
ar
X

iv
:1

91
1.

03
50

8v
1 

 [
cs

.L
G

] 
 8

 N
ov

 2
01

9

Incentive-aware Contextual Pricing with
Non-parametric Market Noise

Negin Golrezaei
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139 golrezae@mit.edu

Patrick Jaillet
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139

jaillet@mit.edu

Jason Cheuk Nam Liang
Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139 jcnliang@mit.edu

We consider a dynamic pricing problem for repeated contextual second-price auctions with strategic buyers

whose goals are to maximize their long-term time discounted utility. The seller has very limited informa-

tion about buyers’ overall demand curves, which depends on d-dimensional context vectors characterizing

auctioned items, and a non-parametric market noise distribution that captures buyers’ idiosyncratic tastes.

The noise distribution and the relationship between the context vectors and buyers’ demand curves are both

unknown to the seller. We focus on designing the seller’s learning policy to set contextual reserve prices

where the seller’s goal is to minimize his regret for revenue. We first propose a pricing policy when buyers

are truthful and show that it achieves a T -period regret bound of Õ(
√
dT ) against a clairvoyant policy that

has full information of the buyers’ demand. Next, under the setting where buyers bid strategically to max-

imize their long-term discounted utility, we develop a variant of our first policy that is robust to strategic

(corrupted) bids. This policy incorporates randomized “isolation” periods, during which a buyer is randomly

chosen to solely participate in the auction. We show that this design allows the seller to control the number

of periods in which buyers significantly corrupt their bids. Because of this nice property, our robust policy

enjoys a T -period regret of Õ(
√
dT ), matching that under the truthful setting up to a constant factor that

depends on the utility discount factor.

Key words : repeated auctions, learning with strategic agents, incentive-aware learning, pricing

1. Introduction

We study the fundamental problem of designing pricing policies for highly heterogeneous items.

This study is inspired by the availability of the massive amount of real-time data in online platforms
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and in particular, internet advertisement markets, where the seller has access to detailed infor-

mation about items features/contexts. In such environments, designing optimal policies involves

learning buyers’ demand, which is a mapping from item features and offered prices to the likelihood

of the item being sold. Our key goal is to develop effective and robust dynamic pricing polices

that facilitate such a complex learning process for very general non-parametric contextual demand

curves for both truthful and strategic buyers. The pricing policies should overcome the challenge of

having limited information about buyers’ willingness-to-pay, address the general learning problem

for non-parametric demand curves, and resolve the issues that arise along with buyers’ strategic

behavior.

Formally, we consider a setting wherein any period t, the seller sells one item to buyers via

running a second price auction with a reserve price. Note that in the second price auction, which is

a prevalent selling mechanism in online advertising markets, the item is allocated to a buyer with

the highest submitted bid as long as her bid is greater than or equal to the reserve price, and the

winner pays the maximum value between the reserve price and the second-highest bid.

The item is characterized by a d-dimensional feature vector xt, observed by the seller and buyers.

We consider an interdependent contextual valuation model in which the buyer’s valuation for

the item is the sum of common and private components. The common component, which is the

same across all the buyers, is a function of the feature vector; and the private component, which

captures buyers’ idiosyncratic tastes, is independently drawn from an unknown non-parametric

noise distribution F . The common component determines the expected willingness-to-pay of the

buyers and is the inner product of the feature vector and a fixed scaling factor β, which we call

the “mean vector”. We note that such a linear valuation model is very common in the literature

of dynamic pricing; see, for example, Golrezaei et al. (2018a), Javanmard and Nazerzadeh (2016),

Kanoria and Nazerzadeh (2017) and Javanmard (2017).

Under this interdependent and contextual valuation model, we study two settings, each of which

characterizes different types of buyer behavior. In the first setting, called the truthful setting, buyers
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always bid their true valuations, and our main focus lies in obtaining accurate estimates of the

unknown and non-parametric demand through buyers’ truthful bids in order to develop revenue-

maximizing pricing strategies. In the second setting, called the strategic setting, buyers may submit

corrupted, i.e., untruthful, bids in order to trick the seller to lower future reserve prices. In this

setting, our goal is to effectively learn buyers’ demand in the presence of such corrupted data

(bids). In particular, we associate this type of strategic bidding with the setup that buyers aim

to maximize their long-term discounted utility. We point out that this discounted utility model

has recently been used in the literature, for instance, see Amin et al. (2013, 2014), Golrezaei et al.

(2018a), and Liu et al. (2018).

The main problem of interest is to design policies that dynamically learn/optimize contextual

reserve prices against both truthful and strategic bidding behaviors. We take the perspective of

a typical seller who is not aware of the mean vector β and noise distribution F , and aims to

minimize his regret which is the revenue loss against a clairvoyant policy that knows both β and

F . In fact, having full knowledge of β and F corresponds to knowing the optimal mapping between

the observed context vector and the revenue-maximizing reserve prices. Hence, this benchmark

will always set the optimal contextual reserve price, which eliminates buyers’ incentive to submit

corrupted bids. Yet, for our problem of interest, when β and F are unknown, in order to learn

this optimal mapping the seller needs to learn the buyers’ demand curves, which is associated with

three main challenges: (i) the demand curve is constantly shifting due to the variations of the

feature vector changes over time; (ii) the shape of the demand curve is unknown due to the lack of

information on the market noise distribution F which may not enjoy a parametric functional form.

Furthermore, we do not impose the Monotone Hazard Rate1 assumption on F , which is a common

assumption in related literature, but has been shown to be unrealistic in online advertising markets

(Celis et al. (2014) and Golrezaei et al. (2017)); (iii) in the strategic setting, buyers take advantage

of the seller’s lack of knowledge in demand through submitting corrupted bids to manipulate future

reserve prices.

1 Distribution F is MHR if f(z)
1−F (z)

is non-decreasing in z, where f is the corresponding pdf.
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As our main contribution in this work, in light of the three aforementioned challenges, we present

two effective dynamic contextual pricing policies with sublinear T -period regret of Õ(
√
T ),2 where

the first policy lends itself to the truthful setting, and the second policy is tailored to the strate-

gic setting. In the truthful setting, the seller encounters the challenges regarding both constant

shifts and unknown shape of the demand curve; while in the strategic setting, the seller faces

the additional challenge to learn buyers’ demand (or valuation distribution) using corrupted bids.

Designing a pricing policy against strategic buyers is more challenging than that against truthful

buyers. However, by first studying the pricing problem in the truthful setting, we shed light on

some key techniques that enable us to attain accurate estimates of the mean vector and the market

noise distribution. In the strategic setting, we then build on these techniques to resolve issues due

to intentionally corrupted bids and buyers’ strategic behavior. We refer to our policy under the

truthful setting as the NPAC-T policy, where “NPAC” stands for Non-Parametric Contextual and

“T” refers to the truthful setting. Similarly, we refer to our policy under the strategic setting as

NPAC-S, where “S” stands for the strategic setting. In the remaining part of the introduction, we

briefly discuss these two policies.

NPAC-T Policy: The NPAC-T policy is designed for the truthful setting. In this policy, we

take advantage of the fact that the optimal reserve price in truthful environments can be written

as a function of the distributions of the highest and second-highest valuations; see Proposition

1. In light of this observation, to learn the optimal reserve prices, instead of the market noise

distribution F , we estimate these distributions using all historical bids/valuations. We notice that

the distribution of the highest and second-highest bids shift according to the time-varying feature

vector xt and unknown mean vector β. Thus, to estimate these distributions, we first estimate

the mean vector by applying an ordinary least squares (OLS) estimator using all historical bids,

and then take advantage of our most up-to-date estimate of β to estimate the distributions. We

stress that because the noise distribution F is not parametric, joint estimation of the mean vector

2 Õ(·) hides logarithmic factors.
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β and distributions using a maximum likelihood estimator is not possible. Hence, we construct

empirical distributions for the distributions of interest by carefully controlling for the errors of

β that may propagate into our estimates. Finally, we use these estimates as surrogates of their

ground-truth counterparts to set reserve prices, and show that our policy enjoys a low regret of

the order Õ
(
d
√
T
)
. This regret bound is presented in Theorem 1.

NPAC-S Policy: The NPAC-S policy is designed for the strategic setting and is robust against

corrupted bids. It is based on two modifications of the NPAC-T policy. First, the NPAC-S policy

partitions the entire time horizon into phases of increasing length, and instead of using all histor-

ical bids to update its estimates for the mean vector and the distributions of the second-highest

and highest valuations, it only uses the data in the previous phase. This will reduce the buyers’

manipulating power on future reserve prices, as past corrupted bids prior to the previous phase will

not affect future pricing decisions. Second, the NPAC-S policy incorporates randomized “isolation”

periods3; that is, in each period with some probability the seller chooses a particular buyer at ran-

dom and let her be the single participant of the auction during this period. Put differently, other

buyers who are not chosen have a zero chance of winning the item regardless of their submitted

bids. For the “isolated” buyer, the reserve price is chosen uniformly at random. These randomized

isolation periods exploit the fact that buyers aim to maximize their long-term discounted utility,

and motivate the buyers to not corrupt their bids significantly for a large number of periods. In

the isolation periods, when the valuation of the isolated buyer is greater than the reserve price,

underbidding can lead to utility loss. Similarly, when the valuation of the isolated buyer is smaller

than the reserve price, overbidding can also result in utility loss.

We point out that the estimation techniques used in NPAC-S policy are the same as those in

NPAC-T policy, even though the OLS estimator and empirical distributions are both vulnerable to

large outliers/corruptions. The NPAC-S policy can still use OLS estimators and empirical distribu-

tions because, in virtue of our isolation periods, the number of past periods with large corruptions

3 Buyers are aware of the randomized isolation periods as the seller announces and commits to his pricing policy.
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is O(log(t)) for any period t with high probability. Put differently, the number of outliers in the

submitted bids is small and as a result, there is no need to redesign the estimation techniques used

in NPAC-T for the strategic setting. We highlight that prior to this work, the best regret bound

for the same setting is O(dT 2/3), given by Golrezaei et al. (2018a) who also proposes an algorithm

that attains a regret of Õ(d
√
T ) for a parametric noise distribution F (via jointly estimating β

and F using a maximum likelihood estimator). In Theorem 2, we show that the NPAC-S policy

achieves a regret of Õ
(
d
√
T
)
for general non-parametric distributions F .

The rest of the paper is organized as followed. In Section 2, we review the literature related to

our work, and in Section 3 we formally define the interdependent valuation model, as well as both

the truthful and strategic settings. Section 4 defines the clairvoyant benchmark policy. In Section

5 and 6, we present and analyze NPAC-T and NPAC-S policies, respectively. Finally, we conclude

in Section 7. Appendix 8 provides a proof regarding the benchmark policy, and Appendices 9 and

10 provide the proofs of the regret bounds for NPAC-T and NPAC-S, respectively.

2. Related Work

Our work lies in the intersection of dynamic pricing and online learning, which is an area that has

attracted increasing interest in recent years according to an extensive survey by den Boer (2015),

partially due to the booming activities in online marketplaces.4

There has been a large body of literature that considers the problem of non-contextual dynamic

pricing with non-strategic buyers. Kleinberg and Leighton (2003) studies repeated non-contextual

posted price auctions with a single buyer whose valuations are fixed, drawn from a fixed but

unknown distribution, and chosen by an adversary who is oblivious to the seller’s algorithm.

4 Our work also lies in the domain of behavior-based pricing, where the seller learns from past behavior of buyers

and adaptively updates pricing decisions. Behavior-based pricing, as well as price discrimination, have been studied

extensively under different settings; see Esteves et al. (2009). Two relevant works include Fudenberg and Villas-Boas

(2006) and Bikhchandani and McCardle (2012), each of which considers two-period interactions (non-contextual)

between a seller and a strategic buyer, while our work focuses on multi-period interactions, associated with varying

contexts, between a seller and multiple strategic buyers.
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den Boer and Zwart (2013), Besbes and Zeevi (2009), and Broder and Rusmevichientong (2012)

study non-contextual dynamic pricing with demand uncertainty, where they estimate unknown

model parameters using estimation techniques such as maximum likelihood. Cesa-Bianchi et al.

(2015) considers the dynamic pricing problem in non-contextual repeated second-price auctions

with multiple buyers whose bids are drawn from some an unknown and possibly non-parametric

distribution. In addition, they also consider bandit feedback where the seller only observes real-

ized revenues instead of all submitted bids. In their non-contextual setup, the seller’s revenue-

maximizing price is fixed throughout the entire time horizon, and the key is to approximate this

optimal price by estimating the valuation distribution. In our setting, however, the optimal reserve

prices are context-dependent, which means the seller is required to estimate (i) the distributional

form of valuations and (ii) buyers’ willingness-to-pay that varies in each period according to dif-

ferent contexts.

Another line of research studies the problem of contextual dynamic pricing with non-strategic

buyer behavior. Cohen et al. (2016), Lobel et al. (2018), and Leme and Schneider (2018) propose

learning algorithms based on binary search methods when the context vector is chosen adversarially

in each round. Chen and Gallego (2018) consider the problem where a learner observes contextual

features and optimizes an objective by experimenting with a fixed set of decisions. They present a

tree-based non-parametric learning policy that adaptively splits the feature space into smaller bins

(hyper-rectangles), and eventually learns near-optimal decisions in each bin. However, since their

methodology is designed to handle very general objectives and not specifically tailored to pricing

problems, within the context of dynamic pricing, its performance deteriorates as the dimension of

the feature vector increases. Javanmard and Nazerzadeh (2016) also considered a contextual pric-

ing problem with an unknown but parametric noise distribution, and uses a maximum likelihood

estimator to jointly estimate the mean vector and distributions parameters. Shah et al. (2019)

studied a dynamic pricing problem in repeated posted price mechanisms. They considered a model

where the relationship between the expectation of the logarithm of buyer valuation and the con-

textual features is linear, while the market noise distribution is non-parametric. This logarithmic
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form of the valuation model allows them to separate the noise term from the context, which makes

it possible to independently estimate the noise distribution and expected buyer valuation. In our

setting, however, the context is embedded within the noise distribution, and our estimation errors

in the mean vector β will propagate into the estimation error in the noise distribution, making the

learning task more difficult, compared to that in Shah et al. (2019).

We now review some related work that studies dynamic pricing facing non-myopic buyers who

may behave strategically to enjoy lower prices in the future.5 We first highlight the significance

of such research areas as there exists empirical evidence that shows buyers in online advertising

markets indeed exhibit strategic behaviour; see Edelman and Ostrovsky (2007), Golrezaei et al.

