. In iteration t, denote the index of the current epoch as p, then the

calculation of UCBat,i (line 4 of Algo. 1) makes use of two types of information. The first type of
information, which uses the observations from all N agents before epoch p, is used in the calculation
of UCBat,i via Wsync and Bsync (line 3 of Algo. 1). Specifically, as can be seen from line 5 of Algo. 2,
Wsync and Bsync are calculated by the central server by summing up the Wnew,i’s and Bnew,i’s from
all agents (i.e., by aggregating the information from all agents), in which Wnew,i and Bnew,i are
calculated using the local observations of agent i (line 8 of Algo. 1). The second type of information
used by UCBat,i (via Wnew,i and Bnew,i, see line 3 of Algo. 1) makes use of the newly collected
local observations of agent i in epoch p. As a result, UCBat,i allows us to utilize the observations
from all agents via the federated setting for accelerated exploration, without requiring the agents to
share their raw observations. The parameter νTKN used in the calculation of UCBat,i is defined as

νTKN , B +R
[
2(log(3/δ) + 1) + d̃ log(1 + TKN/λ)

]1/2
where δ ∈ (0, 1).

Secondly, UCBbt,i leverages the federated setting to improve the quality of NN for reward prediction
(i.e., to achieve better exploitation) in a similar way as FedAvg, i.e., by averaging the parameters of
the NNs trained by all agents using their local observations [34]. Specifically, when a communication
round is started, every agent i ∈ [N ] uses its local observations Dt,i = {(xτ,i, yτ,i)}τ∈[t] to train an
NN (line 13 of Algo. 1). It uses θ0 as the initial parameters (i.e., shared among all agents, Sec. 3), and
trains the NN using gradient descent with a learning rate of η for J training iterations (see Theorem 1
for the choices of η and J in our theoretical analysis) to minimize the following loss function:

Lt,i(θ) =
∑t

τ=1

(
f(xτ,i; θ)− yτ,i

)2
/2 +mλ‖θ − θ0‖22 /2. (1)

The resulting NN parameters θit’s from all N agent are sent to the central server (line 16 of Algo. 1),
who averages them (line 4 of Algo. 2) and broadcasts the aggregated θsync,NN = 1

N

∑N
i=1 θ

i
t back to all

agents to be used in the next epoch. In addition, to calculate the second term of UCBbt,i, every agent
needs to calculate the matrix V local

t,i using its local inputs (line 9 of Algo. 1) and send its inverse to the
central server (line 15 of Algo. 1) during a communication round; after that, the central server averages
the received matrices to obtain V −1sync,NN = 1

N

∑N
i=1(V

local
t,i )−1 and broadcasts it back to all agents to be

used in the second term of UCBbt,i (line 5 of Algo. 1). Refer to Sec. 5.2 for a more detailed explanation
on the validity of UCBbt,i as a high-probability upper bound on h (up to additive error terms). The

parameter νTK used in UCBbt,i is νTK , B +R
[
2(log(3N/δ) + 1) + d̃max log(1 + TK/λ)

]1/2
.

For both UCBs, unlike Neural UCB [48] and Neural TS [47] which use θt (the parameters of trained
NNs) to calculate the exploration term (the second terms of UCBat,i and UCBbt,i), we instead use θ0.
This is consistent with [24] who have shown that the use of θ0 gives accurate uncertainty estimation.

The Weight between the Two UCBs. Of note, our choice of the weight αt between the two UCBs,
which naturally arises during our theoretical analysis (Sec. 5), has an interesting interpretation in

2The first/last epoch is between a communication round and the beginning/end of the algorithm.
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terms of the relative strengths of the two UCBs and the exploration-exploitation trade-off. Specifically,
define σ̃local

t,i (x) ,
√
λ
∥∥g(x; θ0)/√m∥∥(V local

t,i )−1 , which intuitively represents our uncertainty about

the reward at x after conditioning on the local observations of agent i up to iteration t [24].3 Next,
we also define σ̃local

t,i,min , minx∈X σ̃
local
t,i (x) and σ̃local

t,i,max , maxx∈X σ̃
local
t,i (x), which, respectively,

represent our smallest and largest uncertainty across the entire domain. Then, αt is chosen as:
αt = mini∈[N ] αt,i (line 4 of Algo. 2) where αt,i = σ̃local

t,i,min/σ̃
local
t,i,max (line 14 of Algo. 1). In other

words, αt,i is chosen as the ratio between the smallest and largest uncertainty across the entire
domain for agent i, and αt is selected as the smallest such ratio αt,i among all agents. Therefore, αt
is expected to be generally increasing in t: σ̃local

t,i,min is already small after the first few iterations since
our uncertainty at the observed input locations (contexts) is very small; on the other hand, σ̃local

t,i,max is
expected to be very large in early iterations and become smaller in later iterations only after we have
observed a large number of inputs (contexts) to sufficiently reduce the overall uncertainty in the entire
domain. As a result, this implies that we give more weights to UCBat,i in earlier iterations and assign
more weights to UCBbt,i in later iterations. This, interestingly, turns out to have an intriguing practical
interpretation: relying more on UCBat,i in early iterations is reasonable because UCBat,i is able to
utilize the observations from all agents to accelerate exploration in the early stage (see discussions of
UCBat,i above); it is also sensible to give more emphasis on UCBbt,i only in later iterations, because
the NN trained by every agent is only able to accurately model the reward function (for reliable
exploitation) after it has collected enough observations to train its NN.

Communication Cost. To summarize, during a communication round, the parameters an agent
sends to the central server include {Wnew,i, Bnew,i, θ

i
t, (V

local
t,i )−1, αt,i} (line 15 of Algo. 1), and the

parameters the central server broadcasts to the agents include {Wsync, Bsync, θsync,NN, V
−1

sync,NN, αt}
(line 6 of Algo. 2). So, the total number of parameters in both cases are p20+p0+p0+p

2
0+1 = O(p20)

where p0 is the total number of parameters of the NN, which is acceptable only if the NN is small
(i.e., p0 is small). When the NN is overly large such that the communication cost of Õ(p20) becomes
excessive, we can follow the practice of previous works [47, 48] to diagonalize the p0 × p0 matrices
(i.e., only keep the diagonal elements of the matrices), which was adopted to reduce the computational
cost. Specifically, we can diagonalize Wnew,i (line 8 of Algo. 1) and V local

t,i (line 9 of Algo. 1), and let
the central server aggregate only the diagonal elements of the corresponding matrices to obtain Wsync

and V −1sync,NN. As a result, the number of exchanged parameters becomes p0 × 4 + 1 = O(p0), which
is comparable to the number of exchanged parameters in standard FL for supervised learning (e.g.,
FedAvg) where the parameters (or gradients) of the NN are communicated [34]. We will also analyze
the total number of required communication rounds by our FN-UCB algorithm in Sec. 5.1.

5 Theoretical Analysis
5.1 Theoretical Results
Regret Upper Bound. For simplicity, we analyze the regret of a simpler variant our algorithm, in
which we only choose the weight αt using the method described in Sec. 4 in the first iteration after
every communication round, and set αt = 0 in all other iterations. Note that when communication
occurs after every iteration (i.e., when D is sufficiently small), this variant coincides with our original
FN-UCB algorithm described in Algos. 1 and 2 (Sec. 4). The regret upper bound is given by the
following theorem, whose proof is presented in Appendix B.

Theorem 1. Let δ ∈ (0, 1), λ = 1 + 2/T , D = O(T/(Nd̃)). Suppose the width m of the NN grows
polynomially: m ≥ poly

(
λ, T,K,N,L, log(1/δ), 1/λ0

)
. For the gradient descent training (line 13

of Algo. 1), let η = C4(mλ+mTL)−1 for some constant C4 > 0 and J = Õ
(
TL/(λC4)

)
. Then

with probability of at least 1− δ, RT = Õ
(
d̃
√
TN + d̃maxN

√
TN

)
.

Refer to Appendix B.1 for the detailed conditions on the width m of the NN, as well as the learning
rate η and the number of iterations J for the gradient descent training (line 13 of Algo. 1). The first
term of d̃

√
TN in the regret upper bound arises due to the use of UCBat,i and reflects the benefit of

the federated setting. In particular, this term matches the regret upper bound of standard Neural UCB

3Formally, σ̃local
t,i (x) is the Gaussian process posterior standard deviation at x conditioned on all local

observations of agent i till iteration t, calculated using the kernel of k̃(x, x′) = g(x; θ0)
>g(x′; θ0)/m.
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[48] running for TN iterations, and hence the average regret across all agents, d̃
√
T/N , decreases

with a larger number N of agents. The second term of d̃maxN
√
TN results from the use of UCBbt,i,

which involves two major components of our algorithm: the use of NNs for reward prediction and
the aggregation of the NN parameters. Although not reflecting the benefit of a larger N in the regret
bound, both components are important to our algorithm. Firstly, the use of NNs for reward prediction
is a crucial component in neural contextual bandit in order to exploit the strong representation power
of NNs. This is in a similar spirit to the previous works on neural contextual bandit [47, 48] in
which the use of NNs for reward prediction does not improve the regret upper bound (compared with
using the linear prediction given by the first term of UCBat,i) yet improves the practical performance.
Secondly, the aggregation of the NN parameters is also important for the performance of our FN-UCB
since it allows us to exploit the federated setting in a similar way to FL for supervised learning, which
has been repeatedly shown to improve the performance [23]. Moreover, we have also empirically
verified that both components (i.e., the use of NNs for reward prediction and the aggregation of NN
parameters) are important for the practical performance of our FN-UCB algorithm (Sec. 6.1).

Intuitively, the effective dimension d̃ measures the actual underlying dimension of the set of all
TKN contexts for all agents [47], and d̃max , maxi∈[N ] d̃i is the maximum among the underlying
dimensions of the set of TK contexts for each agent. [47] showed that if all contexts lie in a
d′−dimensional subspace of the RKHS induced by the NTK, then the effective dimension of these
contexts can be upper-bounded by the constant d′. In this case, our regret upper bound becomes
Õ(
√
TN3/2) which is sub-linear in T . Moreover, without this assumption on the contexts, we

can also obtain the worst-case growth rate of our regret upper bound. Specifically, as we discuss
in Appendix B.6, by upper-bounding the effective dimensions using the maximum information
gains (Sec. 3) and utilizing the growth rate of the maximum information gain of the NTK: γT =

Õ(T d−1
d ) [24, 42], we can further re-write our regret upper bound as RT = Õ(γTKN

√
TN +

γTKN
√
TN) = Õ(T

3d−2
2d K

(d−1)
d N3/2), which is sub-linear when the input dimension is d = 1.

Upper Bound on Communication Complexity. Next, the following theorem gives an upper bound
on the total number of communication rounds of our FN-UCB algorithm (proof in Appendix C).

Theorem 2. If the width m of the NN satisfies: m ≥ poly
(
T,K,N,L, log(1/δ)

)
, then with proba-

bility of at least 1− δ, the number of communication rounds for FN-UCB satisfies CT = Õ(d̃
√
N).

The specific condition on m required by Theorem 2 corresponds to condition 1 listed in Appendix B.1
(see Appendix C for details), which is a subset of the conditions required by Theorem 1. Following the
same discussion on the effective dimension d̃ presented above, if all contexts lie in a d′−dimensional
subspace of the RKHS induced by the NTK, then d̃ can be upper-bounded by the constant d′, leading
to a communication complexity of CT = Õ(

√
N). Moreover, without this assumption on the

contexts, the connection between d̃ and γTKN allows us to derive a worst-case communication
complexity of CT = Õ(γTKN

√
N) = Õ(T

d−1
d K

d−1
d N

3d−2
d2 ), which is still sub-linear in T .

5.2 Proof Sketch

We give a brief sketch of our regret analysis (detailed proof in Appendix B). To begin with, we need
to prove that both UCBat,i and UCBbt,i are valid high-probability upper bounds on the reward function
h (Appendix B.3), given that the conditions on m, η and J in Appendix B.1 are satisfied.

Since UCBat,i can be viewed as the Linear UCB policy [1] using the neural tangent features
g(x; θ0)/

√
m as the input features (Sec. 4), its validity as a high-probability upper bound on h

can be proved following similar steps as standard linear and kernelized bandit [1, 9, 47] (see Lemma 3
in Appendix B.3). Next, to prove that UCBbt,i is also a high-probability upper bound on h (up to
additive error terms), we define θlocal

t,i , (V local
t,i )−1(

∑t
τ=1 yτ,ig(xτ,i; θ0)/

√
m), which is defined

in the same way as θt,i (line 3 of Algo. 1) except that θlocal
t,i only uses the local observations of

agent i. Firstly, we show that f(x; θsync,NN) (i.e., the prediction of the NN with the aggregated
parameters) is close to (1/N)

∑N
i=1〈g(x; θ0)/

√
m, θlocal

t,i 〉 (i.e., the linear prediction using θlocal
t,i , av-

eraged over all agents). This is achieved by showing that the linear approximation of the NN at
the initial parameters θ0 is close to both of these two terms. Secondly, we show that the absolute
difference between the linear prediction of agent i: 〈g(x; θ0)/

√
m, θlocal

t,i 〉 and the reward function:
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Figure 1: Cumulative regret with varying number of agents for the (a) cosine function and (b)
square function. (c) Illustration of the importance of different components of our FN-UCB algorithm
(cosine function). (d) Performances with different values of D (cosine function). The average
number of rounds of communications are 348.0, 380.0, 456.7 for D = 5, 4, 2.5 respectively.

h(x) can be upper-bounded by νTK
√
λ||g(x; θ0)/

√
m||(V local

t,i )−1 . This can be done following simi-
lar steps as the proof for UCBat,i mentioned above. Thirdly, using the averaged linear prediction:
(1/N)

∑N
i=1〈g(x; θ0)/

√
m, θlocal

t,i 〉 as an intermediate term, the difference between f(x; θsync,NN) and
h(x) can be upper-bounded. This implies the validity of UCBbt,i as a high-probability upper bound
on h (up to additive error terms, which are small given the conditions on m, η and J presented in
Appendix B.1), as we have formalized in Lemma 4 in Appendix B.3).

Next, following similar footsteps as the analysis in [44], we separate all epochs into "good" epochs
(intuitively, those epochs during which the amount newly collected information from all agents is not
too large) and "bad" epochs (details in Appendix B.2), and henceforth separately upper-bound the
regrets incurred in these two types of epochs. For good epochs (Appendix B.4), we are able to derive
a tight upper bound on the regret rt,i = h(x∗t,i)− h(xt,i) in every iteration t by making use of the
fact that the change of information in a good epoch is bounded, and hence obtain a tight upper bound
on the total regrets in all good epochs. For bad epochs (Appendix B.5), we make use of the result
from Appendix B.2 which guarantees that the total number of bad epochs can be upper-bounded. As
a result, with the appropriate choice of D = O(T/(Nd̃)), the growth rate of the total regret incurred
in bad epochs is smaller than that in good epochs. Lastly, the final regret upper bound follows from
adding up the total regrets from good and bad epochs (Appendix B.6).

6 Experiments
All figures in this section plot the average cumulative regret across all N agents up to an iteration,
which allows us to inspect the benefit the federated setting brings to an agent (on average). In all
presented results, unless specified otherwise (by specifying a value of D), a communication round
happens after every iteration. All curves stand for the mean and standard error from 3 independent
runs. Some experimental details and results are deferred to Appendix D due to the space limitation.

6.1 Synthetic Experiments

We firstly use synthetic experiments to illustrate some interesting insights about our FN-UCB
algorithm. Similar to [48], we adopt the synthetic functions of h(x) = cos(3〈a, x〉) and h(x) =
10(〈a, x〉)2, referred to as the cosine and square functions, respectively. We add a Gaussian
observation noise with a standard deviation of 0.01. The parameter a is a 10-dimensional vector
randomly sampled from the unit hypersphere. In every iteration, every agent receives K = 4
contexts (arms) which are randomly sampled from the unit hypersphere. For fair comparisons, for all
methods (including our FN-UCB, Neural UCB and Neural TS), we use the same set of parameters
of λ = νTKN = νTK = 0.1, and use an NN with one hidden layer and a width of m = 20. As
suggested by our theoretical analysis (Sec. 4), we choose an increasing sequence of αt which is
linearly increasing (to 1) in the first 700 iterations, and let αt = 1 afterwards.

Fig. 1 presents the results. Fig. 1a and b show that our FN-UCB with N = 1 agent performs
comparably with Neural UCB and Neural TS, and that the federation of a larger number N of agents
consistently improves the performance of our FN-UCB. Of note, the federation of N = 2 agents can
already provide significant improvements over non-federated algorithms. Fig. 1c gives an illustration
of the importance of different components in our FN-UCB. The red curve is obtained by removing
UCBbt,i (i.e., letting αt = 0), and the green curve corresponds to removing UCBat,i. The red curve
shows that, despite achieving smaller regrets than the green curve initially thanks to its ability to
exploit the observations from the other agents, relying solely on UCBat,i leads to significantly larger
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Figure 2: Results for (a) shuttle and (b) magic (m = 20). (c) Results for shuttle with diagonal
approximation (m = 50). (d) Results for shuttle with different values of D. The average number
of communication rounds are 3850.7, 4442.7, 4906.3 for D = 0.05, 0.03, 0.01 respectively.

regrets in the long run due to its inability to utilize NNs to model the reward functions. On the
other hand, the green curve incurs larger regrets than the red curve initially, however, after more
observations are collected (i.e., after the NNs are trained with enough data to accurately model the
reward function), it quickly learns to achieve much smaller regrets. These results therefore provide
empirical justifications for our discussion on the weight between the two UCBs (Sec. 4), i.e., it is
reasonable to use an increasing sequence of αt such that more weights are given to UCBat,i initially
yet to UCBbt,i later. The yellow curve is obtained by removing the step of aggregating (i.e., averaging)
the NN parameters (in line 4 of Algo. 2), i.e., when calculating UCBbt,i (line 5 of Algo. 1), we use
θit and (V local

t,i )−1 to replace θsync,NN and V −1sync,NN. The results show that the aggregation of the NN
parameters significantly improves the performance of FN-UCB (i.e., the blue curve has much smaller
regrets than the yellow) and is hence an indispensable part of our FN-UCB algorithm. Lastly, Fig. 1d
shows that more frequent communications (i.e., smaller values of D which makes it easier to initiate
a communication round, see line 10 of Algo. 1) lead to smaller regrets.