(2018b). Amin et al. (2013) studies the dynamic pricing problem in a posted price auction with

a single buyer under the non-contextual setting where buyer valuation is fixed, or drawn from

some fixed but unknown distribution. They introduce the notion of strategic regret, which is the

revenue loss measured against a truthful buyer, and show that no sublinear strategic regret is

achievable when buyer future utility is not time-discounted. Amin et al. (2014) proposes pricing

policies for both a single truthful buyer and a strategic buyer using a contextual valuation model

with no market noise disturbance. In the strategic-buyer setting, their algorithm achieves a regret

of Õ(T 2/3), in contrast with our regret of Õ(
√
T ) using the NPAC-S policy presented in Section 6.

We point out that this is because, apart from the difference in buyers’ valuation model, their posted

price mechanism is associated with bandit feedback, which means the seller can only observe the

outcome of the auction, while in our setting we assume that seller can examine all submitted bids.6

In our work, we can handle the scenario of multiple buyers, and unlike Amin et al. (2013, 2014),

we also need to deal with the issue of learning a non-parametric distribution function.

5 The general theme of learning in the presence of strategic agents or corrupted information has also been studied in

other applications; see, for example, Chen and Keskin (2018), Birge et al. (2018) and Feng et al. (2019).

6 This assumption is justified when with a small positive probability, the seller posts a reserve price of zero, incen-

tivizing the buyers to submit positive bids in all the auctions.
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Kanoria and Nazerzadeh (2017) also considers a buyer valuation model similar to ours and stud-

ies the incentive compatible properties of the second-price auction with personalized reserve prices

in a setting where (i) the seller has access to a training dataset of submitted bids with a given

size, (ii) buyers do not discount their future utilities, and (iii) the market noise distribution is

MHR. The authors design a static (one-shot) pricing scheme whose revenue is ǫ away from the

optimal revenue when the size of the training dataset is O( log(1/ǫ)
ǫ2

) whereas we design dynamic

pricing schemes that minimize the seller’s cumulative regret over a finite time horizon, compelling

us to take into account the lasting effects of previous pricing decisions. Nonetheless, if one assumes

that the training data are obtained from pure exploration periods, the static pricing scheme in

Kanoria and Nazerzadeh (2017) can lead to a dynamic pricing scheme whose regret is in the order

of O(T 2/3).

Golrezaei et al. (2018a) also study a linear valuation model with unknown market noise and

utility-maximizing buyers. Our work distinguishes itself from Golrezaei et al. (2018a) in two major

ways. First, they focus on a setting where the market noise distribution can vary arbitrarily over

time within a known class of distributions, and take a robust approach to design a pricing policy

that works for any distribution within the class. In contrast, our work relaxes this constraint and

does not require the seller to have any prior knowledge on the time-invariant noise distribution

F . Second, in their setting, the seller only utilizes the outcome of the auctions to learn buyer

demand and results in a regret of Õ(T 2/3). In our work, we exploit the information of all submitted

bids by taking advantage of the fact that buyers’ utility-maximizing behaviour constrains their

degree of corruption on bids. This eventually allows us to achieve a regret of Õ(
√
T ) against a

clairvoyant benchmark policy. We note that very recently Deng et al. (2019) build on the result of

Golrezaei et al. (2018a) by considering a stronger benchmark that knows future buyer valuation

distributions (noise distribution and all the future contextual information). They design robust

pricing schemes whose regret is O(T 5/6) against the aforementioned benchmark, confirming the

generalizability of pricing schemes in Golrezaei et al. (2018a).
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Finally, we briefly discuss some recent literature within the domain of mechanism design and

online learning that adopt methodologies from differential privacy to deal with strategic agents.

McSherry and Talwar (2007) first establish the connections between differential privacy and mech-

anism design with the presence of strategic agents. Inspired by differential privacy assumptions, the

authors assume that agents have limited manipulating power on the outcome of the mechanism,

and with this assumption, they design mechanisms under which the agents have limited incentive

to be untruthful. Yet, unlike our setting, their focus lies in designing (approximately) incentive

compatible static mechanisms. Other works include: Mahdian et al. (2017) which studies a static

non-contextual setting and aims to select feasible mechanisms (based on a fixed training dataset)

that incentivize buyers to behave truthfully in the first place; and Liu et al. (2018) which considers

an adversarial and non-contextual buyers’ valuation model while we consider the stochastic setting

in which buyer valuations are generated randomly according to a non-parametric and unknown

distribution.

3. Model and Preliminaries

Notation: For any a ∈N
+, denote [a] = {1,2, . . . , a}. For two vectors x, y ∈R

d, we denote 〈x, y〉

as their inner product. Finally, I{·} is the indicator function: I{A} = 1 if event A occurs and 0

otherwise.

We consider a seller who runs repeated second price auctions over a horizon with length T

that is unknown to the seller. In each auction t ∈ [T ], an item is sold to N buyers, where the

item is characterized by a d-dimensional feature vector xt ∈ X ⊂ {x ∈ R
d : ‖x‖∞ ≤ xmax} where

0< xmax <∞. We assume that xt is independently drawn from some distribution D unknown to

the seller. We define Σ as the covariance matrix of distribution D.7 We assume that Σ is positive

definite and unknown to the seller.

We focus on an interdependent valuation model in which buyers’ valuation has a common value

component and a private value component. Precisely, valuation of buyer i ∈ [N ] at time t ∈ [T ],

7 The covariance matrix of a distribution P on R
d is defined as Ex∼P [xx

⊤]−µµ⊤, where µ= Ex∼P [x].
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denoted by vi,t, is given by vi,t = 〈β,xt〉+ ǫi,t, where β, called the mean vector, is fixed over the

entire time horizon and unknown to the seller. The term 〈β,xt〉 is the common value component

that represents the expected (mean) buyers’ valuation and ǫi,t is some mean zero market noise

that captures the idiosyncratic tastes of buyers. The noise is drawn from some time-invariant

distribution F with probability density function f , both unknown to the seller. We assume that

market noise variables {ǫi,t}t∈[T ],i∈[N ] are drawn independently from the distribution F . Further-

more, F has bounded support (−ǫmax, ǫmax), in which its probability density function is bounded

by cf := supz∈[−ǫmax,ǫmax] f(z) ≥ infz∈[−ǫmax,ǫmax] f(z) > 0. The support boundary ǫmax is not nec-

essarily known by the seller. We further assume that for any i ∈ [N ] and t ∈ [T ], valuation vi,t

is upper-bounded by vmax, where the seller and buyers know vmax, i.e., the maximum possible

revenue/reward of the seller in an auction. We note that this type of boundedness assumption is

common in the related literature, where the bound for maximum reward is typically set to 1; see,

for example, Amin et al. (2013) and Cesa-Bianchi et al. (2015).

We highlight that our setting is general in the sense that we do not enforce distribution F to

be parametric nor to satisfy the MHR assumption. We highlight that via analyzing real auction

data sets, it has been shown that MHR does not necessarily hold in online advertising markets

(Celis et al. 2014, Golrezaei et al. 2017). Thus, by intentionally not enforcing this assumption, our

setting can better model realistic and practical environments in online advertisement markets.

Repeated Second Price Auctions with Reserve: As stated earlier, in each period t∈ [T ], the seller

runs a second price auction with anonymous reserve price rt, where rt is a function of the context

vector xt and the history set Ht−1 that includes all the seller’s observation in periods 1,2, . . . , t−1:

Ht−1 := {(r1, b1, x1), (r2, b2, x2), . . . , (rt−1, bt−1, xt−1)} ,

where we define bτ := (b1,τ , b2,τ , . . . , bN,τ) to be the vector of all bids in period τ ∈ [t]. Without

loss of generality, we assume that all bids and valuations are never equal to one another. We now

proceed to describe the second price auctions with reserve when the number of buyers N ≥ 2. In

any period t≥ 1:
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(i) The seller observes the context vector xt ∼D and reveals it to the buyers.

(ii) The seller computes reserve price rt as a function of the context vector xt and history set

Ht−1.

(iii) Each buyer i∈ [N ], forms individual valuations vi,t and submit a bid bi,t to the seller.

(iv) Let i⋆ = argmaxi∈[N ] bi,t.
8 If bi⋆,t ≥ rt, the item is allocated to buyer i⋆, i.e., the buyer with

the highest submitted bid, and he is charged the maximum between the reserve price and second

highest bid; that is, max{rt,maxi6=i⋆ bi,t}. For any other buyer i 6= i⋆, payment is zero. If bi⋆,t < rt,

the item is not allocated and all the payments are zero.

For the special case when there is only N = 1 buyer, the auction only differs in step (iv) of the

multiple-buyer mechanism: the item is allocated to the buyer if her bid bt is greater than or equal

to the reserve rt, and her payment is rt if the item is allocated and 0 otherwise. In this paper, we

mainly focus on the case of N ≥ 2 buyers as analyzing the multi-buyer case is more challenging,

especially when bidders are strategic. Yet we point out that our proposed algorithms can be easily

generalized to the single-buyer second price auction.

Buyers’ Bidding Behavior: With respect to buyers’ bidding behavior, we propose pricing

policies under two different settings: Truthful and strategic settings. In the truthful setting, buyers

submit their true valuations, i.e., bi,t = vi,t for any i∈ [N ] and t∈ [T ], and in the strategic setting,

the submitted bids and true valuations of a buyer may not necessarily be equal. Under the setting

where buyers are strategic, we assume that in any period t, each buyer i∈ [N ] aims at maximizing

his long-term discounted utility Ui,t:

Ui,t :=
T∑

τ=t

ητ
E [vi,τwi,τ − pi,τ ] , (1)

where η ∈ (0,1) is the discount factor, wi,t := I{i wins the item in period t} indicates whether buyer

i wins the item in period t according to the allocation rule of the mechanism, pi,t is the payment of

buyer i in period t according the payment rule of the mechanism, and the expectation is taken with

8 No ties will occur since we assume that no valuations and bids are the same.
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respect to the randomness due to the noise distribution F , the context distribution D, and buyers’

bidding behavior. We point out that this discounted utility model illustrates the fact that buyers

are less patient than the seller, and is a common framework in many dynamic pricing literature;

see Amin et al. (2013, 2014), Golrezaei et al. (2018a), and Liu et al. (2018). The motivation lies in

many applications in online advertisement markets wherein the user traffic is usually very uncertain

and as a result, advertisers (buyers) would not like to miss an opportunity of showing their ads to

targeted users. It is worth noting that Amin et al. (2013) showed, in the case of a single buyer, it

is not possible to obtain a no-regret policy when η= 1, that is, when the buyer is as patient as the

seller.

In the strategic setting, buyers may from time to time submit “corrupted bids”, i.e., underbid

(shade their bid) or overbid with respect to their true valuations, sacrificing current utility with

the aim to lower future reserve prices and increase their future long-term utility. We assume that

seller announces his pricing policy to all buyers so that buyers have full knowledge of the seller’s

learning and pricing algorithm and has the freedom to adopt any bidding strategy to maximize

their long term utility.

We now describe the scope of feasible buyer bidding behavior in the strategic setting. Recall that

the maximum possible valuation vmax is known to both buyers and the seller. Thus, buyers have

no incentive to submit a bid greater than vmax, i.e., bi,t ≤ vmax for all i ∈ [N ], t ∈ [T ] as the seller

only sets reserve prices less than or equal to vmax. Furthermore, buyers submit bids satisfying the

following relationship:

bi,t = vi,t − ai,t ,

where ai,t is called the degree of corruption, and we refer to the buyer behavior of submitting a

bid bi,t 6= vi,t (i.e., ai,t 6= 0) as “corrupted bidding”. Note that when ai,t > 0, the buyer shades her

bid, and when ai,t < 0, the buyer overbids. Since the seller observes buyers’ bids instead of their

true valuations in the strategic setting, corrupted bids may deteriorate the estimation accuracy of

buyers’ demand, and as a result negatively impact pricing decisions in future periods. There are
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no restrictions on the degree of corruption ai,t for a buyer i in period t other than it is bounded,

i.e.,

|ai,t| ≤ amax, i∈ [N ], t ∈ [T ] . (2)

Such a bound for ai,t is natural as buyers always submit non negative bids and all bids are bounded

by vmax.

We compare our policies in both truthful and stratgic settings to the same benchmark policy,

detailed in the next section, that has full knowledge of the mean vector β and noise distribution F .

We will further discuss the truthful and strategic settings in Section 5 and Section 6, respectively.

4. Benchmark and Seller’s Regret

The seller’s objective is to maximize his expected revenue over a fixed time horizon T through

optimizing contextual reserve prices rt for any t ∈ [T ]. The seller’s revenue in period t ∈ [T ] is

the sum of total payments from all buyers. Thus, the expected revenue given context xt ∈ X and

reserve price rt is

revt(rt) :=E

[ ∑

i∈[N ]

pi,t(rt, bt)
∣∣∣ xt, rt

]
, (3)

where pi,t(rt, bt) is the payment of buyer i in period t, bt = (b1,t, b2,t, . . . , bN,t) is the vector of all

bids in period t, and the expectation in Equation (3) is taken with respect to the noise distribution

in period t and any randomness in the bids submitted by buyers in period t (as buyers’ bidding

strategies may be randomized). In the truthful setting, we have bi,t = vi,t for all i∈ [N ] and t∈ [T ].

Note that the reserve price rt may also be random and depend on the history set Ht−1 as well as

xt. In the rest of the paper, for simplicity, we will use the following shorthand notation to represent

payments: pi,t := pi,t(rt, bt).

As discussed in the previous section, in a second price auction, the highest bidder wins the item

and is charged a payment that is the maximum of the second-highest bid and the reserve price set
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by the seller, while no transaction occurs if the highest bid is less that the reserve price. Hence,

buyer i’s payment conditioned on the context xt ∈X for setting reserve rt is given by

pi,t = max{b−t , rt}I{bi,t ≥max{b+t , rt}} . (4)

Here, b−t and b+t are the second-highest and highest bids in period t, respectively. When the number

of buyers N = 1, we set b−t to zero.

Maximizing seller’s expected revenue is equivalent to minimizing his regret, where the regret is

computed against a benchmark policy that knows the mean vector β as well as the non-parametric

noise distribution F . As stated earlier, we use this benchmark to evaluate our policies in both the

truthful and strategic settings. This is, in fact, a rather strong benchmark because it corresponds to

the seller with full knowledge of buyer demand, which in turn knows the optimal contextual reserve

price that maximizes expected revenue with respect to the current context. Hence, this seller will

always set the optimal reserve price, and there will be no incentive for buyers’ to corrupt their

bids. To formally define this benchmark, we rely on the following proposition that characterizes

the seller’s conditional expected revenue when buyers bid truthfully.