6.2 Real-world Experiments
We adopt the shuttle and magic telescope datasets from the UCI machine learning repository
[15], and construct the experiments following a widely used protocol in previous works [27, 47, 48].
A K-class classification problem can be converted into a K-armed contextual bandit problem. In
every iteration, an input x is randomly drawn from the dataset and is then used to construct K
context feature vectors: x1 = [x;0d; . . . ;0d],x2 = [0d;x; . . . ;0d], . . . ,xK = [0d; . . . ;0d;x],
which correspond to the K classes. The reward is 1 if the arm with the correct class is pulled and
0 otherwise. For fair comparisons, we use the same set of parameters of λ = 10, νTKN = 0.1 and
νTK = 0.01 for all methods. Fig. 2a and b present the results for the two datasets (one hidden layer,
m = 20), which show that our FN-UCB with N = 2 agents consistently outperform standard Neural
UCB and Neural TS, and our performance also improves with the federation of more agents. Fig. 2c
shows the results for shuttle when diagonal approximation (Sec. 4) is applied to the NNs (one
hidden layer, m = 50), in which the results are consistent with those in Fig. 2a.4 Moreover, the
regrets in Fig. 2c are in general smaller than those in Fig. 2a. This may suggest that in practice,
a wider NN with diagonal approximation may be preferable to a narrower NN without diagonal
approximation, since they not only improves the performance, but also reduces the computational and
communication costs (Sec. 4). Fig. 2d plots the regrets of shuttle (with diagonal approximation) for
different values of D, which shows that more frequent communications lead to better performances
and are hence consistent with Fig. 1d. For completeness, we also compare with linear and kernelized
contextual bandit algorithms (for the experiments in both Secs. 6.1 and 6.2), and the results (Fig. 3,
Appendix D) show that they are outperformed by neural contextual bandit algorithms.

7 Conclusion
We introduced FN-UCB, the first federated neural contextual bandit algorithm. We use a weighted
combination of two UCBs, and the choice of this weight required by our theoretical analysis has an
interesting interpretation which emphasizes accelerated exploration initially and accurate prediction
of the aggregated NN later. We derive upper bounds on the regret and communication complexity of
FN-UCB, and verify its effectiveness using empirical experiments. Our algorithm is not equipped
with privacy guarantees, which may be a potential limitation and will be tackled in future work. A

4Since diagonalization increases the scale of the first term in UCBa
t,i, we use a heuristic to rescale the values

of this term for all contexts such that the max and min values (among all contexts) are 0 and 1 after rescaling.
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potential negative societal impact is that our paper may further promote the use of NNs in more
applications, which may increase energy consumption and contribute to the greenhouse effect.
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A More Background

In this section, we give more details on some of the technical background mentioned in Sec. 3. The
details in this section all follow the works of [47, 48], and we present them here for completeness.

Definition of the NN f(x; θ). Let W1 ∈ Rm×d, Wl ∈ Rm×m,∀l = 2, . . . , L − 1, and WL ∈
Rm×1, then the NN f(x; θ) is defined as

f1 = W1x,

fl = WlReLU(fl−1),∀l = 2 . . . , L,

f(x; θ) =
√
mfL,

in which ReLU(z) = max(z, 0) denotes the rectified linear unit (ReLU) activation function and
is applied to each element of fl−1. With this definition of the NN, θ denotes the collection of all
parameters of the NN: θ = (vec(W1), . . . , vec(WL)) ∈ Rp0 .

Details of the Initialization Scheme θ0 ∼ init(·). To obtain the initial parameters θ0, for each

l = 1, . . . , L− 1, let Wl =

(
W 0
0 W

)
where each entry of W is independently sampled from

N (0, 4/m), and let WL = (w>,−w>) where each entry of w is independently sampled from
N (0, 2/m). This initialization scheme is the same as that used by the works of [47, 48].

Definitions of the NTK Matrices H and Hi’s. To simplify the exposition here, we use
{xj}j=1,...,TKN to denote the set of all contexts from all iterations, all arms and all agents:
{xkt,i}t∈[T ],k∈[K],i∈[N ]. We can then define

H̃
(1)
i,j = Σ

(1)
i,j = 〈xi, xj〉,A(l)

i,j =

(
Σ

(l)
i,i Σ

(l)
i,j

Σ
(l)
i,j Σ

(l)
j,j

)
,

Σ
(l+1)
i,j = 2E

(u,v)∼N (0,A
(l)
i,j)

max(u, 0)max(v, 0),

H̃
(l+1)
i,j = 2H̃

(l)
i,jE(u,v)∼N (0,A

(l)
i,j)

1(u > 0)1(v > 0) + Σ
(l+1)
i,j .

With these definitions, the NTK matrix is defined as H = (H̃(L) + Σ(L))/2. Similarly, Hi can be
obtained in the same way by only using all contexts from agent i in the definitions above, i.e., now
we use {xj}j=1,...,TK to denote {xkt,i}t∈[T ],k∈[K] and plug these TK contexts into the definitions
above to obtain Hi.

B Proof of Regret Upper Bound (Theorem 1)

We use p to index different epochs and denote by P the total number of epochs. We use tp to denote
the first iteration of epoch p, and use Ep to represent the length (i.e., number of iterations) of epoch p.
Throughout our theoretical analysis, we will denote different error probabilities as δ1, . . . , δ6, which
we will combine via a union bound at the end of the proof to ensure that our final regret upper bound
holds with probability of at least 1− δ.

B.1 Conditions on the Width m of the Neural Networks

We list here the detailed conditions on the width m of the NN that are needed by our theoretical
analysis. These include two types of conditions, some of them (conditions 1-4) are required for our
regret upper bound to hold (i.e., they are used during the proof to derive the regret upper bound),
whereas the others (conditions 5-6) are used after the final regret upper bound is derived to ensure
that the final regret upper bound is small (see Appendix B.6).

When presenting our detailed proofs starting from the next subsection, we will refer to each of these
conditions whenever they are used by the corresponding lemmas. Different lemmas may use different
leading constants in their required condition (i.e., lower bound) on m, but here we use the same
constant C > 0 for all lower bounds for simplicity, which can be considered as simply taking the
maximum among all these different leading constants for different lemmas.
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1. m ≥ CT 6K6N6L6 log(TKNL/δ),

2. m ≥ CT 4K4N4L6 log(T 2K2N2L/δ)/λ40,

3. m ≥ C
√
λL−3/2[log(TKNL2/δ)]3/2,

4. m(logm)−3 ≥ CTL12λ−1 + CT 7λ−8L18(λ+ LT )6 + CL21T 7λ−7(1 +
√
T/λ)6.

5. m(logm)−3 ≥ CT 10N6λ−4L18,

6. m(logm)−3 ≥ CT 16N6L24λ−10(1 +
√
T/λ)6.

Some of these conditions above can be combined, but we leave them as separate conditions to make
it easier to refer to the corresponding place in the proof where a particular condition is needed.

Furthermore, to achieve a small upper bound on the cumulative regret, we also need to place some
conditions on the learning rate η and number of iterations J for the gradient descent training (line 13
of Algo. 1). Specifically, we need to choose the learning rate as

η = C4(mλ+mTL)−1, (2)

in which C4 > 0 is an absolute constant such that C4 ≤ 1 + TL, and choose

J =
1

C4

(
1 +

TL

λ

)
log

(
1

3C2N

√
λ

T 3L

)
= Õ

(
TL/(λC4)

)
. (3)

B.2 Definition of Good and Bad Epochs

Denote the matrix Vlast (see line 17 of Algo. 1) after epoch p as Vp. As a result, the matrix VP is
calculated using all selected inputs from all agents: VP =

∑T
t=1

∑N
i=1 g(xt,i; θ0)g(xt,i; θ0)

>/m+

λI . Define V0 , λI . Imagine that we have a hypothetical agent which chooses all T × N
queries {xt,i}t∈[T ],i∈[N ] sequentially in a round-robin fashion (i.e., the hypothetical agent chooses
x1,1, x1,2, . . . , x2,1, x2,2, . . . , xT,N ), and denote the corresponding hypothetical covariance matrix
as Ṽt,i =

∑t−1
τ=1

∑N
j=1 g(xτ,j ; θ0)g(xτ,j ; θ0)

>/m +
∑i
j=1 g(xt,j ; θ0)g(xt,j ; θ0)

>/m + λI . We
represent the indices of this hypothetical agent by t′ ∈ [TN ] to distinguish it from our original
multi-agent setting. Define JTN , [g(xt′ ; θ0)]t′∈[TN ] which is a p0 × (TN) matrix, and define
KTN , J>TNJTN/m, which is a (TN)× (TN) matrix. According to thes definitions, we have that

Lemma 1 (Lemma B.7 of [47]). Let δ1 ∈ (0, 1). If m ≥ CT 6N6K6L6 log(TNKL/δ1), we have
with probability of at least 1− δ1 that

log det(I + λ−1Kt′) ≤ log det(I + λ−1H) + 1,∀t′ ∈ [TN ].

The condition on m given in Lemma 1 corresponds to condition 1 listed in Appendix B.1, except that
δ1 is used here instead of δ in Appendix B.1. Lemma 1 allows us to derive the following equation,
which we will use (at the end of this section) to justify that the total number of "bad" epochs is not

14



too large.

P−1∑
p=0

log
detVp+1

detVp
= log

detVP
detV0

(a)
= log

det
(
JTNJ

>
TN/m+ λI

)
detV0

= log
det
(
λ
(
λ−1JTNJ

>
TN/m+ I

))
detV0

(b)
= log

λp0det
(
λ−1JTNJ

>
TN/m+ I

)
λp0

= log det
(
λ−1JTNJ

>
TN/m+ I

)
(c)
= log det

(
λ−1J>TNJTN/m+ I

)
= log det

(
λ−1KTN + I

)
(d)

≤ log det
(
λ−1H + I

)
+ 1

(e)
= d̃ log(1 + TKN/λ) + 1 , R′.