Proposition 1 (Seller’s Revenue with Truthful Buyers). Consider the case of N ≥ 2 buy-

ers who bid their true valuations, i.e., vi,t = bi,t for any i ∈ [N ] and t ∈ [T ]. Conditioned on the

reserve price rt and the current context xt ∈X , the seller’s expected revenue is given by

∫ ∞

−∞
zdF−(z)+ 〈β,xt〉+

∫ rt

0

F−(z−〈β,xt〉)dz− rt
(
F+(rt −〈β,xt〉)

)
,

where for any z ∈R, F−(z) :=NFN−1(z)− (N − 1)FN(z) and F+(z) := FN(z).

The proof for this proposition is detailed in Appendix 8. In Proposition 1, F+(·) and F−(·) are the

cumulative distribution functions of ǫ+t := v+t −〈β,xt〉 and ǫ−t := v−t −〈β,xt〉 respectively, where v+t

and v−t are the highest and second highest valuations in period t∈ [T ]. That is, ǫ+t and ǫ−t are the

N th and (N − 1)th order statistics of N independent random samples from distribution F . Note

that this proposition also provides us with an alternative, and rather convenient expression for the
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seller’s expected revenue in the truthful setting as opposed to that given in Equation (3). However,

we point out that this expression is not equivalent to the seller’s expected revenue when buyers

are bidding untruthfully, and in that case, we must return to analyzing Equation (3).

Given Proposition 1, we define the benchmark as followed,

Definition 1 (Benchmark Policy). The benchmark policy knows the mean vector β and noise

distribution F , and sets the reserve price for a context vector x∈X as

r⋆(x) = argmax
y≥0

{∫ y

0

F−(z−〈β,x〉)dz− y
(
F+(y−〈β,x〉)

)}
. (5)

Therefore, the benchmark reserve price in period t, denoted by r⋆t , is r
⋆(xt), and the corresponding

optimal revenue, denoted by REV⋆
t , is given by

REV⋆
t =

∫ ∞

−∞
zdF−(z)+ 〈β,xt〉+

∫ r⋆(xt)

0

F−(z−〈β,xt〉)dz− r⋆(xt)
(
F+(r⋆(xt)−〈β,xt〉)

)
.

We observe that this benchmark sets the reserve price that maximizes the expected revenue under

truthful buyer behavior illustrated in Proposition 1. In fact, the benchmark provides an optimal

mapping from the feature vector xt to reserve price r⋆(xt), and this mapping remains unchanged

over the entire horizon because the mean vector β and noise distribution F are time-invariant.

This echoes our earlier point that, in our consideration, a seller who possesses full knowledge of

buyer demand will not deviate from setting the optimal contextual reserve. We highlight that this

benchmark offers contextual prices and as a result, obtaining a low regret with respect to this

strong benchmark is challenging. In non-contextual environments, regret is measured against a

policy that offers a fixed reserve price so it is sufficient to learn a single optimal value, whereas, in

contextual environments, the regret is measured against optimal prices that are context-dependent

which requires learning the entire optimal mapping.

Here, we make several remarks. When distribution F satisfies the MHR assumption, the

objective function of the optimization problem in Equation (5) is unimodal in the deci-

sion variable y, and according to Golrezaei et al. (2018a), r⋆(x) can be simplified as follows:
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r⋆(x) = argmaxy≥0 {y(1−F (y−〈β,x〉))}. However, as discussed in the introduction, we do

not assume that the market noise distribution is MHR as in various related literature; see

Roughgarden and Schrijvers (2016), Kanoria and Nazerzadeh (2017), and Golrezaei et al. (2018a).

This is because via analyzing real auction data sets, it has been shown that the MHR assumption

does not necessarily hold in online advertising markets (Celis et al. 2014, Golrezaei et al. 2017).

Hence, although we are unable to simplify the expression for the optimal mapping which imposes

additional challenges to the analysis, our model offers greater generality.

We now proceed to define the regret of a policy π (possibly random) when the regret is measured

against the benchmark policy. Suppose that in any period t, policy π selects reserve price rπt , where

rπt is a function of the context vector xt and may or may not depend on the history Ht−1. Then,

the regret of policy π in period t and its cumulative T -period regret are defined as:

Regret
π
t =E [REV⋆

t − revt(r
π
t )] and Regret

π(T ) =
∑

t∈[T ]

Regret
π
t , (6)

where the optimal revenue REV⋆
t is given in Definition 1, and the expectation is taken with respect

to the context distribution D as well as the possible randomness in the actual reserve price rπt .

We point out that in the calculations of revt(r
π
t ) for any policy π, the buyers may not necessarily

behave truthfully. Our goal is to design a policy that obtains a low regret for any mean vector β,

noise distribution F , and feature distribution D.

5. Truthful Setting: NPAC-T Policy

In this section, we study the problem of learning contextual reserve prices in the setting where all

buyers are truthful and bid their true valuations, i.e. bi,t = vi,t for any i ∈ [N ] and t ∈ [T ]. Hence,

here we will use the terms “bids” and “valuations” interchangeably. Recall that the seller observes

bids of all the N buyers in each period. To design a pricing policy under this setting, we need to

learn the mean vector β and the noise distribution F simultaneously. For the purpose of motivating

our policy design, suppose that the mean vector β is known to the seller. Recall that, conditioned

on xt, F
+ and F− are respectively the distributions of ǫ+t = v+t − 〈β,xt〉 and ǫ−t = v−t − 〈β,xt〉.
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Therefore, one can naturally estimate F+ and F− via constructing their corresponding empirical

distributions using the highest and second-highest bids and knowledge of the mean vector β. More

specifically, in period t∈ [T ], one can construct the most up-to-date empirical distributions

F̂+
t (z) =

1

t− 1
·
∑

τ∈[t−1]

I{v+t −〈β,xt〉 ≤ z} and F̂−
t (z) =

1

t− 1
·
∑

τ∈[t−1]

I{v−t −〈β,xt〉 ≤ z} ,

and use these estimates as surrogates for F+ and F− respectively in Equation (5) to obtain an

approximation of the optimal reserve price. However, one of the main challenges is that the mean

vector β is unknown, and as a result, to get any estimate of F+ and F−, we would need to replace

β in the empirical distributions (particularly within the indicator functions) with some estimate β̂,

whose estimation error could then potentially propagate into the estimation errors in distributions

F+ and F−. We will later discuss how we resolve this error propagation issue. We highlight that

because distribution F is non-parametric, a joint estimation of the distributions and mean vector

via a maximum likelihood estimator is not possible. Yet, despite the challenges that arise from

embedding the estimate for β in the estimates for F+ and F−, this intuition provides a rather

straightforward direction to design our estimation and pricing policy.

In light of the previous discussion, we now describe our policy, called NPAC-T. The policy

sequentially estimates β, F−, and F+ as more data points are observed, and uses its most recent

estimate of β and F−, and F+ to set reserve prices. Let β̂t be the estimate of the mean vector β and

F̂−
t (·), F̂+

t (·) be the estimates of F+(·) and F−(·) respectively, at the beginning of period t. (We

will define these estimates later.) Then, inspired by the optimal reserve price stated in Equation

(5), the policy sets the reserve price rt by replacing β, F−, and F+ with their estimates, as shown

in Equation (7).

We now proceed to describe our estimation procedure. In any period t∈ [T ], we use the average

of submitted bids across all the previous periods, i.e., v̄τ = (
∑

i∈[N ] vi,τ )/N for any τ ∈ [t− 1], to

estimate the mean vector using an Ordinary Least Squares (OLS) estimator. Our estimate of β at

the beginning of period t—before the auction is run—is denoted by β̂t and is given in Equation

(8). In Equation (8), A† represents the pseudo inverse of a matrix A, so if A is invertible, we have
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A† =A−1.9 We then use the most recent estimate of β, i.e., β̂t, to update our estimate of F+ and

F−; see Equation (9). We also note that the policy does not require any pure exploration periods.

The reason is that at the end of each auction, all bids are revealed to the seller and as a result, the

seller can evaluate the revenue that he could have obtained had he posted any other reserve price

other than rt.

Algorithm 1 NPAC-T Policy: Non-Parametric Contextual Policy against Truthful Buyers

Initialize: β̂1 =0, and F̂−
1 (z) = F̂+

1 (z) = 0 for ∀z ∈R.

For t≥ 1, observe xt ∼D. Then,

- Set reserve price:

rt = arg max
y∈[0,vmax]

{∫ y

0

F̂−
t

(
z−〈β̂t, xt〉

)
dz− y

(
F̂+
t (y−〈β̂t, xt〉)

)}
. (7)

- Update the estimate of the mean vector:

β̂t+1 =
( ∑

τ∈[t]

xτx
⊤
τ

)†( ∑

τ∈[t]

xτ v̄τ
)

where v̄τ =
1

N

∑

i∈[N]

vi,τ . (8)

- Update the estimate of F+ and F−: For any z ∈R, we have

F̂+
t+1(z) =

1

t

∑

τ∈[t]

I(v+τ −〈β̂t+1, xτ 〉 ≤ z) and F̂−
t+1(z) =

1

t

∑

τ∈[t]

I(v−τ −〈β̂t+1, xτ 〉 ≤ z) . (9)

Here, we briefly address how one can solve the optimization problem in Equation (7). The key

observation is that for any period t, F̂+
t (·) is a step function with jumps at points in the finite

set B+
t := {v+τ − 〈β̂t, xτ 〉}τ∈[t]. Furthermore, F̂+

t (z) = 0 for any z <minB+
t and F̂+

t (z) = 1 for any

z ≥maxB+
t . Similarly, we have a corresponding finite set B−

t := {v−τ −〈β̂t, xτ〉}τ∈[t] which includes

all jump points for F̂−
t (·). This implies that in order to solve for the optimal reserve price rt

in Equation (7), it suffices to conduct a grid search for ∀y ∈ B+
t ∪B−

t . More specifically, we let

{z(0), z(1), . . . z(M)} be the ordered list (in increasing order) of all elements in B+
t ∪B−

t ∪{0}, where

9 In Lemma 3, we show that with high probability,
∑

τ∈[t−1] xτx
⊤
τ in Equation (8) is positive definite, and hence

invertible.
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z(0) := 0 and M := |B+
t ∪ B−

t | (here, we assumed that 0 /∈ B+
t ∪ B−

t without loss of generality).

Hence,

rt = arg max
m∈[M ]

{
m∑

j=1

F̂−
t

(
z(j) −〈β̂t, xt〉

)
· (z(j) − z(j−1))− z(m)

(
F̂+

t (z(m) −〈β̂t, xt〉)
)}

.

This shows that the complexity to solve Equation (7) is O(M 2). More detailed discussions and

efficient algorithms regarding related problems can be found in Mohri and Medina (2016).

Finally, the following theorem is the main result of this section and upper bounds the regret of

the NPAC-T policy in the truthful setting.

Theorem 1 (Regret of NPAC-T Policy). Consider the case of N ≥ 2 buyers. Then, in the

truthful setting, the T-period regret of the NPAC-T policy is in the order of O
(
cf
√

dN3T log(T )
)
,

where the regret is computed against the benchmark in Definition 1 that knows the mean vector β

and noise distribution F . Here, cf = supz∈[−ǫmax,ǫmax]
f(z)> 0 where f is the the probability density

function of the market noise distribution F .

Observe that through constant cf , the regret bound provided in Theorem 1 depends on the

particular instance of F . Here, we point out that the regret bound deteriorates as the market

noise instance is more difficult to learn, i.e., when the probability density is rather concentrated

in various regions on the real line. The dependency on N (i.e. the factor O
(
N3/2

)
) is due to the

Lipschitz properties of F,F− and F+ which are induced by the boundedness of the pdf f , as

illustrated in Lemma 1. That is, if it is directly assumed that distributions F,F− and F+ satisfy

some Lipschitz conditions (that do not depend on N), we can improve the regret of the NPAC-T

policy to O
(
cf
√
dT log(T )/

√
N
)
.

The detailed proof of Theorem 1 is presented in Appendix 9, and here, we provide an outline for

our analysis to upper bound the regret of the NPAC-T policy.

Proof sketch of Theorem 1 We first decompose the single period regret into the revenue loss due

to estimation errors for β, F− and F+, and hence, the proof boils down to bounding these errors.

In Lemma 1, we first show Lipschitz properties for the distributions F , F− and F+. Next, as

stated earlier, one of the main challenges is that estimation errors for β will further propagate into
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the estimation errors in F− and F+. Thus, in Lemma 2 we bound the estimation error |F−(z)−

F̂−
t (z)| and |F+(z)− F̂+

t (z)| for any z ∈ R by controlling for the estimation errors in β. That is,

we bound the estimation error in the distributions by assuming that our estimation error for β is

small, namely ‖β̂t − β‖1 ≤ δt/xmax where δt = O(
√
log(t)/t). Here, we highlight that one cannot

naively apply cdf-based concentration inequalities (e.g. the Dvoretzky-Kiefer-Wolfowitz Inequality)

to bound the distribution estimation errors. This is because the estimates F̂+
t (·) and F̂−

t (·) evaluated

at any point z ∈R are biased. To see why note that because of the estimation error in the mean

vector β, v+τ −〈β̂t+1, xτ 〉 and v−τ −〈β̂t+1, xτ 〉 in the expressions of F̂+
t (·) and F̂−

t (·) in Equation (9)

are not realizations of ǫ−τ and ǫ+τ , respectively. In particular, E
[
F̂−

t

(
z−〈β̂t, xt〉

)]
6= F

(
z−〈β̂t, xt〉

)
.

This also sheds light on the more subtle and challenging issue: the estimates F̂+
t (·) and F̂−

t (·) are

evaluated at points which may be random variables that depend on all information up to time t.

Observe that the expression F−(z − 〈β̂t, xt〉
)
is itself a random variable since β̂t depends on the

entire past history up to the current period. The same issue occurs when bounding the error for

F̂+
t (·).

The proof of Lemma 2 provides a more detailed discussion as well as a solution to such issues,

and, by applying the Lipschitz properties of F− and F+, shows that the errors in estimating these

distributions are bounded by γt+2cfN
2δt and γt+cfNδt with high probability, respectively, where

γt = O(
√
log(t)/t) and cf = supz∈[−ǫmax,ǫmax]

f(z). The term δt = O(
√
log(t)/t) can be viewed as

the estimation error for β, which echoes our earlier point that estimation error in the mean vector

propagates into the inaccuracy of the distributions’ estimates. Moreover, the dependency on cf

shows that the estimation accuracy also depends on the specific problem instance with respect to

the market noise distribution F . Furthermore, Lemma 3 shows that ‖β̂t −β‖1 ≤ δt/xmax with high

probability, which indicates the estimation error in β decreases as more data points are collected.

Finally, combining these results, we sum up the cumulative single period revenue losses to attain

the cumulative expected regret for the NPAC-T policy.
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6. Strategic Setting: NPAC-S Policy

The previous section studied the dynamic pricing problem in the truthful setting, and in this sec-

tion, we consider the same pricing problem when buyers behave strategically. It is a well-known

result that during a single-shot second price auction, bidding truthfully is a buyer’s weakly dom-

inant action. However, this salient feature no longer exists when the second price auctions are

run repeatedly over time. This is because the repeated seller-buyer interactions provide buyers

with the opportunity to take advantage of the seller’s lack of knowledge in buyers’ valuations by

submitting corrupted bids instead of their true valuations: since the seller does not know buyers’

demand curves and aims to learn them using submitted bids, buyers are incentivized to leverage

their private information and “game the system” by submitting (corrupted) bids in an untruthful

and strategic manner so that they can manipulate future reserve prices.

With the aforementioned considerations, the problem of interest is, again, to develop a seller

strategy that extracts as much revenue as possible from all the buyers, and equivalently minimize

cumulative regret against the “truthful” benchmark described in Definition 1. Recall that under

this benchmark, the seller has full information of β and F and given this knowledge, sets the

optimal contextual reserve price defined in Equation (5).

To maximize seller’s expected revenue in the strategic setting, we propose a policy called NPAC-S

that builds on the NPAC-T policy described in the previous section. NPAC-S differs from NPAC-

T in two main aspects. First, NPAC-S is a phased algorithm, where each phase ℓ ≥ 1, denoted

as Eℓ, has length T 1−2−ℓ
which implies |E1| =

√
T and |Eℓ|/

√
|Eℓ−1| =

√
T . At the end of each

phase, estimates for β, F−, and F+ are calculated in a similar fashion as Equations (8) and (9)

in NPAC-T, but NPAC-S only uses data in the previous phase instead of all historical data. We

will illustrate the significance of this phased structure later in this section. Here, we point out that

because |Eℓ+1| ≥ |Eℓ| for all ℓ≥ 1 and for some ℓ̃≥ log2(log2(T )) we have |Eℓ̃|= T 1−2−ℓ̃ ≥ T/2, we

know that the total number of phases can be upper bounded by ⌈log2(log2(T ))⌉+1. The second

difference is that in NPAC-S, during each period in phase ℓ, with probability 1/|Eℓ|, the seller



Golrezaei, Jaillet, and Liang: Incentive-aware Contextual Pricing with Non-parametric Market Noise

23

“isolates” one of the N buyers uniformly at random, and sets reserve rt = rut ∼Uniform(0, vmax),

where vmax is the maximum possible buyer valuation. The seller discloses this random isolation

protocol to all buyers before the sequence of repeated auctions begins. Note that when a buyer i is

isolated, the buyer wins the item if and only if his bid is greater than the reserve price, and pays

the reserve price if he wins. Other buyers who are not isolated are not eligible to participate in the

auction. Hence, one can think of a randomized isolation period in NPAC-S as running a second

price auction with a single buyer. On the other hand, with probability 1−1/|Eℓ|, the seller sets the

reserve price rt based on estimates of β, F−, and F+ calculated at the end of the previous phase

ℓ− 1 using the data from Eℓ−1. The detailed policy is shown in Algorithm 2. We point out that

the seller’s pricing policy is announced to all buyers so that buyers examine the policy and have

the freedom to adopt any bidding strategy that would maximize their long term utility.

We now highlight some important features of NPAC-S policy and address the intuition behind

such a design. Similar to NPAC-T policy, NPAC-S policy uses an OLS estimator and empirical

distributions to estimate the mean vector and distributions F− and F+. One may question the

validity of using OLS and empirical distributions under the strategic behaviour of buyers since both

estimation techniques are extremely vulnerable to corrupted data (outliers). This, in turn, incen-

tivizes buyers to corrupt their bids to manipulate seller’s estimates and reserve prices. Because of

such undesirable properties of OLS and empirical distributions, naively adopting these procedures

in a learning algorithm can lead to a fragile policy that is largely subject to buyers manipulation.

Yet, we will now illustrate how the additional features of dividing the time horizon into different

phases and also leveraging randomized isolation in NPAC-S will make our learning policy robust

to the strategic behaviour.

Due to the phased structure of the algorithm, our estimates for β and F− and F+ only depend on

the bids and contextual features in the previous phase. Thus, corrupted bids submitted by buyers

in past periods will have no impact on future estimates as well as pricing decisions. One can think

of this as erasing all memory prior to the previous phase and restarting the algorithm, which can
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Algorithm 2 NPAC-S Policy: Non-Parametric Contextual Policy against Strategic Buyers

Initialize: β̂1 =0, and F̂−
1 (z) = F̂+

1 (z) = 0 for ∀z ∈R.

For phase ℓ≥ 1,

- Set reserve price: For t∈Eℓ, observe xt ∼D :

- Isolation: With probability 1/|Eℓ|, choose one of the N buyers uniformly at random and offer him the item

at price of

rut ∼Uniform(0, vmax) . (10)

- No Isolation: With probability 1− 1/|Eℓ|, set reserve price for all buyers as

r̂t = arg max
y∈[0,vmax]

{∫ y

0

F̂−
ℓ (z−〈β̂ℓ, xt〉)dz− y

(
F̂+
ℓ (y−〈β̂ℓ, xt〉)

)}
. (11)

- Observe all bids {bi,t}i∈[N]

- Update the estimate of the mean vector:

β̂ℓ+1 =
( ∑

τ∈Eℓ

xτx
⊤
τ

)†( ∑

τ∈Eℓ

xτ b̄τ
)

where b̄τ =
1

N

∑

i∈[N]

bi,τ . (12)

- Update the estimate of F+ and F−:

F̂ℓ+1(z) =
1

N |Eℓ|
∑

τ∈Eℓ

∑

i∈[N]

I(bi,τ −〈β̂ℓ+1, xτ 〉 ≤ z), then (13)

F̂−
ℓ+1(z) =NF̂N−1

ℓ+1 (z)− (N − 1)F̂N
ℓ+1(z) and F̂+

ℓ+1(z) = F̂N
ℓ+1(z) . (14)

potentially reduce buyers’ manipulating power on our estimates and reserve prices. Furthermore, as

all buyers are aware of the randomized isolation protocol, the presence of isolation periods restricts

buyers from significantly corrupting their bids, and the reason is as follows. If no isolation occurs,

a buyer may submit a bid that is far from her true valuation but face no consequences since her bid

may not change the outcome nor payment of the auction. An example may be a buyer having the

lowest valuation among all buyers, and submits a bid by adding a large corruption to her valuation,

but still ending up not being the second highest or highest bidder. Assuming, for simplicity, that

other buyers bid truthfully, such a scenario will not lead to any changes in utility of any buyer, but

introduces a large outlier to the set of data points used in our estimations. Since we use all bids for

our estimations, such largely corrupted bids may hurt our estimates. In words, when no isolation

occurs, buyers may be able to distort the seller’s revenue without losing anything. However, during



Golrezaei, Jaillet, and Liang: Incentive-aware Contextual Pricing with Non-parametric Market Noise

25

an isolation period when a buyer is chosen at random, she is isolated from the influence of other

buyers, and corrupting her bid may perhaps yield a significant utility loss, e.g., losing the item by

underbidding when her true valuation is greater than the reserve price, or winning the item by

overbidding when her true valuation is less than the reserve price. Therefore, randomized isolation

incentivizes buyers to reduce the extent of corruption in their bids. Finally, it is worth noting that

as long as buyers are aware of seller’s commitment to the randomized isolation protocol, it is not

necessary for the seller to reveal, during an isolation period, which buyer is being isolated.

We now provide the key result for this section which provides an upper bound for the expected

cumulative regret of the NPAC-S policy.

Theorem 2 (Regret of NPAC-S Policy). Suppose that the length of the horizon T ≥

max
{( 8x2max

λ2
0

)4
,9
}

where λ2
0 is the minimum eigenvalue of covariance matrix Σ. Then,

in strategic setting, the T-period regret of the NPAC-S policy is in the order of

O
(
cf
√

dN3 log(T ) · log (log(T ))
(√

T +

√
N3 log(T )T

1
4

log(1/η)

))
, where the regret is computed against the

benchmark policy in Definition 1 that knows the mean vector β and noise distribution F .

Here, we compare the cumulative expected regret of the NPAC-S policy with that of the NPAC-T

policy in the truthful setting in Theorem 1, namely O
(
cf
√
dN3T log(T )

)
. We observe that when

0< η≪ 1, the regret upper bound of the NPAC-S policy is approximately Õ(
√
dT ), which matches

the regret upper bound of the NPAC-T policy. For general η, we notice that compared to the regret

of NPAC-T policy, the NPAC-S regret has extra factors which consist of three components, namely

O
(√

log(T )T1/4

log(1/η)

)
, O

(
N3/2

)
, and O (log(log(T ))). The extra factor O

(√
log(T )T1/4

log(1/η)

)
in the regret

bound of the NPAC-S policy serves as a worse case guarantee for the amount of corruption that

buyers’ can apply to their bids throughout the entire horizon T . As buyers get less patient, i.e., as

η decreases, buyers are less willing to forgo current utilities. Thus, in the presence of randomized

isolation periods, impatient buyers are more unlikely to significantly corrupt their bids, which

translates into a lower regret. Furthermore, the additional factor of O
(
N3/2

)
in the regret bound

of the NPAC-S policy is due to two aspects: First, in the worst case all N buyers are strategic and
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corrupt there bids, resulting in a multiplicative factor of N ; second, this extra N factor corresponds

to additional error in our estimations for β due to the strategic behavior of buyers, which further

propagates into the estimation errors in F , F− and F+. The additionalO (log(log(T ))) factor of the

NPAC-S regret, compared to the NPAC-T regret, corresponds to the information loss due to the

policy’s phased structure, which “restarts” the algorithm at the beginning of each ofO (log(log(T )))

phases and relies only on the information of the previous phase. Finally, we note that although the

NPAC-S policy is developed to cope with corrupted data (bids) submitted by strategic buyers, it is

also applicable to the truthful setting and hence can be viewed as a general policy under different

buyer behaviours.

We now provide an outline of the proof for Theorem 2.

Proof sketch of Theorem 2 The regret of Theorem 2 can be decomposed into two parts: (i) the

expected revenue loss due to the discrepancy between the posted reserve price rt and the optimal

reserve price r⋆t defined in Equation (5), which is caused by estimation errors in β, F− and F+;

and (ii) the revenue loss due to buyers’ strategic bidding behaviour.

First, we observe that the reserve price set by the seller depends on the estimates of β, F−

and F+ in Equations (12) and (13) of Algorithm 2. These estimates, however, are biased by

buyers’ corruptions {ai,t}i∈[N ],t∈[T ]. Regarding corrupted bids, we distinguish between two cases of

buyer behavior, namely a buyer submits a bid that is “slightly” corrupted, and a buyer submits

a significantly corrupted bid. Intuitively, small corruptions will have less impact on the overall

accuracy of estimates for β, F− and F+. Hence, the major focus should be placed on bids that are

largely corrupted. Fortunately, utility-maximizing buyers do not have an incentive to significantly

corrupt their bids for a large amount of periods, as by doing so, they may suffer from substantial

utility loss, especially during isolation periods when they are chosen. Hence, one key aspect in

proving Theorem 2 is to take advantage of this utility maximizing behaviour and show that the

number of times a buyer significantly corrupts his bids is small. Specifically, we define

Si,ℓ :=

{
t∈Eℓ : |ai,t| ≥

1

|Eℓ|

}
. (15)
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The set Si,ℓ for any i ∈ [N ] includes all periods in phase Eℓ during which buyer i significantly

corrupts his bids. In Lemma 5, we show that |Si,ℓ|=O
(

log(|Eℓ|)
log(1/η)

)
with high probability. Now, based

on this result, we are able to show that our estimate of β, F− and F+ are relatively accurate

since the number of significantly corrupted bids is small, while the rest of the bids are only slightly

corrupted and would not have a large impact on estimates. In Lemma 7, we show that

‖β̂ℓ+1 −β‖1 =O
(

1√
|Eℓ|

+
log(|Eℓ|)

log(1/η)|Eℓ|

)

with high probability. On the other hand, in Lemma 8, we show that

∣∣∣F̂−
ℓ+1(z)−F−(z)

∣∣∣=O
(

N2

√
|Eℓ|

+
N2 log(|Eℓ|)
log(1/η)|Eℓ|

)
and

∣∣∣F̂+
ℓ+1(z)−F+(z)

∣∣∣=O
(

N√
|Eℓ|

+
N log(|Eℓ|)
log(1/η)|Eℓ|

)

for any z ∈ R with high probability. Finally, Lemma 9 combines Lemmas 7 and 8 to bound the

total impact of estimation errors on seller’s revenue, which enables us to show that the revenue

loss due to estimation errors is Õ(
√

|Eℓ|) in phase ℓ.

Next, we analyze the revenue loss due to buyers’ strategic behavior. We note that there are

several reasons for why bidding untruthfully may lead to a reduction in revenue. For example,

suppose that the highest valuation is greater than the reserve price. In that case, if buyers were

truthful, the item would be allocated and the seller would gain positive revenue. Now, if buyers

shade their bids, the auctioned item may not get allocated, resulting in zero revenue for the seller.

In light of this example, we refer to the situation where a buyer could have changed the allocation

outcome had she bid untruthfully as an “allocation mismatch” for that buyer. Utilizing the fact that

|Si,ℓ|=O
(

log(|Eℓ|)
log(1/η)

)
with high probability, we show in Lemma 6 that the number of periods during

which an allocation mismatch for any buyer occurs in phase Eℓ is in the order of O
(
cf +

log(|Eℓ|)
log(1/η)

)
.