(4)

Step (a) is because VP = JTNJ
>
TN/m + λI according to our definition of JTN above. Step

(b) follows from our definition of V0 = λI above, as well as some standard properties of matrix
determinant. Step (c) follows because: det(AA> + I) = det(A>A + I). Step (d) has made use
of Lemma 1 above, which suggests that Equation (4) holds with probability of at least 1− δ1. Step
(e) follows from the definition of d̃ , log det(I+H/λ)

log(1+TKN/λ) (Sec. 3). In the last step, we have defined

R′ , d̃ log(1+TKN/λ)+1. We further define R , dR′e, in which d·e denotes the ceiling operator.

Now we define all epochs p’s which satisfy the following condition as "good epochs":

1 ≤ detVp
detVp−1

≤ e, (5)

and define all other epochs as "bad epochs". The first inequality trivially holds for all epochs
according to the way in which the matrices are constructed. It is easy to verify that the second
inequality holds for at least R epochs (with probability of at least 1 − δ1). This is because if the
second inequality is violated for more than R epochs (i.e., if log detVp

detVp−1
> 1 for more than R epochs),

then
∑P−1
p=0 log

detVp+1

detVp
> R, which violates equation (4). This suggests that there are no more than

R bad epochs (with probability of at least 1− δ1). From here onwards, we will denote the set of good
epochs by Egood and the set of bad epochs by Ebad.

B.3 Validity of the Upper Confidence Bound

In this section, we prove that the upper confidence bound used in our algorithm, (1−αt)UCBat,i(x)+
αtUCBbt,i(x) (used in line 6 of Algo. 1), is a valid high-probability upper bound on the reward function
h. We will achieve this by separately proving that UCBat,i and UCBbt,i are valid high-probability
upper bounds on h in the next two sections.

B.3.1 Validity of UCBat,i as A High-Probability Upper Bound on h:

To begin with, we will need the following lemma from [47].
Lemma 2 (Lemma B.3 of [47]). Let δ2 ∈ (0, 1). There exists a constant C > 0 such that if

m ≥ CT 4K4N4L6 log(T 2K2N2L/δ2)/λ
4
0,

then with probability of ≥ 1− δ2 over random initializations of θ0, there exists a θ∗ ∈ Rp0 such that

h(x) = 〈g(x; θ0), θ∗ − θ0〉,
√
m‖θ∗ − θ0‖2 ≤

√
2h>H−1h ≤ B, ∀x ∈ Xt,i, t ∈ [T ], i ∈ [N ].

(6)
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The condition on m required by Lemma 2 corresponds to condition 2 listed in Appendix B.1, except
that δ2 is used here instead of δ as in Appendix B.1. The following lemma formally guarantees the
validity of UCBat,i as a high-probability upper-bound on h.

Lemma 3. Let δ3 ∈ (0, 1) and νTKN = B + R

√
2(log(1/δ3) + 1) + d̃ log(1 + TKN/λ). We

have with probability of at least 1− δ1 − δ2 − δ3 for all t ∈ [T ], i ∈ [N ], that

|h(x)− 〈g(x; θ0)/
√
m, θt,i〉| ≤ νTKN

√
λ
∥∥g(x; θ0)/√m∥∥V −1

t,i
,∀x ∈ Xt,i

Proof. Lemma 3 can be proved by following similar steps as the proof of Lemma 4.3 in the work
of [47]. Specifically, the proof of Lemma 3 requires Lemmas B.3, B.6 and B.7 of [47] (after being
adapted for our setting). The adapted versions of Lemmas B.3 and B.7 of [47] have been presented in
our Lemma 2 and Lemma 1, respectively. Of note, Lemma 1 and Lemma 2 require some conditions
on the width m of the NN, which have been listed as conditions 1 and 2 in Appendix B.1. Lastly,
Lemma B.6 of [47], which makes use of Theorem 1 of [9], can be directly applied in our setting
and introduces an error probability of δ3 (which appears in the expression of νTKN ). As a result,
Lemma 3 holds with probability of at least 1− δ1 − δ2 − δ3, in which the error probabilities come
from Lemma 1 (δ1), Lemma 2 (δ2) and the application of Lemma B.6 of [47] (δ3).

B.3.2 Validity of UCBbt,i as A High-Probability Upper Bound on h:

Note that UCBbt,i is updated only in every communication round. We denote the set of iterations after
which UCBbt,i is updated (i.e., the last iteration in every epoch) as T−1 , {tp − 1}p=2,...,P−1, which
immediately implies that T−1 ⊂ [T ] and hence |T−1| ≤ T .

Lemma 4. Let δ4, δ5 ∈ (0, 1), and νTK = B + R

√
2(log(N/δ4) + 1) + d̃max log(1 + TK/λ)

Suppose the width m of the NN satisfies m ≥ C
√
λL−3/2[log(TKNL2/δ5)]

3/2 for some constant
C > 0, as well as condition 4 in Appendix B.1. Suppose the learning rate η and number of iterations
J of the gradient descent training satisfy the conditions in (2) and (3) (Appendix B.1), respectively.
We have with probability of at least 1− δ4 − δ5 for all t ∈ T−1, i ∈ [N ], that

|h(x)− f(x; θsync,NN)| ≤ νTK
√
λ
∥∥g(x; θ0)/√m∥∥V −1

sync,NN
+ εlinear(m,T ),∀x ∈ Xt,i.

Proof. Note that the condition on m listed in the lemma, m ≥ C
√
λL−3/2[log(TKNL2/δ5)]

3/2,
corresponds to condition 3 listed in Appendix B.1 except that δ5 is used here instead of δ. Therefore,
the validity of Lemma 4 requires conditions 3 and 4 on m (Appendix B.1) to be satisfied. For ease of
exposition, we separate our proof into three steps.

Step 1: NN Output f(x; θsync,NN) Is Close to (Averaged) Linear Prediction

Based on Lemma C.2 of [47], if the conditions on m listed in Lemma 4 is satisfied, then for any θ̃
such that

∥∥∥θ̃ − θ0∥∥∥
2
≤ 2
√
t/(mλ), there exists a constant C1 > 0 such that we have with probability

of at least 1− δ5 over random initializations θ0 that
|f(x; θ̃)− 〈g(x; θ0), θ̃ − θ0〉| ≤ C1t

2/3m−1/6λ−2/3L3
√

logm

≤ C1T
2/3m−1/6λ−2/3L3

√
logm

, εlinear,1(m,T ),

(7)

which holds ∀x ∈ Xt,i, t ∈ [T ], i ∈ [N ].

Also note that according to Lemma C.1 of [47], if conditions 3 and 4 on m listed in Appendix B.1,
as well as the condition on η (2), are satisfied, then we have with probability of at least 1− δ5 over
random initializations θ0 that

∥∥θit − θ0∥∥2 ≤ 2
√
t/mλ, ∀i ∈ [N ]. An immediate implication is that

the aggregated NN parameters θsync,NN = 1
N

∑N
i=1 θ

i
t also satisfies:

∥∥θsync,NN − θ0
∥∥
2
=

∥∥∥∥∥∥ 1

N

N∑
i=1

θit − θ0

∥∥∥∥∥∥
2

≤ 1

N

N∑
i=1

∥∥∥θit − θ0∥∥∥
2
≤ 2
√
t/mλ.
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This implies that equation (7) holds for θsync,NN with probability of at least 1− 2δ5:

|f(x; θsync,NN)− 〈g(x; θ0), θsync,NN − θ0〉| ≤ εlinear,1(m,T ). (8)

Next, note that the θit is obtained by training only using agent i’s local observations (line 13 of
Algo. 1). Define θlocal

t,i = (V local
t,i )−1(

∑t
τ=1 yτ,ig(xτ,i; θ0)/

√
m). Note that θlocal

t,i is calculated in
the same way as θt,i (line 3 of Algo. 1), except that its calculation only involves agent i’s local
observations. Next, making use of Lemmas C.1 and C.4 of [47], we can follow similar steps as
equation C.3 of [47] (in Appendix C.2 of [47]) to show that there exists constants C2 > 0 and C3 > 0
such that we have ∀x ∈ Xt,i, t ∈ [T ], i ∈ [N ] that

|〈g(x; θ0), θit − θ0〉 − 〈g(x; θ0)/
√
m, θlocal

t,i 〉|

≤ C2(1− ηmλ)J
√
tL/λ+ C3m

−1/6
√
logmL4t5/3λ−5/3(1 +

√
t/λ)

≤ C2(1− ηmλ)J
√
TL/λ+ C3m

−1/6
√
logmL4T 5/3λ−5/3(1 +

√
T/λ)

, εη,J + εlinear,2(m,T ).

(9)

We refer to 〈g(x; θ0)/
√
m, θlocal

t,i 〉 as the linear prediction because it is the prediction of the linear
model with the neural tangent features g(x; θ0)/

√
m as the input features, conditioned on the local

observations of agent i. Note that similar to (8) which also relies on Lemma C.1 of [47], (9) also
requires conditions 3 and 4 on m, as well as the condition on η, in Appendix B.1 to be satisfied. (9)
holds with probability of at least 1− 2δ5, where the error probabilities come from the use of Lemmas
C.1 and C.4 of [47].