Moreover, we show that when a mismatch does not occur, the revenue loss due to buyers’ strategic

behavior can be bounded by
∑

i∈[N ]

∑
t∈Eℓ

|ai,t|. Again, by employing the order of |Si,ℓ| for any

i∈ [N ], we have

∑

t∈Eℓ

∑

i∈[N ]

|ai,t| ≤
∑

t∈Eℓ/(∪i∈[N]Si,ℓ)

∑

i∈[N ]

|ai,t|+O
(
N2 log(|Eℓ|)
log(1/η)

)
=O

(
N2 log(|Eℓ|)
log(1/η)

)
,
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since |ai,t| ≤ 1/|Eℓ| for all t ∈Eℓ/Si,ℓ. Eventually, this allows us to show the revenue loss in phase

Eℓ due to buyers’ strategic behavior is in the order of O
(

N2 log(|Eℓ|)
log(1/η)

)
.

Finally, combining the two aforementioned constituents that cause a revenue loss, and utilizing

the fact that there are O(log log(T )) phases in total, we can show the cumulative regret over the

entire horizon T as stated in Theorem 2.

7. Concluding Remarks

The problem of designing data-driven optimal auctions has drawn much attention lately; see, for

example, Roughgarden and Wang (2016), Golrezaei et al. (2017), Derakhshan et al. (2019), and

Javanmard and Nazerzadeh (2016). There, the goal is to deviate from classical Bayesian settings

and take advantage of available data to optimize auction design either in an offline or online

fashion. Although this approach is very natural, it can lead to designs that are vulnerable to

buyers’ manipulations as the data may be generated by strategic agents. In this work, we show

how one can make data-driven auction design robust to buyers’ manipulations even in a setting

with a contextual and non-parametric demand model. To robustify our data-driven auction design,

we (i) restart our policy over time in a systematic way and (ii) incorporate randomized isolation

periods. While the former reduces the impact of corrupted (manipulative) bids, the latter makes

manipulations costly for the buyers and incentivizes them to well-behave.
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8. Appendix for Section 4: Proof of Proposition 1

Let Qt(·) be the distributions of a buyer’s valuation when we condition on the feature vector

xt. Further, let Q−
t (·) be the distribution of v−t , which is the second highest valuation at time t.

Then, we have Qt(z) =F (z−〈β,xt〉) and Q−
t (z) = F−(z−〈β,xt〉). When N ≥ 2 and all buyers bid

truthfully, according to Equations (3) and (4), the seller’s expected revenue conditioned on xt by

setting reserve price rt is:

revt(rt) = E
[
max{rt, v−t }I{v+t ≥ rt} | xt, rt

]

= E
[
rtI{v+t ≥ rt ≥ v−t }+ v−t I{v+t ≥ v−t ≥ rt} | xt, rt

]
, (16)

where we recall that v+t is the highest valuation at time t. The first term within the expectation,

conditioned on xt and rt, is

E
[
rtI{v+t ≥ rt ≥ v−t } | xt, rt

]
= rtN [Qt(rt)]

N−1
[1−Qt(rt)] , (17)

where we used the fact that rt is independent of v+t and v−t since the seller sets reserve price rt

based on only the past history Ht−1 = {(r1, v1, x1), (r2, v2, x2), . . . , (rt−1, vt−1, xt−1)}, and both v+t

and v−t , conditioned on xt, are independent of the past. The second term within the expectation

of Equation (16) is

E
[
v−t I{v+t ≥ v−t ≥ rt} | xt, rt

]
= E

[
v−t I{v−t ≥ rt} | xt, rt

]

= E
[
(v−t − rt)I{v−t ≥ rt} | xt, rt

]
+ rtE

[
I{v−t ≥ rt} | xt, rt

]

=

∫ ∞

0

P
(
v−t − rt ≥ z

)
dz+ rt

[
1−Q−

t (rt)
]

=

∫ ∞

rt

[
1−Q−

t (z)
]
dz+ rt

[
1−Q−

t (rt)
]

= E
[
v−t | xt, rt

]
−
∫ rt

0

[
1−Q−

t (z)
]
dz+ rt

[
1−Q−

t (rt)
]

= E
[
v−t | xt

]
+

∫ rt

0

Q−
t (z)dz− rtQ

−
t (rt) . (18)

Note that the integration starts from 0 because all valuations are considered to be positive. Since

F−(z̃) :=NFN−1(z̃)− (N − 1)FN(z̃) for any z̃ ∈R, we have

Q−
t (rt) = N [Qt(rt)]

N−1
[1−Qt(rt)]+ [Qt(rt)]

N
. (19)
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Hence, combining Equations (16), (17), (18), and (19), we have

revt(rt) = E
[
v−t | xt

]
+

∫ rt

0

Q−
t (z)dz− rt [Qt(rt)]

N

= E
[
v−t | xt

]
+

∫ rt

0

F−(z−〈β,xt〉)dz− rt
[
F+(rt −〈β,xt〉)

]

=

∫ ∞

−∞
zdF−(z)+ 〈β,xt〉+

∫ rt

0

F−(z−〈β,xt〉)dz− rt
[
F+(rt −〈β,xt〉)

]
.

9. Appendix for Section 5: Proof of Theorem 1

To show that the T -period regret of Algorithm 1 is upper bounded as Regret(T ) =

O
(√

dN3T log(T )
)
, we will makes use of the following events throughout our proof:

ξt :=
{
‖β̂t −β‖1 ≤

δt
xmax

}
where δt =

4
√
d log(t− 1)ǫmaxx

2
max

λ2
0

√
N(t− 1)

(20)

ξ−t :=
{∣∣∣F−(z)− F̂−

t (z)
∣∣∣≤ γt +2cfN

2δt, ∀z ∈R

}
(21)

ξ+t :=
{∣∣∣F+(z)− F̂+

t (z)
∣∣∣≤ γt + cfNδt, ∀z ∈R

}
, (22)

where γt :=
√

2 log(t)/
√
t, λ2

0 is the minimum eigenvalue of covariance matrix Σ, and cf =

supz∈[−ǫmax,ǫmax]
f(z). Under event ξt, the estimation error in the mean vector is small, and under

event ξ−t and ξ+t , the estimation errors in F− and F+ are small respectively. Furthermore, we note

that under these events, our estimates for β, F−, and F+ become more accurate as we obtain more

data points over time. We now define a threshold time period T0, starting from which our estimates

are “sufficiently accurate”:

T0 =

⌈
max

{√
dT ,

16x2
max log(T )

λ2
0

,2

}⌉
+1=O(

√
dT ) . (23)

We will later discuss the significance of this construction for T0.

For simplicity, we let yt := 〈β,xt〉, and ŷt := 〈β̂t, xt〉. Then, assuming that buyers are always

truthful, the regret in period t is given by

Regrett = E [REV⋆
t − revt(rt)]

= E

[∫ r⋆t

0

F−(z− yt)dz− r⋆t
[
F+(r⋆t − yt)

]
−
∫ rt

0

F−(z− yt)dz+ rt
[
F+(rt − yt)

]
]
, (24)
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where the expectation is taken with respect to xt ∼ D and rt; the second equality follows from

Proposition 1. Define

Rt :=

∫ r⋆t

0

F−(z− yt)dz− r⋆t
[
F+(r⋆t − yt)

]
−
∫ rt

0

F−(z− yt)dz+ rt
[
F+(rt − yt)

]
and (25)

ρt(r, y,F
(1), F (2)) :=

∫ r

0

F (2)(z− y)dz− r
[
F (1)(r− y)

]
. (26)

Then, we have

Rt = ρt(r
⋆
t , yt, F

−, F+)− ρt(rt, yt, F
−, F+)

= ρt(r
⋆
t , yt, F

−, F+)− ρt(r
⋆
t , ŷt, F

−, F+)

+ ρt(r
⋆
t , ŷt, F

−, F+)− ρt(r
⋆
t , ŷt, F̂

−
t , F̂+

t )

+ ρt(r
⋆
t , ŷt, F̂

−
t , F̂+

t )− ρt(rt, ŷt, F̂
−
t , F̂+

t )

+ ρt(rt, ŷt, F̂
−
t , F̂+

t )− ρt(rt, ŷt, F
−, F+)

+ ρt(rt, ŷt, F
−, F+)− ρt(rt, yt, F

−, F+) . (27)

We note that the second equation follows from adding and subtracting terms. Observe the first and

the last terms of the second equation capture the impact of estimation error in the mean vector β.

Further, the second and forth terms capture the impact of the estimation errors in distributions

F− and F+ while the third term captures the errors in reserve price with respect to all estimations.

We now invoke Lemma 4, where we show that when events ξt, ξ
−
t , and ξ+t happen, for r ∈ {r⋆t , rt}

we have

(i) |ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)| ≤ 3rcfN

2δt a.s.

(ii)
∣∣∣ρt(r, yt, F−, F+)− ρt(r, ŷt, F̂

−
t , F̂+

t )
∣∣∣ ≤ r(3cfN

2δt +2γt) a.s.

This result relies on the Lipschitz properties of F− and F+ shown in Lemma 1, and allows us to

bound the regret using estimation errors without imposing the MHR assumption. Note that the

first inequality bounds the impact of errors β and the second bounds the impact of errors in the

distributions. Applying these bounds in (27), we get

Rt · I{ξt ∩ ξ−t ∩ ξ+t }
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≤ 3(r⋆t + rt)cfN
2δt +

(
ρt(r

⋆
t , ŷt, F̂

−
t , F̂+

t )− ρt(rt, ŷt, F̂
−
t , F̂+

t )
)
+(r⋆t + rt) · (3cfN2δt +2γt)

= 2(r⋆t + rt) · (3cfN2δt+ γt)+
(
ρt(r

⋆
t , ŷt, F̂

−
t , F̂+

t )− ρt(rt, ŷt, F̂
−
t , F̂+

t )
)
. (28)

We recall that the seller’s pricing decision rt in period t is defined in Equation (7), and

observe that rt = argmaxr∈[0,vmax]
ρt(r, ŷt, F̂

−
t , F̂+

t ). Since r⋆t ∈ (0, vmax), we obtain the fact that

ρt(r
⋆
t , ŷt, F̂

−
t , F̂+

t )− ρt(rt, ŷt, F̂
−
t , F̂+

t )≤ 0. Plugging this into Equation (28), we get

Rt · I{ξt ∩ ξ−t ∩ ξ+t } ≤ 2(r⋆t + rt) · (3cfN2δt + γt) ≤ 4vmax(3cfN
2δt + γt) . (29)

So far, we have bounded the single period regret for some period t∈ [T ] assuming that events ξt,

ξ−t , ξ
+
t all hold. But, before we sum this regret up across all periods to get the cumulative regret,

we first turn to upper bound the probability that not all of the events {ξt}t≥T0
,{ξ−t }t≥T0

,{ξ+t }t≥T0

occur, where T0 =O(
√
dT ) is defined in Equation (23). We denote the complement of a set A to

be Ac. Hence, the probability that not all of the events {ξt}t≥T0
,{ξ−t }t≥T0

,{ξ+t }t≥T0
occur is

P

(
T⋃

t=T0

(
{ξt}c ∪

{
ξ−t
}c ∪

{
ξ+t
}c)
)

≤
T∑

t=T0

[
P ({ξt}c)+P

({
ξ−t
}c)

+P
({

ξ+t
}c)]

.

According to Lemma 3, the probability P ({ξt}c) is bounded by

P ({ξt}c) ≤ 2d

(t− 1)2
+ d exp

(
−(t− 1)λ2

0

8x2
max

)
≤ 2d

(t− 1)2
+

d

T 2
, (30)

where the second inequality is due to our construction of T0, such that for t≥T0 we have t− 1≥

16x2
max log(T )/λ

2
0. On the other hand, by taking γ = γt =

√
2 log(t)/

√
t in Lemma 2, the probability

P
({

ξ−t
}c)

is bounded as:

P
({

ξ−t
}c) ≤ 4 exp

(
−tγ2

)
+

4d

(t− 1)2
+2d exp

(
−(t− 1)λ2

0

8x2
max

)

≤ 4 exp


−t ·

(√
2 log(t)√

t

)2

+

4d

(t− 1)2
+

2d

T 2

≤ 4

t2
+

4d

(t− 1)2
+

2d

T 2
.
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Similarly, we have P
({

ξ+t
}c) ≤ 4

t2
+ 4d

(t−1)2
+ 2d

T2 . Therefore,

P

( ⊤⋃

t=T0

(
{ξt}c ∪

{
ξ−t
}c ∪

{
ξ+t
}c)
)

≤
⊤∑

t=T0

(
5d

T 2
+

10d

(t− 1)2
+

8

t2

)

≤
∫ ∞

√
dT

15d+8

τ 2
dτ ≤ 23d√

dT
=

23
√
d√

T
. (31)

The second inequality is due to T0 ≥
√
dT according to its definition, and the subsequent inequalities

use the fact that d≥ 1.

Finally, we break down the cumulative expected regret into three parts: the trivial bound vmax

for the regret from period t= 1 to T0 − 1, the cumulative expected regret from period t = T0 to

T given the occurrence of events {ξt}t≥T0
,{ξ−t }t≥T0

,{ξ+t }t≥T0
, and the trivial bound from period

t=T0 to T if not all these events occur. Hence, the final cumulative regret is

Regret(T )

≤ vmax (T0 − 1)+
T∑

t=T0

E [Rt]

= vmax (T0 − 1)+
T∑

t=T0

E
[
Rt · I{ξt ∩ ξ−t ∩ ξ+t }

]
+

T∑

t=T0

E
[
Rt ·

(
I
{
(ξt)

c ∪
(
ξ−t
)c ∪

(
ξ+t
)c})]

≤ vmax (T0 − 1)+
T∑

t=T0

E
[
Rt ·

(
I{ξt ∩ ξ−t ∩ ξ+t }

)]
+TvmaxP

(
T⋃

t=T0

(
(ξt)

c ∪
(
ξ−t
)c ∪

(
ξ+t
)c)
)

≤ vmaxT0 +
T∑

t=T0

4vmax

(
3cfN

2δt + γt
)
+Tvmax ·P

(
T⋃

t=T0

(
(ξt)

c ∪
(
ξ−t
)c ∪

(
ξ+t
)c)
)

≤ vmaxT0 +4vmax

T∑

t=T0

(
3cfN

2δt + γt
)
+Tvmax ·

23
√
d√

T

The first inequality applies Equation (24) and uses the trivial bound vmax for each of the first T0

periods; the second inequality is because Rt ≤ vmax; the third inequality follows from Equations

(29), and the final inequality follows from (31). Then, by plugging in the definition of δt and γt,

Regret(T )

≤ vmaxT0 +4vmax

∫ T

0

(
3cfN

2 · 4
√
d log(τ)ǫmaxx

2
max

λ2
0

√
Nτ

+

√
2 log(τ)√

τ

)
dτ +23vmax

√
dT

≤ vmaxT0 +4vmax

(
24cfǫmaxx

2
max

√
dN3T log(T )

λ2
0

+2
√
2T log(T )

)
+23vmax

√
dT

= O
(
cf
√
dN3T log(T )

)
,
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where the first inequality follows from the fact that a summation of monotonically decreasing

functions can be upper bounded by its integral.