Next, we can bound the difference between f(x; θsync,NN) (i.e., the prediction of the NN with the
aggregated parameters) and the averaged linear predictions of all agents calculated using their local
observations:

|f(x; θsync,NN)−
1

N

N∑
i=1

〈g(x; θ0)/
√
m, θlocal

t,i 〉| ≤ |f(x; θsync,NN)−
1

N

N∑
i=1

〈g(x; θ0), θit − θ0〉|

+ | 1
N

N∑
i=1

〈g(x; θ0), θit − θ0〉 −
1

N

N∑
i=1

〈g(x; θ0)/
√
m, θlocal

t,i 〉|

≤ |f(x; θsync,NN)− 〈g(x; θ0), θsync,NN − θ0〉|

+
1

N

N∑
i=1

|〈g(x; θ0), θit − θ0〉 − 〈g(x; θ0)/
√
m, θlocal

t,i 〉|

≤ εlinear,1(m,T ) +
1

N

N∑
i=1

(εη,J + εlinear,2(m,T ))

≤ εlinear,1(m,T ) + εη,J + εlinear,2(m,T )

, εlinear(m,T ).
(10)

In the second inequality, we plugged in the definition of θsync,NN = 1
N

∑N
i=1 θ

i
t. In the third inequality,

we have made use of (8) and (9). Equation (10) holds with probability of at least 1 − 4δ5, where
the error probabilities come from (8) (2δ5) and (9) (2δ5), respectively. Now we replace δ5 by δ5/4,
which ensures that (10) holds with probability of at least 1− δ5. This will only introduce a factor of
4 within the log of condition 3 on m (Appendix B.1), which is ignored since it can be absorbed by
the constant C.

Step 2: Linear Prediction Is Close to the Reward Function h(x)

In the proof in this section, we will also need a "local" variant of the confidence bound of Lemma 3,
i.e., the confidence bound of Lemma 3 calculated only using the local observations of an agent i:

Lemma 5 ([47]). We have with probability of at least 1− δ4 for all t ∈ T−1 ⊂ [T ], i ∈ [N ], that

|h(x)− 〈g(x; θ0)/
√
m, θlocal

t,i 〉| ≤ νTK
√
λ
∥∥g(x; θ0)/√m∥∥(V local

t,i )−1 ,∀x ∈ Xt,i.
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Proof. Similar to the proof of Lemma 3 (Appendix B.3.1), the proof of Lemma 5 also requires of
Lemmas B.3, B.6 and B.7 from [47], which, in this case, can be directly applied to our setting (except
that we need an additional union bound over all N agents). The implication of the additional union
bound on the error probabilities is taken care of by the additional term of N within the log in the
expression of νTK (Lemma 4), and in conditions 1 and 2 on m (see Appendix B.1, and also Lemmas
2 and 1). The required lower bounds on m by the local variants of Lemmas B.3 and B.7 (required in
the proof here) are smaller than those given in Lemmas 2 and 1 and hence do not need to appear in
the conditions in Appendix B.1. By letting the sum of the three error probabilities (resulting from
the applications of Lemmas B.3, B.6 and B.7 of [47]) be δ4, we can ensure that Lemma 5 holds
with probability of at least 1− δ4. For simplicity, we let the error probability for Lemma B.6 be δ4,
which leads to the cleaner expression of νTK in Lemma 4. This means that the error probabilities for
Lemmas B.3 and B.7 are very small, which can be accounted for by simply increasing the value of
the absolute constant C in conditions 1 and 2 on m (Appendix B.1) and hence does not affect our
main theoretical analysis.

Step 3: Combining Results from Step 1 and Step 2

Next, we are ready to prove the validity of UCBbt,i by using the averaged linear prediction
1
N

∑N
i=1〈g(x; θ0)/

√
m, θlocal

t,i 〉 as an intermediate term:

|f(x;θsync,NN)− h(x)|

≤ |f(x; θsync,NN)−
1

N

N∑
i=1

〈g(x; θ0)/
√
m, θlocal

t,i 〉+
1

N

N∑
i=1

〈g(x; θ0)/
√
m, θlocal

t,i 〉 − h(x)|

≤ 1

N

N∑
i=1

|〈g(x; θ0)/
√
m, θlocal

t,i 〉 − h(x)|+ εlinear(m,T )

≤ 1

N

N∑
i=1

νTK
√
λ
∥∥g(x; θ0)/√m∥∥(V local

t,i )−1 + εlinear(m,T )

= νTK
1

N

N∑
i=1

√
λg(x; θ0)>(V

local
t,i )−1g(x; θ0)/m+ εlinear(m,T )

≤ νTK

√√√√ 1

N

N∑
i=1

λg(x; θ0)>(V
local
t,i )−1g(x; θ0)/m+ εlinear(m,T )

= νTK

√√√√√λg(x; θ0)>

 1

N

N∑
i=1

(V local
t,i )−1

 g(x; θ0)/m+ εlinear(m,T )

= νTK

√
λg(x; θ0)>

(
V −1sync,NN

)
g(x; θ0)/m+ εlinear(m,T )

= νTK
√
λ
∥∥g(x; θ0)/√m∥∥V −1

sync,NN
+ εlinear(m,T ).

(11)

The second inequality has made use of (10), the third inequality follows from Lemma 5, the fourth
inequality results from the concavity of the square root function. In the second last equality, we have
plugged in the definition of V −1sync,NN = 1

N

∑N
i=1(V

local
t,i )−1. As a results, (11) holds with probability

of at least 1−δ4−δ5, in which the error probabilities come from Equation (10) (δ5) and Lemma 5 (δ4).
In other words, Lemma 4 (i.e., the validity of UCBbt,i) holds with probability of at least 1− δ4 − δ5.

B.4 Regret Upper Bound for Good Epochs

In this section, we derive an upper bound on the total regrets incurred in all good epochs Egood

(Appendix B.2).
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B.4.1 Auxiliary Inequalities

We firstly derive two auxiliary results which will be used in the proofs later.

To begin with, for agent i and iteration t in a good epoch p ∈ Egood, we have that

√
λ
∥∥g(x; θ0)/√m∥∥V −1

t,i
=

√
λg(x; θ0)>V

−1
t,i g(x; θ0)/m

≤

√
λg(x; θ0)>Ṽ

−1
t,i g(x; θ0)/m

detṼt,i
detV t,i

≤

√
λg(x; θ0)>Ṽ

−1
t,i g(x; θ0)/m

detVp
detVp−1

≤
√
eλg(x; θ0)>Ṽ

−1
t,i g(x; θ0)/m

=
√
eλ
∥∥g(x; θ0)/√m∥∥Ṽ −1

t,i

.

(12)

Recall that V t,i (line 3 of Algo. 1) is used by agent i in iteration t to select xt,i (via UCBat,i), and
that the matrix Ṽt,i is defined for the hypothetical agent which sequentially chooses all TN queries
{xt,i}t∈[T ],i∈[N ] in a round-robin fashion (Appendix B.2). The first inequality in (12) above follows
from Lemma 12 of [1]. The second inequality is because Vp contains more information than Ṽt,i
(since Vp is calculated using all the inputs selected after epoch p), and Vp−1 contains less information
than V t,i (because compared with Vp−1, V t,i additionally contains the local inputs selected by agent
i in the current epoch p). In the last inequality, we have made use of the definition of good epochs,
i.e., (detVp)/(detVp−1) ≤ e (Appendix B.2).

Next, we also need the following auxiliary result for agent i and iteration t in a good epoch p ∈ Egood:

√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

sync,NN
=
√
λg(xt,i; θ0)>V

−1
sync,NNg(xt,i; θ0)/m

=

√√√√λg(xt,i; θ0)>
( 1

N

N∑
j=1

(V local
tp,j

)−1
)
g(xt,i; θ0)/m

=

√√√√ 1

N

N∑
j=1

λg(xt,i; θ0)>(V
local
tp,j

)−1g(xt,i; θ0)/m

≤ 1√
N

N∑
j=1

√
λg(xt,i; θ0)>(V

local
tp,j

)−1g(xt,i; θ0)/m

≤ 1√
N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/√m∥∥(V local

tp,j)
−1 .

(13)

The first inequality is because
√
a+ b ≤

√
a+
√
b. Note that in the equation above, V local

tp,j
is indexed

by tp because in epoch p, every V local
tp,j

used in the aggregation to obtain V −1sync,NN is calculated using
agent j’s local observations before iteration tp, i.e., before the first iteration of epoch p.

B.4.2 Upper Bound on the Instantaneous Regret rt,i

Here we assume that both UCBat,i and UCBbt,i hold (hence we ignore the error probabilities here),
which we have proved in Appendix B.3. We now derive an upper bound on the instantaneous regret
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rt,i = h(x∗t,i)− h(xt,i) for agent i and iteration t in a good epoch p ∈ Egood:

rt,i = h(x∗t,i)− h(xt,i)
= αth(x

∗
t,i) + (1− αt)h(x∗t,i)− h(xt,i)

≤ αtUCBbt,i(x
∗
t,i) + αtεlinear(m,T ) + (1− αt)UCBat,i(x

∗
t,i)− h(xt,i)

≤ αtUCBbt,i(xt,i) + (1− αt)UCBat,i(xt,i) + αtεlinear(m,T )− h(xt,i)

= αt

(
UCBbt,i(xt,i)− h(xt,i)

)
+ (1− αt)

(
UCBat,i(xt,i)− h(xt,i)

)
+ αtεlinear(m,T )

≤ αt
(
2νTK

√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

sync,NN
+ εlinear(m,T )

)
+

(1− αt)
(
2νTKN

√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i

)
+ αtεlinear(m,T )

≤ αt
(
2νTK

1√
N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/√m∥∥(V local

tp,j)
−1 + εlinear(m,T )

)
+

(1− αt)
(
2νTKN

√
eλ
∥∥g(xt,i; θ0)/√m∥∥Ṽ −1

t,i

)
+ αtεlinear(m,T )

= αt2νTK
1√
N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/√m∥∥(V local

tp,j)
−1 +

(1− αt)2νTKN
√
eλ
∥∥g(xt,i; θ0)/√m∥∥Ṽ −1

t,i

+ 2αtεlinear(m,T )

, (1− αt)2νTKN
√
eσ̃t,i(xt,i) + αt2νTK

1√
N

N∑
j=1

σ̃local
tp,j (xt,i) + 2αtεlinear(m,T ).