9.1. Lemmas for proving Theorem 1

Lemma 1 (Lipschitz Property for F , F− and F+). The following hold for any z1, z2 ∈R:

(i) |F (z1)−F (z2)| ≤ cf |z1 − z2|.

(ii) |F−(z1)−F−(z2)| ≤ 2cfN
2|z1 − z2|.

(iii) |F+(z1)−F+(z2)| ≤ cfN |z1 − z2|.

Here, 0< cf = supz∈[−ǫmax,ǫmax]
f(z).

Proof of Lemma 1. Without loss of generality, we assume z1 < z2. Note that F (z) = 0 for ∀z ∈

(−∞,−ǫmax], and F (z) = 1 for ∀z ∈ [ǫmax,∞).

Part (i) We consider the following cases:

Case 1: (z1 < z2 ≤−ǫmax or ǫmax ≤ z1 < z2): |F (z2)−F (z1)|= 0≤ cf |z2 − z1|.

Case 2: (−ǫmax < z1 < z2 < ǫmax): By the mean value theorem, |F (z2)−F (z1)|= f(z̃)|z2 − z1|<

cf |z2 − z1|, where z̃ ∈ (z1, z2).

Case 3: (z1 ≤−ǫmax < z2 < ǫmax): We have |z2 − (−ǫmax)| = z2 − (−ǫmax) ≤ z2 − z1 and F (z1) =

F (−ǫmax) = 0. Hence |F (z2)−F (z1)|= |F (z2)−F (−ǫmax)|= f(z̃)|z2− (−ǫmax)| ≤ cf |z2 − z1|, where

z̃ ∈ (−ǫmax, z2) by the mean value theorem.

Case 4 (−ǫmax < z1 < ǫmax ≤ z2): We have |ǫmax−z1|= ǫmax−z1 ≤ z2−z1 and F (z2) = F (ǫmax) = 1

. Hence |F (z2)− F (z1)|= |F (ǫmax)− F (z1)|= f(z̃)|ǫmax − z1| ≤ cf |z2 − z1|, where z̃ ∈ (z1, ǫmax) by

the mean value theorem.

Part (ii) & (iii) We recall that F−(z) =NFN−1(z)− (N − 1)FN(z) and F+(z) = FN(z), so

|F−(z2)−F−(z1)|

=
∣∣NFN−1(z2)− (N − 1)FN(z2)−

(
NFN−1(z1)− (N − 1)FN(z1)

)∣∣

≤ N
∣∣FN−1(z2)−FN−1(z1)

∣∣+(N − 1)
∣∣FN(z2)−FN(z1)

∣∣
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= N

∣∣∣∣∣(F (z2)−F (z1))

(
N−1∑

n=1

(F (z2))
n−1

(F (z1))
N−1−n

)∣∣∣∣∣

+(N − 1)

∣∣∣∣∣(F (z2)−F (z1))

(
N∑

n=1

(F (z2))
n−1

(F (z1))
N−n

)∣∣∣∣∣

≤ N(N − 1) |F (z2)−F (z1)|+(N − 1)N |F (z2)−F (z1)|

< 2N2cf |z2 − z1| .

The second equality uses am − bm = (a− b) (
∑m

n=1 a
n−1bm−n) for any a, b ∈ R and integer m≥ 2.

The second inequality follows from F (z) ∈ [0,1] for ∀z ∈ R. The final inequality follows from the

Lipschitz property of F shown in part (i). Following the same arguments, we can also show that

|F+(z2)−F+(z1)| ≤ cfN |z2 − z1|. �

Lemma 2 (Bounding Estimation Errors in F− and F+). Define σt to be the sigma algebra

generated by all {xτ}τ∈[t] and {ǫi,τ}i∈[N ],τ∈[t]. Then, for any σt-measurable random variable z and

any γ > 0, we have

P

(∣∣∣F−(z)− F̂−
t (z)

∣∣∣≤ γ+2cfN
2δt

)
≥ 1− 4 exp

(
−tγ2

)
− 4d

(t− 1)2
− 2d exp

(
−(t− 1)λ2

0

8x2
max

)
and

P

(∣∣∣F+(z)− F̂+
t (z)

∣∣∣≤ γ+ cfNδt

)
≥ 1− 4 exp

(
−tγ2

)
− 4d

(t− 1)2
− 2d exp

(
−(t− 1)λ2

0

8x2
max

)
,

where δt =
4
√

d log(t−1)ǫmaxx
2
max

λ2
0

√
N(t−1)

and cf = supz∈[−ǫmax,ǫmax]
f(z).

Proof of Lemma 2. Our goal here is to show that
∣∣F−(z)− F̂−

t (z)
∣∣ is small with high probability.

According to our estimate of F− in NPAC-T policy,

F̂−
t (z) =

1

t− 1

∑

τ∈[t−1]

I

{
v−τ −〈β̂t, xτ 〉 ≤ z

}

=
1

t− 1

∑

τ∈[t−1]

I

{
ǫ−τ ≤ z+ 〈β̂t −β,xτ〉

}
.

We highlight that E

[
F̂−

t (z)
]
6= 1

t−1

∑
τ∈[t−1]F

−
(
z+ 〈β̂t −β,xτ〉

)
because both z and β̂t are σt-

measurable. Hence, one cannot naively apply concentration inequalities to bound
∣∣∣F−(z)− F̂−

t (z)
∣∣∣.
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Therefore, our approach is to first construct upper and lower bounds for F̂−
t (z) that are not func-

tions of β̂t, and then apply concentration inequalities on these upper and lower bounds respectively.

Recall the definition of the event ξt =
{
‖β̂t −β‖1 ≤ δt/xmax

}
. Under this event, we have

1

t− 1

∑

τ∈[t−1]

I
{
ǫ−τ ≤ z− δt

}
≤ F̂−

t (z) ≤ 1

t− 1

∑

τ∈[t−1]

I
{
ǫ−τ ≤ z+ δt

}
. (32)

Now, for any γ > 0, we have

P

(
F̂−

t (z)−F−(z+ δt)≤ γ
)

≥ P

({
F̂−

t (z)−F−(z+ δt)≤ γ
} ⋂

ξt

)

≥ P

({∑
τ∈[t−1] I{ǫ−τ ≤ z+ δt}

t− 1
−F−(z+ δt)≤ γ

}
⋂

ξt

)

≥ P






sup

z̃∈R

∣∣∣
1

t− 1

∑

τ∈[t−1]

I
{
ǫ−τ ≤ z̃

}
−F−(z̃)

∣∣∣≤ γ




⋂

ξt




≥ 1−P



sup
z̃∈R

∣∣∣
1

t− 1

∑

τ∈[t−1]

I
{
ǫ−τ ≤ z̃

}
−F−(z̃)

∣∣∣> γ



−P (ξct )

≥ 1− 2 exp
(
−2(t− 1)γ2

)
− 2d

(t− 1)2
− d exp

(
−(t− 1)λ2

0

8x2
max

)

≥ 1− 2 exp
(
−tγ2

)
− 2d

(t− 1)2
− d exp

(
−(t− 1)λ2

0

8x2
max

)
,

where the second inequality follows from (32), the fourth inequality follows from the union bound,

and the second last inequality follows from the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality

(Theorem 11) and Lemma 3. We note that we can apply the DKW inequality because {ǫ−τ }τ∈[t−1] are

t−1 i.i.d. realizations of the (N −1)th order statistic of N i.i.d. noise variables. The last inequality

holds because t ≥ 2 and as a result, t− 1 ≥ t
2
. Furthermore, invoking the Lipschitz properties of

F− shown in Lemma 1, we have |F−(z+ δt)−F−(z)| ≤ 2cfN
2δt. Therefore,

P

(
F̂−

t (z)−F−(z) ≤ γ+2cfN
2δt

)

≥ P

(
F̂−

t (z)−F−(z+ δt)≤ γ
)

≥ 1− 2 exp
(
−tγ2

)
− 2d

(t− 1)2
− d exp

(
−(t− 1)λ2

0

8x2
max

)
. (33)
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Similarly, we have |F−(z)−F−(z − δt)| ≤ 2cfN
2δt by Lemma 1. Hence, following the same argu-

ments as in the case of P
(
F̂−

t (z)−F−(z) ≤ γ+2cfN
2δt

)
, we have

P

(
F−(z)− F̂−

t (z)≤ γ+2cfN
2δt

)
≥ P

(
F−(z− δt)− F̂−

t (z)≤ γ
)

≥ 1− 2 exp
(
−tγ2

)
− 2d

(t− 1)2
− d exp

(
−(t− 1)λ2

0

8x2
max

)
. (34)

Finally, applying a union bound on Equations (33) and (34) will yield the result in the statement

of the lemma. We can show a similar result for F+(z)− F̂+
t (z) by following the same reasoning.

�

Lemma 3 (Bounding Estimation Errors in β). For any γ > 0,

P

(
‖β̂t+1 −β‖1 ≤ γ

)
≥ 1− 2d exp

(
− Nγ2λ4

0t

8ǫ2maxx
2
maxd

)
− d exp

(
− tλ2

0

8x2
max

)
,

where λ2
0 is the minimum eigenvalue of covariance matrix Σ and the estimate β̂t+1 is defined in

Equation (8). Furthermore, setting γ =
4
√

d log(t)ǫmaxxmax

λ2
0

√
Nt

and denoting δt+1 = γxmax, we have

P

(
‖β̂t+1 −β‖1 ≤

δt+1

xmax

)
≥ 1− 2d

t2
− d exp

(
− tλ2

0

8x2
max

)
.

Proof of Lemma 3. The proof of Lemma 3 is inspired by Lemma EC.7.2 in Bastani and Bayati

(2015). First, recall that the smallest eigenvalue λ2
0 of the covariance matrix Σ of x∼D is greater

than 0. Since the second moment matrix E[xtx
⊤
t ] = Σ + E[x]E[x]⊤, we know that the smallest

eigenvalue of E[xtx
⊤
t ] is at least λ

2
0 > 0. We denote the design matrix of all the features up to time

t as X where X ∈R
t×d, and ǭτ =

∑
i∈[N] ǫi,τ

N
for ∀τ ∈ [t].

We first consider the case where the smallest eigenvalue of the second moment matrix

λmin (X
⊤X/t) ≥ λ2

0/2, which implies that (X⊤X)−1 exists and (X⊤X)−1 = (X⊤X)† . Later, we

show that with high probability, λmin (X
⊤X/t)≥ λ2

0/2. By the definition of β̂t+1 and v̄t in Equations

(8),

β̂t+1 =
(
X⊤X

)−1
X⊤




v̄1

...

v̄t




=
(
X⊤X

)−1
X⊤




∑
i∈[N] vi,1

N

...
∑

i∈[N] vi,t

N



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= β+
(
X⊤X

)−1
X⊤




∑
i∈[N] ǫi,1

N

...
∑

i∈[N] ǫi,t

N




= β+
(
X⊤X

)−1
X⊤Ē ,

where Ē is the column vector consisting of all ǭτ =
∑

i∈[N] ǫi,τ

N
for ∀τ ∈ [t]. Therefore,

‖β̂t+1 −β‖2 = ‖
(
X⊤X

)−1
X⊤Ē‖2 ≤

2

tλ2
0

· ‖X⊤Ē‖2 , (35)

since we assumed λmin (X
⊤X/t)≥ λ2

0/2. Denote Xj as the jth column of X, i.e., the jth row of

X⊤, for j = 1,2 . . . d. Since ‖X⊤Ē‖22 =
∑

j∈[d]

∣∣Ē⊤Xj
∣∣2, for any γ > 0 we have

⋂

j∈[d]

{∣∣Ē⊤Xj
∣∣ ≤ tλ2

0γ

2
√
d

}
⊆
{

2

tλ2
0

· ‖X⊤Ē‖2 ≤ γ

}
. (36)

We observe that Ē⊤Xj =
∑

τ∈Eℓ

∑
i∈[N] ǫi,τXτj

N
, where all ǫi,τXτj are 0-mean and ǫmaxxmax-subgaussion

10 random variables. Therefore by Hoeffding’s inequality, for any γ̃ > 0

P
(∣∣N Ē⊤Xj

∣∣≤ γ̃
)
≥ 1− 2 exp

(
− γ̃2

2ǫ2maxx
2
maxtN

)
. (37)

Hence,

P

(
2

tλ2
0

· ‖X⊤Ē‖2 ≤ γ

)
≥ P



⋂

j∈[d]

{∣∣Ē⊤Xj
∣∣≤ tλ2

0γ

2
√
d

}


≥ 1−
∑

j∈[d]

P

(∣∣Ē⊤Xj
∣∣> tλ2

0γ

2
√
d

)

≥ 1− 2d exp

(
− Nγ2λ4

0t

8ǫ2maxx
2
maxd

)
, (38)

where the first inequality follows from Equation (36), the second inequality applies the union

bound, and the last inequality follows from Equation (37) by replacing γ̃ with Ntλ2
0γ/(2

√
d).

10 A random variable Z is σ-subgaussian if for ∀γ ∈R, E[exp(γZ)]≤ exp(γ2σ2/2).
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Now it only remains to show λmin (X
⊤X/t)≥ λ2

0/2 with high probability, which can be achieved

by applying Lemma 12. In the context of this lemma, we consider the sequence of random matri-

ces {xτx
⊤
τ /t}τ∈[t], and note that X⊤X/t =

∑
τ∈[t](xτx

⊤
τ /t). We first upper bound the maximum

eigenvalue of xτx
⊤
τ /t, namely λmax (xτx

⊤
τ /t) for any τ ∈ [t] by

λmax

(
xτx

⊤
τ

t

)
= max

‖z‖2=1
z⊤

xτx
⊤
τ

t
z ≤ 1

t
max
‖z‖2=1

(x⊤z)2 ≤ x2
max

t
.

This allows us to apply Lemma 12 (setting γ̄ =1/2 in the lemma) and get

P

(
λmin

(
X⊤X

t

)
≥ λ2

0

2

)
≥ P

(
λmin

(
X⊤X

t

)
≥ λmin (E[X

⊤X/t])
2

2

)

≥ 1− d exp

(
− tλ2

0

8x2
max

)
, (39)

where the first inequality follows from the fact that λmin (E[X
⊤X/t])≥ λ2

0.

Therefore,

P

(
‖β̂t+1 −β‖1 ≤ γ

)
≥ P

(
‖β̂t+1 −β‖2 ≤ γ

)

≥ P

({
2

tλ2
0

· ‖X⊤Ē‖2 ≤ γ

}⋂{
λmin

(
X⊤X

t

)
≥ λ2

0

2

})

≥ 1−P

(
2

tλ2
0

· ‖X⊤Ē‖2 >γ

)
−P

(
λmin

(
X⊤X

t

)
<

λ2
0

2

)

≥ 1− 2d exp

(
− Nγ2λ4

0t

8ǫ2maxx
2
maxd

)
− d exp

(
− tλ2

0

8x2
max

)
.

The first inequality follows from the fact that ‖z‖1 ≤ ‖z‖2 for any vector z; the second inequal-

ity follow from Equation (35); the fourth inequality applies a simple union bound; and the final

inequality follows from Equations (38) and (39). �

The following Lemma utilizes the Lipschitz properties of F− and F+ shown in Lemma 2 to

bound the seller’s regret in terms of the estimation errors of both β, F− and F+.

Lemma 4 (Bounding the Impact of Estimation Errors on Revenue). Assume that the

events ξt =
{
‖β̂t −β‖1 ≤ δt/xmax

}
, ξ−t =

{∣∣∣F−(z)− F̂−
t (z)

∣∣∣≤ γt +2cfN
2δt for ∀z ∈R

}
and

ξ+t =
{∣∣∣F+(z)− F̂+

t (z)
∣∣∣≤ γt + cfNδt for ∀z ∈R

}
occur with γt =

√
2 log(t)/

√
t, and δt =

4
√

d log(t−1)ǫmaxx
2
max

λ2
0

√
N(t−1)

. Then, for r ∈ {r⋆t , rt} we have the following:
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(i) |ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)| ≤ 3rcfN

2δt a.s.

(ii)
∣∣∣ρt(r, yt, F−, F+)− ρt(r, ŷt, F̂

−
t , F̂+

t )
∣∣∣≤ r(3cfN

2δt +2γt) a.s.

where yt = 〈β,xt〉, ŷt = 〈β̂t, xt〉, β̂t, F̂
−
t , F̂+

t are defined in Equations (8) and (9). The function ρt is

defined in Equation (26).

Proof of Lemma 4. Part (i) We consider the following:

∣∣ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)

∣∣

=

∣∣∣∣
∫ r

0

[
F−(z− yt)−F−(z− ŷt)

]
dz− r

[
F+(r− yt)−F+(r− ŷt)

]∣∣∣∣

≤
∫ r

0

∣∣F−(z− yt)−F−(z− ŷt)
∣∣dz+ r

∣∣F+(r− yt)−F+(r− ŷt)
∣∣

≤
∫ r

0

2cfN
2|yt − ŷt|dz+ rcfN |yt − ŷt|

≤
∫ r

0

2cfN
2
(
‖β̂t −β‖1xmax

)
dz+ rcfN‖β̂t −β‖1xmax

< 3rcfN
2δt .

The first equality follows from definition of ρt in Equation 26; the second inequality follows from

Lemma 1, the third inequality follows from Cauchy’s inequality: |yt− ŷt|= |〈β̂ℓ+1−β,xt〉| ≤ ‖β̂ℓ+1−

β‖1xmax, and the last inequality follows from the occurrence of the occurrence of ξt and N ≥ 1.

Part (ii) Similar to part (i), we have

∣∣∣ρt(r, ŷt, F−, F+)− ρt(r, ŷt, F̂
−
t , F̂+

t )
∣∣∣

=

∣∣∣∣
∫ r

0

[
F−(z− ŷt)− F̂−

t (z− ŷt)
]
dz− r

[
F+(r− ŷt)− F̂+

t (r− ŷt)
]∣∣∣∣

≤
∫ r

0

∣∣∣F−(z− ŷt)− F̂−
t (z− ŷt)

∣∣∣dz+ r
∣∣∣F+(r− ŷt)− F̂+

t (r− ŷt)
∣∣∣

< r(3cfN
2δt +2γt) .

where the last inequality follows from the occurrence of events ξ−t and ξ+t , and N ≥ 1. �

10. Appendix for Section 6: Proof of Theorem 2

We first introduce some definitions that we will extensively rely on throughout our proof of Theorem

2. We start off with the “good” events ξℓ+1, ξ
−
ℓ+1 and ξ+ℓ+1 for ℓ≥ 1 in which the estimates of β, F−
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and F+ are accurate:

ξℓ+1 =

{
‖β̂ℓ+1 −β‖1 ≤

δℓ
xmax

}
(40)

where δℓ :=

√
2d log(|Eℓ|)ǫmaxx

2
max

λ2
0

√
N |Eℓ|

+

√
d (NLℓamax +1)x2

max

|Eℓ|λ2
0

, (41)

ξ−ℓ+1 =

{∣∣∣F̂−
ℓ+1(z)−F−(z)

∣∣∣ ≤ 2N2

(
γℓ + cfδℓ +

cf +NLℓ

|Eℓ|

)}
, (42)

ξ+ℓ+1 =

{∣∣∣F̂+
ℓ+1(z)−F+(z)

∣∣∣ ≤ N

(
γℓ + cfδℓ +

cf +NLℓ

|Eℓ|

)}
, (43)

where amax is the maximum possible corruption, γℓ =
√

log(|Eℓ|)/
√
2N |Eℓ|, λ2

0 is the minimum

eigenvalue of covariance matrix Σ, and cf = supz∈[−ǫmax,ǫmax]
f(z) ≥ infz∈[−ǫmax,ǫmax] f(z) > 0. Fur-

thermore,

Lℓ =
log (v2maxN |Eℓ|4 − 1)

log(1/η)
=O

(
log(|Eℓ|)
log(1/η)

)
,

where |Eℓ|= T 1−2−ℓ
is the length of the ℓth phase.

We also define the event that the number of periods in phase Eℓ during which buyer i submits

significantly corrupted bids is bounded by Lℓ:

Gi,ℓ := {|Si,ℓ| ≤Lℓ} . (44)

Here, Si,ℓ =
{
t∈Eℓ : |ai,t| ≥ 1

|Eℓ|

}
is the set of all periods in phase Eℓ during which buyer i exten-

sively corrupts her bids.

We are now equipped to show Theorem 2 according to the following steps:

(i) Decompose the single period regret into R(1)
t and R(2)

t , where R(1)
t bounds the expected

revenue loss due to the discrepancy between the actual reserve price rt and the optimal reserve price

r⋆t and R(2)
t , which bounds the expected revenue loss due to buyers’ strategic bidding behaviour.

Note that R(1)
t is a result of the estimation inaccuracies in β, F− and F+.

(ii) Bound R(1)
t using Lemmas 5, 7, 8, and 9.

(iii) Bound R(2)
t using Lemmas 5 and 6.
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(iv) Sum up R(1)
t and R(2)

t to bound the cumulative expected regret over a phase Eℓ and the

entire horizon T .

(i) Decomposing single period regret into R(1)
t and R(2)

t : According to the NPAC-S policy

detailed in Algorithm 2, the expected revenue in period t is given by

revt(rt) = E



max{b−t , r̂t}I{b+t > r̂t}I{no isolation in t}+
∑

i∈[N ]

rut I{bi,t > rut }I{i is isolated} | xt, rt



 ,

(45)

where the expectation is taken with respect to {(xτ , ǫi,τ , ai,τ )}τ∈[t],i∈[N ] and r̂t, r
u
t are defined in

Equations (10) and (11) respectively. Hence, the regret is given by

Regrett = E [REV⋆
t − revt(rt)]

= E
[
max{v−t , r⋆t }I{v+t > r⋆t }− revt(rt)

]

=
(
E
[
max{v−t , r⋆t }I{v+t > r⋆t }

]
−E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}

])

+
(
E
[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}− revt(rt)

])

:= R(1)
t +R(2)

t , (46)

where the expectation is taken with respect the context xt ∼D and the randomness in rt; r
⋆
t is the

optimal reserve price (defined in Equation (5)) if the seller has full knowledge of F and β; and we

defined:

R(1)
t :=E

[
max{v−t , r⋆t }I{v+t > r⋆t }

]
−E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}

]

R(2)
t :=E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}− revt(rt)

]
(47)

(ii) Bounding R(1)
t : We start by upper bounding R(1)

t for a period t∈Eℓ+1 where ℓ≥ 1.

R(1)
t = E

[
max{v−t , r⋆t }I{v+t > r⋆t }

]
−E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}

]

= E
[(
max{v−t , r⋆t }I{v+t > r⋆t }−max{v−t , r̂t}I{v+t > r̂t}

)
I{no isolation in t}

]

+E
[
max{v−t , r⋆t }I{v+t > r⋆t } (1− I{no isolation in t})

]
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= E
[
max{v−t , r⋆t }I{v+t > r⋆t }−max{v−t , r̂t}I{v+t > r̂t}

](
1− 1

|Eℓ|

)

+E
[
max{v−t , r⋆t }I{v+t > r⋆t }

]
· 1

|Eℓ|

≤ E
[
max{v−t , r⋆t }I{v+t > r⋆t }−max{v−t , r̂t}I{v+t > r̂t}

]
+

vmax

|Eℓ|
, (48)

where the third equality is because an isolation event is independent of any other event, and the

final inequality follows from a simple observation that max{v−t , r⋆t }I{v+t > r⋆t } ≤ vmax.

For simplicity, we define

R̃(1)
t :=E

[
max{v−t , r⋆t }I{v+t > r⋆t }−max{v−t , r̂t}I{v+t > r̂t}

∣∣∣ xt, r̂t

]
,

so Equation (48) yields

R(1)
t ≤ E

[
R̃(1)

t

]
+

vmax

|Eℓ|
, (49)

where the expectation is taken with respect to the context xt and reserve price r̂t. Notice that

max{v−t , r⋆t }I{v+t > r⋆t }−max{v−t , r̂t}I{v+t > r̂t} is exactly the revenue difference revt(r
⋆
t )− revt(rt)

had the seller set reserve prices r⋆t or rt when all buyers bid truthfully. Hence, similar to the

Equations (24) and (27) in the proof of Theorem 1, by defining yt := 〈β,xt〉, ŷt := 〈β̂ℓ, xt〉 and

ρt(r, y,F
(1), F (2)) :=

∫ r

0
F (2)(z− y)dz− r

[
F (1)(r− y)

]
(Equation (26)), we can apply Proposition 1

and obtain

R̃(1)
t = E

[
max{v−t , r⋆t }I{v+t > r⋆t }−max{v−t , r̂t}I{v+t > r̂t}

∣∣∣ xt, r̂t

]

= ρt(r
⋆
t , yt, F

−, F+)− ρt(r
⋆
t , ŷt, F

−, F+)

+ ρt(r
⋆
t , ŷt, F

−, F+)− ρt(r
⋆
t , ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)

+ ρt(r
⋆
t , ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)− ρt(r̂t, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)

+ ρt(r̂t, ŷt, F̂
−
ℓ+1, F̂

+
ℓ+1)− ρt(r̂t, ŷt, F

−, F+)

+ ρt(r̂t, ŷt, F
−, F+)− ρt(r̂t, yt, F

−, F+) . (50)
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Note that we can apply Proposition 1 because r̂t is the reserve price set according to the NPAC-

S policy when no isolation occurs, which only depends on the current context xt and the past

Ht−1 = {(r1, b1, x1), (r2, b2, x2), . . . , (rt−1, bt−1, xt−1)}.

We now invoke Lemma 9, where we show that when events ξℓ+1, ξ
−
ℓ+1 and ξ+ℓ+1 happen for some

phase ℓ≥ 1, we have for r ∈ {r⋆t , r̂t},

(i) |ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)| ≤ 3rcfN

2δℓ a.s.

(ii)
∣∣∣ρt(r, ŷt, F−, F+)− ρt(r, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)

∣∣∣ ≤ 3rN2
(
γℓ + cfδℓ +

cf+Lℓ

|Eℓ|

)
a.s.

Note that the first inequality bounds the impact of errors β and the second bounds the impact of

errors in the distributions. Applying these bounds in (50), we get

R̃(1)
t · I

{
ξℓ+1 ∩ ξ−ℓ+1 ∩ ξ+ℓ+1

}
≤ 3(r⋆t + r̂t)cfN

2δℓ

+3(r⋆t + r̂t)N
2

(
γℓ + cfδℓ +

cf +Lℓ

|Eℓ|

)

+ ρt(r
⋆
t , ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)− ρt(r̂t, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1) . (51)

We recall that the seller’s pricing decision r̂t when no isolation occurs is defined in Equation

(11), and realize that in fact r̂t = argmaxr∈(0,vmax] ρt(r, ŷt, F̂
−
ℓ+1, F̂

+
ℓ+1). So, by the optimality of r̂t

and r⋆t ≤ vmax, we obtain the fact that ρt(r
⋆
t , ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)− ρt(r̂t, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1) ≤ 0. Using this

inequality in (51), we get

R̃(1)
t · I

{
ξℓ+1 ∩ ξ−ℓ+1∩ ξ+ℓ+1

}

≤ 6vmaxcfN
2δℓ +6vmaxN

2

(
γℓ + cfδℓ +

cf +Lℓ

|Eℓ|

)

= 12vmaxcfN
2δℓ+6vmaxN

2

(√
log(|Eℓ|)√
2N |Eℓ|

+
cf +Lℓ

|Eℓ|

)

= 12vmaxcfN
2δℓ+

6vmax

√
N3 log(|Eℓ|)√
2Eℓ

+
6vmaxN

2(cf +Lℓ)

|Eℓ|
, (52)

where we used the fact that r⋆t , r̂t ≤ vmax in the inequality. Note that Lℓ =

log (v2maxN |Eℓ|4 − 1)/log( 1
η
) =O (log(T )/ log(1/η)), since we recall that |Eℓ|= T 1−2−ℓ

.
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To complete the bound for R(1)
t in period t∈Eℓ+1, we continue to bound Equation (49):