(14)

The first inequality makes use of Lemma 3 (i.e., the validity of UCBat,i) and Lemma 4 (i.e., the
validity of UCBbt,i). The second inequality follows from the way in which xt,i is selected (line 6
of Algo. 1): xt,i = argmaxx∈Xt,i

(1 − αt)UCBat,i(x) + αtUCBbt,i(x). The third inequality again
makes use of Lemma 3 and Lemma 4, as well as the expressions of UCBat,i and UCBbt,i. In the
fourth inequality, we have made used of the auxiliary inequalities of (12) and (13) we derived in
the last section. In the last step, we have defined σ̃local

tp,j
(xt,i) ,

√
λ
∥∥g(xt,i; θ0)/√m∥∥(V local

tp,j)
−1 which

represents the GP posterior standard deviation (using the kernel of k̃(x, x′) = g(x; θ0)
>g(x′; θ0)/m)

conditioned on all agent j’s local observations before iteration tp. Note that σ̃local
tp,j

(xt,i) is the same as
the one defined in Sec. 4 of the main text, in the paragraph where we explain the weight between the
two UCBs. Similarly, we have also defined σ̃t,i(xt,i) ,

√
λ
∥∥g(xt,i; θ0)/√m∥∥Ṽ −1

t,i

, which represents
the GP posterior standard deviation conditioned on the observations of the hypothetical agent before
xt,i is selected (Appendix B.2).

Next, we will separately derive upper bounds on the summation (across all good epochs and all
agents) of the first and second terms of the upper bound from equation (14).

B.4.3 Upper Bound on the Sum of the First term of (14)

Here, similar to [24], we denote as κ0 an upper bound on the value of the NTK function for any
input: 〈g(x; θ0)/

√
m, g(x; θ0)/

√
m〉 ≤ κ0,∀x ∈ Xt,i, t ∈ [T ], i ∈ [N ]. As a result, we can use it

to show that both σ̃t,i(x) and σ̃local
tp,j

(x) can be upper-bounded: σ̃t,i(x) ≤
√
κ0 and σ̃local

tp,j
(x) ≤ √κ0.

To show this, following the notations of Appendix B.2, we denote Ṽt,i = Jt,iJ
>
t,i + λI where

Jt,i =
[[
g(xτ,j ; θ0)

]
τ∈[t−1],j∈[N ]

,
[
g(xt,j ; θ0)

]
j∈[i]

]
which is a p0 × [(t− 1)N + i] matrix. Then
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we have

σ̃2
t,i(x) = λ

∥∥g(x; θ0)/√m∥∥2Ṽ −1
t,i

= λg(x; θ0)
>(Jt,iJ

>
t,i + λI)−1g(x; θ0)/m

= λg(x; θ0)
>
( 1
λ
I − 1

λ
Jt,i
(
I + J>t,i

1

λ
Jt,i
)−1

J>t,i
1

λ

)
g(x; θ0)/m

= g(x; θ0)
>g(x; θ0)/m− (g(x; θ0)

>/
√
m)Jt,i

(
λI + J>t,iJt,i

)−1
J>t,i(g(x; θ0)/

√
m)

= g(x; θ0)
>g(x; θ0)/m−

∥∥∥(g(x; θ0)>/√m)Jt,i

∥∥∥2(
λI+J>t,iJt,i

)−1

≤ g(x; θ0)>g(x; θ0)/m ≤ κ0

(15)

where we used the matrix inversion lemma in the third equality. Using similar derivations also allows
us to show that (σ̃local

tp,j
(x))2 ≤ κ0. Therefore, we have that σ̃t,i(x) ≤

√
κ0 and σ̃local

tp,j
(x) ≤ √κ0.

Denoting the set of iterations from all good epochs as T good, we can derive an upper bound the first
term of (14), summed across all agents i ∈ [N ] and all iteration in good epochs T good:

N∑
i=1

∑
t∈T good

(1− αt)2νTKN
√
eσ̃t,i(xt,i)

(a)

≤ 2
√
eνTKN

N∑
i=1

T∑
t=1

σ̃t,i(xt,i)

(b)
= 2
√
eνTKN

N∑
i=1

T∑
t=1

min{σ̃t,i(xt,i),
√
κ0}

(c)

≤ 2
√
eνTKN

N∑
i=1

T∑
t=1

min{
√
κ0σ̃t,i(xt,i),

√
κ0}

≤ 2
√
eνTKN

√
κ0

N∑
i=1

T∑
t=1

min{σ̃t,i(xt,i), 1}

(d)

≤ 2
√
eνTKN

√
κ0

√√√√TN

N∑
i=1

T∑
t=1

min{σ̃2
t,i(xt,i), 1}

(e)

≤ 2
√
eνTKN

√
κ0
√
TN [2λ log det(λ−1KTN + I)]

(f)

≤ 2
√
2eνTKN

√
κ0
√
TNλ[log det(λ−1H + I) + 1]

= 2
√
eνTKN

√
κ0

√
TNλ

[
d̃ log(1 + TNK/λ) + 1

]

(16)

Step (a) follows from αt ≤ 1,∀t ≥ 1 and summing across all iterations [T ] instead of only those
iterations T good in good epochs. Step (b) follows because σ̃t,i(x) ≤

√
κ0 as discussed above. In step

(c), we have assumed that κ0 ≥ 1; however, if κ0 < 1, the proof still goes through since we can
directly upper-bound min{σ̃t,i(xt,i),

√
κ0} by min{σ̃t,i(xt,i), 1}, after which the only modification

we need to make to the equation above is to remove the dependency on multiplicative term of
√
κ0.

Step (d) results from the Cauchy–Schwarz inequality. Step (e) can be derived following the proof
of Lemma 4.8 of [47] (in Appendix B.7 of [47]). Step (f) follows from Lemma 1 and hence holds
with probability of at least 1− δ1. The last equality simply plugs in the definition of the effective
dimension d̃ (Sec. 3).

B.4.4 Upper Bound on the Sum of the Second term of (14)

In this subsection, we derive an upper bound on the sum of the second term in equation (14) across
all good epochs and all agents.

For the proof here, we need a "local" version of Lemma 1, i.e., a version of Lemma 1 which only
makes use of the contexts of an agent i. Define Kt,i as the local counterpart to Kt′ (from Lemma 1),
i.e., Kt,i is the t × t matrix calculated using only agent j’s local contexts up to (and including)
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iteration t. Specifically, define Jt,i , [g(xτ,i; θ0)]τ∈[t] which is a p0 × t matrix, then Kt,i is defined
as Kt,i , J>t,iJt,i/m, which is a t× t matrix. Also recall that in the main text, we have defined Hi

as the local counterpart of H for agent i (Sec. 3). The next lemma gives our desired local version of
Lemma 1.

Lemma 6 (Lemma B.7 of [47]). If m ≥ CT 6K6L6 log(TNKL/δ6), we have with probability of at
least 1− δ6 that

log det(I + λ−1Kt,i) ≤ log det(I + λ−1Hi) + 1,

for all t ∈ [T ], i ∈ [N ].

We needed to take a union bound over all N agents, which explains the factor of N within the log in
the lower bound on m given in Lemma 6. Note that the required lower bound on m by Lemma 6
is smaller than that of Lemma 1 (by a factor of N6), therefore, the condition on m in Lemma 6 is
ignored in the conditions listed in Appendix B.1.

Of note, throughout the entire epoch p, σ̃local
tp,j

(xt,i) is calculated conditioned on all the local
observations of agent j before iteration tp. Denote by T (p) the iteration indices in epoch p:
T (p) = {tp, . . . , tp+Ep−1}. In the proof in this section, as we have discussed in the first paragraph
of Sec. 5.1, we analyze a simpler variant of our algorithm where we only set αt > 0 in the first
iteration after a communication round, i.e., αt > 0,∀t ∈ {tp}p∈[P ] and αt = 0,∀t ∈ [T ] \ {tp}p∈[P ].
Now we are ready to derive an upper bound on the second term in equation (14), summed over all
agents and all good epochs:

N∑
i=1

∑
p∈Egood

∑
t∈T (p)

αt2νTK
1√
N

N∑
j=1

σ̃local
tp,j (xt,i)

(a)

≤ 2νTK
1√
N

N∑
i=1

∑
p∈[P ]

∑
t∈T (p)

αt

N∑
j=1

σ̃local
tp,j (xt,i)

(b)

≤ 2νTK
1√
N

N∑
i=1

N∑
j=1

∑
p∈[P ]

αtp σ̃
local
tp,j (xtp,i)

(c)

≤ 2νTK
1√
N

N∑
i=1

N∑
j=1

∑
p∈[P ]

σ̃local
tp,j (xtp,j)

(d)

≤ 2νTK
1√
N

N∑
i=1

N∑
j=1

T∑
t=1

σ̃local
t−1,j(xt,j)

(17)

The inequality in step (a) results from summing across all epoch p ∈ [P ] instead of only good epochs
p ∈ Egood. Step (b) follows since αt = 0,∀t ∈ [T ] \ {tp}p∈[P ] as we discussed above, therefore,
for every epoch p, we only need to keep the first term of t = tp in the summation of t ∈ T (p). To
understand step (c), recall that in the main text (Sec. 4, the paragraph "The Weight between the Two
UCBs"), we have defined: σ̃local

t,i,min , minx∈X σ̃
local
t,i (x) and σ̃local

t,i,max , maxx∈X σ̃
local
t,i (x),∀i ∈ [N ].

Next, note that our algorithm selects αt by: αt = mini∈[N ] αt,i (line 4 of Algo. 2) where αt,i =
σ̃local
t,i,min/σ̃

local
t,i,max (line 14 of Algo. 1). As a result, we have that

αtp = min
i∈[N ]

αtp,i = min
i∈[N ]

σ̃local
tp,i,min

σ̃local
tp,i,max

≤
σ̃local
tp,j,min

σ̃local
tp,j,max

≤
σ̃local
tp,j

(xtp,j)

σ̃local
tp,j

(xtp,i)
,

which tells us that αtσ̃local
tp,j

(xtp,i) ≤ σ̃local
tp,j

(xtp,j) and hence leads to step (c). Step (d) results from
summing across all iterations [T ] instead of only the first iteration of every epoch: t ∈ {tp}p∈[P ].
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Next, we can derive an upper bound on the inner summation over t = 1, . . . , T from (17):

T∑
t=1

σ̃local
t−1,j(xt,j)

(a)

≤
√
κ0

T∑
t=1

min{σ̃local
t−1,j(xt,j), 1}

(b)

≤
√
κ0

√√√√T

T∑
t=1

min{
(
σ̃local
t−1,j(xt,j)

)2
, 1}

(c)

≤
√
κ0

√
T [2λ log det(λ−1KT,j + I)]

(d)

≤
√
2
√
κ0

√
Tλ[log det(λ−1Hj + I) + 1]

=
√
2
√
κ0

√
Tλ
[
d̃j log(1 + TK/λ)) + 1

]
.

(18)

Step (a) is obtained in the same way as steps (b) and (c) in (16) (Appendix B.4.3), i.e., we have
made use of σ̃local

tp−1,j(x) ≤
√
κ0 and assumed that κ0 ≥ 1. Again note that if κ0 < 1, then the

proof still goes through since σ̃local
t−1,j(xt,j) ≤ min{σ̃local

t−1,j(xt,j),
√
κ0} ≤ min{σ̃local

t−1,j(xt,j), 1}, after
which the only modification we need to make to the equation above is to remove the dependency
on multiplicative term of

√
κ0. Step (b) makes use of the Cauchy–Schwarz inequality. Step (c),

similar to step (e) of (16), is derived following the proof of Lemma 4.8 of [47] (in Appendix B.7 of
[47]). Step (d) follows from Lemma 6 and hence holds with probability of at least 1− δ6. In the last
equality, we have simply plugged in the definition of d̃j (Sec. 3).

Now we can plug (18) into (17) to obtain

N∑
i=1

∑
p∈Egood

∑
t∈T (p)

αt2νTK
1√
N

N∑
j=1

σ̃local
tp,j (xt,i)

≤ 2νTK
1√
N

N∑
i=1

N∑
j=1

√
2
√
κ0

√
Tλ
[
d̃j log(1 + TK/λ)) + 1

]

= 2
√
2νTK

√
κ0
√
N

N∑
j=1

√
Tλ
[
d̃j log(1 + TK/λ)) + 1

]
.

(19)

B.4.5 Putting Things Together

Finally, recall that our derived upper bound on rt,i in (14) contains three terms (the third term is
simply an error term), and now we can make use of our derived upper bound on the first term
(Appendix B.4.3) and the second term (Appendix B.4.4), summed over all agents and all good epochs,
to obtain an upper bound on the total regrets incurred in all good epochs:

Rgood
T =

N∑
i=1

∑
t∈T good

rt,i

≤ 2
√
eνTKN

√
κ0

√
TNλ

[
d̃ log(1 + TNK/λ) + 1

]
+

2
√
2νTK

√
κ0
√
N

N∑
j=1

√
Tλ
[
d̃j log(1 + TK/λ)) + 1

]
+ TNεlinear(m,T )

= Õ
(√

d̃
√
TNd̃+

√
d̃max

√
NN

√
T d̃max + TNεlinear(m,T )

)
= Õ

(
d̃
√
TN + d̃maxN

3/2
√
T + TNεlinear(m,T )

)
.

(20)

In the second last equality, we have used νTKN = Õ(
√
d̃) and νTK = Õ(

√
d̃max).
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B.5 Regret Upper Bound for Bad Epochs

In this section, we derive an upper bound on the total regrets from all bad epochs. To begin with, we
firstly derive an upper bound on the total regrets of any bad epoch p denoted as R[p]:

R[p] =

N∑
i=1

tp+Ep−1∑
t=tp

rt,i
(a)

≤
N∑
i=1

(
2 + 2 +

tp+Ep−2∑
t=tp+1

rt,i

)
(b)

≤
N∑
i=1

[
4 +

tp+Ep−2∑
t=tp+1

(
UCBat,i(x

∗
t,i)− h(xt,i)

)]
(c)

≤
N∑
i=1

[
4 +

tp+Ep−2∑
t=tp+1

(
UCBat,i(xt,i)− h(xt,i)

)]
(d)

≤
N∑
i=1

[
4 +

tp+Ep−2∑
t=tp+1

2νTKN
√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i

]
(e)

≤
N∑
i=1

(
4 + 2νTKN

√
κ0

tp+Ep−2∑
t=tp

min{
√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
, 1}
)

(f)

≤
N∑
i=1

(
4 + 2νTKN

√
κ0λ

tp+Ep−2∑
t=tp

min{
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
, 1}
)
(21)

Step (a) follows from simply upper-bounding the regrets of the first and last iteration within this
epoch by 2. Step (b) makes use of the validity of UCBat,i (Lemma 3). Step (c) follows because
αt = 0,∀t ∈ [T ] \ {tp}p∈[P ] (i.e., we set αt = 0 except for the first iteration of all epochs), which
implies that after the first iteration of an epoch, xt,i is selected by only maximizing UCBat,i (line 6 of
Algo. 1). Step (d) again uses Lemma 3, as well as the expression of UCBat,i. Step (e) is obtained in the
same way as steps (b) and (c) in (16) (Appendix B.4.3). Specifically, since 〈g(x; θ0), g(x; θ0)〉 ≤ κ0
(Appendix B.4.3), therefore,

√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
≤ √κ0, which can be proved by following

the same steps as (15). As a result, if we assume that κ ≥ 1, then
√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
=

min{
√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
,
√
κ0} ≤

√
κ0 min{

√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
, 1}; in the other

case where κ0 < 1, then
√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
= min{

√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
,
√
κ0} ≤

min{
√
λ
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
, 1}. Here we have assumed κ0 ≥ 1 for simplicity, since when

κ0 < 1, the equation above still holds except that we can remove the dependency on
√
κ0. Step (f)

follows because λ = 1 + 2/T > 1.

Next, we derive an upper bound on the inner summation in (21).
tp+Ep−2∑
t=tp

min{
∥∥g(xt,i; θ0)/√m∥∥V −1

t,i
, 1}

(a)

≤

√√√√(Ep − 1)

tp+Ep−2∑
t=tp

min{
∥∥g(xt,i; θ0)/√m∥∥2V −1

t,i
, 1}

(b)

≤

√
(Ep − 1)2 log

detV tp+Ep−2,i

detV tp,i

(c)

≤

√
2((tp + Ep − 2)− tlast) log

detVtp+Ep−2,i

detVlast

(d)

≤
√
2D.

(22)
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Step (a) follows from the Cauchy–Schwarz inequality. Step (b) makes use of Lemma 11 of [1]. In
step (c), we used the notations of tlast = tp−1, V tp,i = Vlast (this is because in the first iteration tp of
an epoch, Wnew,i = 0p0×p0 and hence V tp,i = Vlast =Wsync +λI), and Vtp+Ep−2,i = V tp+Ep−2,i+

g(xt,i; θ0)g(xt,i; θ0)
>/m, and also used detV tp+Ep−2,i ≤ detVtp+Ep−2,i. To understand step (d),

note that the term in step (c): ((tp+Ep−2)− tlast) log
detVtp+Ep−2,i

detVlast
is exactly the criterion we use to

check whether to start a communication round in iteration t = tp+Ep− 2 (line 10 of Algo. 1). Since
t = tp +Ep − 2 is not the last iteration in this epoch (i.e., we did not start a communication round
after checking this criterion in iteration t = tp + Ep − 2), therefore, this criterion is not satisfied in
iteration t = tp+Ep− 2, i.e., ((tp+Ep− 2)− tlast) log

detVtp+Ep−2,i

detVlast
≤ D, which explains step (d).

Next, we can plug (22) into (21) to obtain:

R[p] =

N∑
i=1

tp+Ep−1∑
t=tp

rt,i ≤
N∑
i=1

(
4 + 2νTKN

√
κ0λ
√
2D
)
=
(
4 + 2νTKN

√
2κ0λD

)
N, (23)

which gives an upper bound on the total regret from any bad epoch. Now recall that as we have
discussed in Sec. B.2, there are no more than R bad epochs (with probability of at least 1 − δ1).
Therefore, the total regret of all bad epochs can be upper-bounded by:

Rbad
T ≤ R

(
4 + 2νTKN

√
2κ0λD

)
N

≤
(
d̃ log(1 + TKN/λ) + 1

)(
4 + 2νTKN

√
2κ0λD

)
N

= Õ
(
d̃
√
d̃
√
DN

)
= Õ

(
(d̃)3/2

√
DN

)
.

(24)

In the second last equality, we have used νTKN = Õ(
√
d̃). By choosing D = O( T

Nd̃
) (line 1 of

Algo. 1), we can further express the above upper bound on the total regrets from all bad epochs as:

Rbad
T = O

(√ T

Nd̃
(d̃)3/2N

)
= O

(
d̃
√
TN

)
.

(25)

B.6 Final Regret Upper Bound

Here we derive an upper bound on the total cumulative regret by adding up the regrets resulting from
all good epochs (Appendix B.4) and all bad epochs (Appendix B.5):

RT = Rgood
T +Rbad

T

= Õ
(
d̃
√
TN + d̃maxN

3/2
√
T + TNεlinear(m,T ) + d̃

√
TN

)
= Õ

(
d̃
√
TN + d̃maxN

3/2
√
T + TNεlinear(m,T )

)
.

(26)

This regret upper bound holds with probability of at least 1− δ1 − δ2 − δ3 − δ4 − δ5 − δ6. We let
δ3 = δ4 = δ/3, which leads to the expressions of νTKN and νTK given in the main paper (Sec. 4).
We let δ1 = δ2 = δ5 = δ6 = δ/12, and this will only introduce an additional factor of log 12 in the
first three conditions on m in Appendix B.1 which can be absorbed by the constant C.

Next, the last term from the upper bound in (26) can be further written as:

TNεlinear(m,T ) = TN
(
εlinear,1(m,T ) + εlinear,2(m,T ) + εη,J

)
= TNC1T

2/3m−1/6λ−2/3L3
√

logm+ TNC3m
−1/6

√
logmL4T 5/3λ−5/3(1 +

√
T/λ)

+ TNC2(1− ηmλ)J
√
TL/λ

(27)
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It can be easily verified that as long as m(logm)−3 ≥ 36C6
1T

10N6λ−4L18 and m(logm)−3 ≥
36C6

3T
16N6L24λ−10(1+

√
T/λ)6 (which are ensured by conditions 5 and 6 onm in Appendix B.1),

then the first and second terms in (27) can both be upper-bounded by 1/3. Moreover, if the conditions
on η and J presented in Appendix B.1 are satisfied, i.e., if we choose the learning rate as η =
C4(mλ +mTL)−1 in which C4 > 0 is an absolute constant such that C4 ≤ 1 + TL, and choose

J = 1
C4

(
1 + TL

λ

)
log
(

1
3C2N

√
λ
T 3L

)
= Õ

(
TL/(λC4)

)
, then the third term in (27) can also be

upper-bounded by 1/3.

As a result, the last term from the upper bound in (26) can be upper-bounded by 1, and hence the
regret upper bound becomes:

RT = Õ
(
d̃
√
TN + d̃maxN

3/2
√
T
)
. (28)

Regret Upper Bound in Terms of the Maximum Information Gain γ. Next, we perform some
further analysis of the final regret upper bound derived above, which allows us to inspect the order
of growth of our regret upper bound in the worst-case scenario. We have defined in Sec. 3 that
d̃ ≤ 2γTKN/ log(1 + TKN/λ), d̃i ≤ 2γTK/ log(1 + TK/λ),∀i ∈ [N ] and d̃max = maxi∈[N ] d̃.
As a result, in our derivations in (20) and (24), we can replace d̃ log(1 + TKN/λ) by 2γTKN and
replace d̃j log(1 + TK/λ) by 2γTK , after which the regret upper bound becomes

RT = Õ
(
γTKN

√
TN + γTKN

3/2
√
T
)
. (29)

The growth rate of the maximum information gain of NTK has been characterized by previous works:
γT = Õ(T d−1

d ) [24, 42]. This implies that our regret upper bound can be further expressed as

RT = Õ
(
K

(d−1)
d (TN)

3d−2
2d +K

(d−1)
d T

3d−2
2d N3/2

)
= Õ

(
K

(d−1)
d T

3d−2
2d N3/2

)
.

When the input dimension is d = 1, this regret upper bound is sub-linear: RT = Õ(T 1/2N3/2).

C Proof of Upper Bound on Communication Complexity (Theorem 2)

In this section, we derive an upper bound on the communication complexity (i.e., the total number of
communication rounds) of our FN-UCB algorithm. Define ζ ,

√
DT/R. An immediate implication

is that there can be at most dT/ζe epochs whose length is larger than ζ. Next, we try to derive an
upper bound on the number of epochs whose length is smaller than ζ.

Note that if an epoch p contains less than ζ iterations, then because of our criterion to start a
communication round (line 10 of Algo. 1), we have that log detVp

detVp−1
> D

ζ . Also recall that equation (4)
(Appendix B.2) tells us that:

P−1∑
p=0

log
detVp+1

detVp
≤ R′ ≤ R, (30)

with probability of at least 1 − δ1 ≥ 1 − δ. Therefore, there can be at most d R
D/ζ e = d

Rζ
D e such

epochs whose length is smaller than ζ. As a result, the total number of epochs can be upper-bounded
by:

dT/ζe+ dRζ
D
e = O

(√TR

D

)
. (31)

Recall that R = Õ(d̃) (Appendix B.2). Therefore, with probability of at least 1− δ1 ≥ 1− δ, the

total number of epochs can be upper-bounded by Õ(
√

T d̃
D ).

Since we have chosen D = Õ( T
Nd̃

) (line 1 of Algo. 1), therefore, the total number of epochs can

be upper-bounded by Õ(
√

T d̃
T

Nd̃

) = Õ(d̃
√
N) = Õ

(
γTKN

√
N
)

, which is sub-linear in T since

γTKN = Õ((TKN)
d−1
d ). The proof here, and hence Theorem 2, makes use of Lemma 1. Therefore,

we only need condition 1 on m listed in Appendix B.1 to hold, and do not require any condition on η
and J .

26



0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

Cu
m

ul
at

iv
e 

Re
gr

et

Neural UCB
Neural TS
FN-UCB (N = 1)
FN-UCB (N = 2)
FN-UCB (N = 5)
FN-UCB (N = 10)
Kernel UCB
Kernel TS
Linear UCB
Linear TS

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200

250

Cu
m

ul
at

iv
e 

Re
gr

et

Neural UCB
Neural TS
FN-UCB (N = 1)
FN-UCB (N = 2)
FN-UCB (N = 5)
FN-UCB (N = 10)
Kernel UCB
Kernel TS
Linear UCB
Linear TS

(a) cosine (b) square

0 1000 2000 3000 4000 5000
Iterations

0

100

200

300

400

Cu
m

ul
at

iv
e 

Re
gr

et

Neural UCB
Neural TS
FN-UCB (N = 1)
FN-UCB (N = 2)
FN-UCB (N = 5)
FN-UCB (N = 5, D = 0.03)
Kernel UCB
Kernel TS
Linear UCB
Linear TS

0 1000 2000 3000 4000 5000
Iterations

0

200

400

600

800

1000

Cu
m

ul
at

iv
e 

Re
gr

et

Neural UCB
Neural TS
FN-UCB (N = 1)
FN-UCB (N = 2)
FN-UCB (N = 5)
FN-UCB (N = 5, D = 0.01)
Kernel UCB
Kernel TS
Linear UCB
Linear TS

(c) shuttle (d) magic telescope

Figure 3: Cumulative regrets for the (a) cosine, (b) square, (c) shuttle (with diagonalization),
and (d) magic telescope experiments, with additional comparisons with Linear UCB, Linear TS,
Kernel UCB and Kernel TS.

D More Experimental Details

Some of the experimental details (e.g., the number of layers and the width m of the NN used in every
experiment) are already described in the main text (Sec. 6). Following the works of [47, 48], when
training the NN (line 13 of Algo. 1) for agent i, we use the NN parameters resulting from the last
gradient descent training of agent i (instead of θ0) as the initial parameters, in order to accelerate the
training procedure. Every time we train an NN, we use stochastic gradient descent to train the NN for
30 iterations with a learning rate of 0.01. To save computational cost, we stop training the NNs after
2000 iterations, i.e., after 2000 iterations, all NN parameters are no longer updated. Also to reduce
the computational cost, when checking the criterion in line 10 of Algo. 1, we diagonalize (i.e., only
keep the diagonal elements of) the two matrices for which we need to calculate the determinant. Our
experiments are run on a server with 96 CPUs, an NVIDIA A100 GPU with a memory of 40GB, a
RAM of 256GB, running the Ubuntu system.

The shuttle dataset is publicly available at https://archive.ics.uci.edu/ml/datasets/
Statlog+(Shuttle) and contains no personally identifiable information or offensive content. It
includes 58000 instances, has an input dimension of d = 9 and contains K = 7 classes/arms.
As a result, according to the way in which the contexts are constructed (Sec. 6.2), every context
feature vector has a dimension of 9× 7 = 63. The magic telescope dataset is publicly available
at https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope and contains no
personally identifiable information or offensive content. The dataset contains 19020 instances, has an
input dimension of d = 10 and K = 2 classes/arms. As a result, every context feature vector has a
dimension of 10× 2 = 20.

When comparing with Linear-UCB, Linear TS, Kernelized UCB and Kernelized TS, we follow the
work of [47] to set λ = 1 and perform a grid search within ν ∈ {1, 0.1, 0.01}. The results showing
comparisons with these algorithms, for both the synthetic experiments (Sec. 6.1) and real-world
experiments (Sec. 6.2), are presented in Fig. 3. The figures show that both linear and kernelized
contextual bandit algorithms are outperformed by neural contextual bandit algorithms, which is
consistent with the observations from [47, 48].
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