R(1)
t ≤ E

[
R̃(1)

t

]
+

vmax

|Eℓ|

= E

[
R̃(1)

t · I
{
ξℓ+1 ∩ ξ−ℓ+1 ∩ ξ+ℓ+1

}]
+E

[
R̃(1)

t · I
{
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪
(
ξ+ℓ+1

)c}]
+

vmax

|Eℓ|

≤ E

[
R̃(1)

t · I
{
ξℓ+1 ∩ ξ−ℓ+1 ∩ ξ+ℓ+1

}]
+ vmaxP

(
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪
(
ξ+ℓ+1

)c)
+

vmax

|Eℓ|

≤ 12vmaxcfN
2δℓ +

6vmax

√
N3 log(|Eℓ|)√
2Eℓ

+
vmax (6N

2(cf +Lℓ)+ 9N +15d+9)

|Eℓ|
, (53)

where the second inequality follows from a simple observation that R̃(1)
t ≤ vmax almost

surely, and the third inequality uses Equation (52) and Lemma 10, which shows

P
(
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪
(
ξ+ℓ+1

)c) ≤ (9N +15d+8)/|Eℓ|,

(iii) Bounding R(2)
t : So far, we have bounded R(1)

t for t ∈ Eℓ+1 (ℓ≥ 1), and will move on to

bound R(2)
t defined in Equation (46) for t∈Eℓ for any ℓ≥ 1 . We define

b+−i,t =max
j 6=i

bj,t and v+−i,t =max
j 6=i

vj,t , (54)

which represent the highest bid excluding that of buyer i, and the highest valuation excluding that

of buyer i, respectively. We then have

R(2)
t = E

[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}− revt(rt)

]

≤ E
[
max{v−t , r̂t}I{v+t > r̂t}I{no isolation in t}

]
−E

[
max{b−t , rt}I{b+t > r̂t}I{no isolation in t}

]

=
(
E
[
max{v−t , r̂t}I{v+t > r̂t}

]
−E

[
max{b−t , r̂t}I{b+t > r̂t}

])
·
(
1− 1

|Eℓ|

)

< E
[
max{v−t , r̂t}I{v+t > r̂t}

]
−E

[
max{b−t , r̂t}I{b+t > r̂t}

]

=
∑

i∈[N ]

E
[
max{v−t , r̂t}I{vi,t >max{v+−i,t, r̂t}}−max{b−t , r̂t}I{bi,t >max{b+−i,tr̂t}}

]

=
∑

i∈[N ]

E
[
max{v−t , r̂t}I{max{v+−i,t, r̂t}< vi,t <max{b+−i,tr̂t}}

]

−
∑

i∈[N ]

E
[
max{v−t , r̂t}I{max{b+−i,tr̂t}< vi,t <max{v+−i,t, r̂t}}

]

+
∑

i∈[N ]

E
[
max{v−t , r̂t}I{vi,t >max{b+−i,tr̂t}}−max{b−t , r̂t}I{bi,t >max{b+−i,tr̂t}}

]
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≤
∑

i∈[N ]

E
[
max{v−t , r̂t}I{max{v+−i,t, r̂t}<vi,t <max{b+−i,tr̂t}}

]

+
∑

i∈[N ]

E
[
max{v−t , r̂t}I{vi,t >max{b+−i,tr̂t}}−max{b−t , r̂t}I{bi,t >max{b+−i,tr̂t}}

]

≤
∑

i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t}<vi,t <max{b+−i,tr̂t}}

]

+
∑

i∈[N ]

E
[
max{v−t , r̂t}I{vi,t >max{b+−i,tr̂t}}−max{b−t , r̂t}I{bi,t >max{b+−i,tr̂t}}

]
, (55)

where the first inequality follows from Equation (45); the third inequality is due to the fact

that
∑

i∈[N ]E
[
max{v−t , r̂t}I{max{b+−i,tr̂t}< vi,t <max{v+−i,t, r̂t}}

]
≥ 0; and the last inequality holds

because max{v−t , r̂t} ≤ vmax. To continue the bound for Equation (55), we use the definition of

Bi,ℓ := Bs
i,ℓ ∪Bo

i,ℓ in Lemma 6, where

Bs
i,ℓ =

{
t∈Eℓ : I

{
vi,t > {b+−i,t, r̂t}

}
=1 , I

{
bi,t > {b+−i,t, r̂t}

}
= 0
}

Bo
i,ℓ =

{
t∈Eℓ : I

{
vi,t > {b+−i,t, r̂t}

}
=0 , I

{
bi,t > {b+−i,t, r̂t}

}
= 1
}
.

Here, Bs
i,ℓ represents the periods during which buyer i could have won the auction had she bid

truthfully but in reality lost since she shaded her bid, while Bo
i,ℓ represents the periods when

buyer i would have lost the auction had she bid truthfully, but instead won the item due to

overbidding. The “s” and “o” present represent shading and overbidding respectively. Hence, for

any period t∈Eℓ/Bi,ℓ :=
{
t∈Eℓ : I

{
vi,t > {b+−i,t, r̂t}

}
= I
{
bi,t > {b+−i,t, r̂t}

}}
(which means in period

t ∈ Eℓ/Bi,ℓ the outcome for buyer i would not have changed even if she bid truthfully), we have

I{vi,t >max{b+−i,t, r̂t}}= I{bi,t >max{b+−i,t, r̂t}}. Therefore, defining Bℓ := ∪i∈[N ]Bi,ℓ, we have

R(2)
t I{t∈Eℓ/Bℓ}

≤
∑

i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t}<vi,t <max{b+−i,tr̂t}}

]

+
∑

i∈[N ]

E
[
max{v−t , r̂t}I{vi,t >max{b+−i,tr̂t}}−max{b−t , r̂t}I{bi,t >max{b+−i,tr̂t}}

]
I{t∈Eℓ/Bℓ}

=
∑

i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t}<vi,t <max{b+−i,tr̂t}}

]
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+
∑

i∈[N ]

E
[(
max{v−t , r̂t}−max{b−t , r̂t}

)
I{bi,t >max{b+−i,t, r̂t}}

]

≤
∑

i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t}<vi,t <max{b+−i,t, r̂t}}

]
+E

[
max{v−t , r̂t}−max{b−t , r̂t}

]

≤
∑

i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t}<vi,t <max{b+−i,t, r̂t}}

]
+E

[(
v−t − b−t

)+]
.

The first inequality follows from Equation (55); the first equality follows from the fact that t ∈

Eℓ/Bℓ; the second inequality holds because
∑

i∈[N ] I{bi,t >max{b+−i,tr̂t}} ≤
∑

i∈[N ] I{bi,t > b+−i,t}}=

1; the third inequality applies the fact that max{a, c} −max{b, c} ≤ (a− b)+ for any a, b, c ∈ R.

Denoting i⋆ := argmaxi∈[N ] vi,t, we have

∑

i∈[N ]

vmaxE
[
I{max{v+−i,t, r̂t}< vi,t <max{b+−i,t, r̂t}}

]

= vmaxE
[
I{max{v+−i⋆,t, r̂t}< vi⋆,t <max{b+−i⋆,t, r̂t}}

]

since I{max{v+−i,t, r̂t}< vi,t}= 0 if i 6= i⋆. Therefore

R(2)
t I{t∈Eℓ/Bℓ} ≤ vmaxE

[
I{max{v+−i⋆,t, r̂t}<vi⋆,t <max{b+−i⋆,t, r̂t}}

]
+E

[(
v−t − b−t

)+]
, (56)

To bound the first term in Equation (56), we again evoke the inequality max{a, c}−max{b, c}=

(a− b)+ for any a, b, c ∈R and get max{b+−i⋆,t, r̂t}−max{v+−i⋆,t, r̂t} ≤
(
b+−i⋆,t − v+−i⋆,t

)+
. Hence,

E
[
I{max{v+−i⋆ ,t, r̂t}< vi⋆,t <max{b+−i⋆,t, r̂t}}

]

≤ E

[
I{max{b+−i⋆,t, r̂t}−

(
b+−i⋆,t − v+−i⋆,t

)+
< vi⋆,t <max{b+−i⋆,t, r̂t}}

]

= E

[
E

[
I{max{b+−i⋆,t, r̂t}−

(
b+−i⋆,t − v+−i,t

)+
<vi⋆,t <max{b+−i⋆,t, r̂t}}

∣∣∣ b+−i⋆,t, v
+
−i⋆,t

]]

= E

[∫ max{b+
−i⋆,t

,r̂t}−〈β,xt〉

max{b+
−i⋆,t

,r̂t}−
(
b+
−i⋆,t

−v+
−i⋆,t

)+
−〈β,xt〉

f(z)dz

]

≤ cfE
[(
b+−i⋆,t − v+−i⋆,t

)+]
. (57)

Now, set j ∈ [N ] such that b+−i⋆,t = bj,t (j 6= i⋆), i.e. j is the highest bidder among all buyers excluding

i⋆. Then b+−i⋆,t − v+−i⋆,t = bj,t − v+−i⋆,t ≤ bj,t − vj,t =−aj,t, where the inequality follows from the fact
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that v+−i⋆,t is the highest valuation among all buyers excluding i⋆ (which includes j as j 6= i⋆).

Therefore, continuing the bound in Equation (57), we have

E
[
I{max{v+−i⋆,t, r̂t}< vi⋆,t <max{b+−i⋆,t, r̂t}}

]
≤ cf(−aj,t)

+ ≤ cf
∑

i∈[N ]

(−ai,t)
+ . (58)

To bound the second term in Equation (56), namely E

[(
v−t − b−t

)+]
, without loss of generality

assume v1,t ≥ v2,t ≥ · · · ≥ vN,t. Hence v−t = v2,t. If b2,t ≤ b−t , we have v−t − b−t ≤ v2,t − b2,t = a2,t.

Otherwise if b2,t > b−t , then buyer 2 submitted the highest bid, so bi,t ≤ b−t for any i 6= 2 and thus,

v−t − b−t ≤ v1,t − b−t ≤ v1,t − b1,t = a1,t. Hence,

E

[(
v−t − b−t

)+]≤max
j∈[N ]

(aj,t)
+ ≤

∑

j∈[N ]

(aj,t)
+ . (59)

Finally, combining Equations (56), (58), and (59), we have for any t∈Eℓ and ℓ≥ 1

R(2)
t I{t∈Eℓ/Bℓ} ≤ vmaxcf

∑

i∈[N ]

(−ai,t)
+ +

∑

i∈[N ]

(ai,t)
+ ≤ (vmaxcf +1)

∑

i∈[N ]

|ai,t| (60)

iv. Bounding Cumulative Regret: We now bound the cumulative expected regret in a phase

Eℓ+1 (ℓ≥ 1) via first bounding
∑

t∈Eℓ+1
R(1)

t and
∑

t∈Eℓ+1
R(2)

t respectively.

∑

t∈Eℓ+1

R(1)
t

≤
∑

t∈Eℓ+1

(
12vmaxcfN

2δℓ +
6vmax

√
N3 log(|Eℓ|)√
2Eℓ

+
vmax (6N

2(cf +Lℓ)+ 9N +15d+9)

|Eℓ|

)

= |Eℓ+1|
(
12vmaxcfN

2δℓ +
6vmax

√
N3 log(|Eℓ|)√
2Eℓ

+
vmax (6N

2(cf +Lℓ)+ 9N +15d+9)

|Eℓ|

)

= |Eℓ+1| ·
3vmax

√
2N3 log(|Eℓ|)√
|Eℓ|

(
4cfǫmaxx

2
max

√
d

λ2
0

+1

)

+
|Eℓ+1|
|Eℓ|

(
12vmaxcfN

2
√
d (NLℓamax +1)x2

max

λ2
0

+ vmax

(
6N2(cf +Lℓ)+ 9N +15d+9

)
)

≤ c11cf
√
dTN3 log(|Eℓ|)+ c22cf

√
dN3LℓT

1
4

≤ c1cf
√
dN3 log(|Eℓ|)

(
√
T +

√
N3 log(|Eℓ|)T

1
4

log (1/η)

)
, (61)

for some absolute constants c11, c
2
1, c1 > 0. The first inequality follows from Equation (53). In the

second equality, we then used the definition of δℓ =

√
2d log(|Eℓ|)ǫmaxx

2
max

λ2
0

√
N |Eℓ|

+
√
d(NLℓamax+1)x2max

|Eℓ|λ2
0

, defined
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in Equation (41). In the second inequality, we relied on the construction of the length of phases

in Algorithm 2, i.e. |Eℓ|= T 1−2−ℓ
so that |Eℓ+1|/

√
|Eℓ|=

√
T and |Eℓ+1|/|Eℓ|= T 2−(ℓ+1) ≤ T

1
4 . The

last inequality follows from the fact that Lℓ = log (v2maxN |Eℓ|4 − 1)/log( 1
η
).

On the other hand, to bound
∑

t∈Eℓ+1
R(2)

t , we again utilize the definition of Bi,ℓ := Bs
i,ℓ ∪ Bo

i,ℓ

and Bℓ := ∪i∈[N ]Bi,ℓ where Bs
i,ℓ and Bo

i,ℓ are defined in Equation (70) of Lemma 6. Denote Kℓ+1 :=

2Lℓ+1 +4cf +8 log(|Eℓ+1|). Then, we have

∑

t∈Eℓ+1

R(2)
t = E



∑

t∈Bℓ+1

R(2)
t


+E




∑

t∈Eℓ+1/Bℓ+1

R(2)
t




≤ vmaxE [|Bℓ+1| · I{|Bℓ+1| ≤NKℓ+1] + vmaxE [|Bℓ+1| · I{|Bℓ+1|>NKℓ+1}]

+ (vmaxcf +1)E




∑

t∈Eℓ+1/Bℓ+1

∑

i∈[N ]

|ai,t|





≤ vmaxNKℓ+1 + vmax|Eℓ+1| ·P (|Bℓ+1|>NKℓ+1)+ (vmaxcf +1)E




∑

t∈Eℓ+1/Bℓ+1

∑

i∈[N ]

|ai,t|




≤ vmaxNKℓ+1 +4vmaxN +(vmaxcf +1)E




∑

t∈Eℓ+1/Bℓ+1

∑

i∈[N ]

|ai,t|




≤ vmaxN(Kℓ+1+4)+ (vmaxcf +1)E



∑

t∈Eℓ+1

∑

i∈[N ]

|ai,t|


 , (62)

where the first inequality follows from Equation (60) and uses the fact that R(2)
t ≤ vmax; the

second inequality is because |Bℓ+1| ≤ |Eℓ+1|; the third inequality applies Lemma 6 which shows

P (|Bi,ℓ+1|>Kℓ+1) ≤ 4/|Eℓ+1|, and hence P (|Bℓ+1| ≤NKℓ+1) ≥ P
(
∩i∈[N ] {|Bi,ℓ+1| ≤Kℓ+1}

)
≥ 1 −

4N/|Eℓ+1|. To bound E

[∑
t∈Eℓ+1

∑
i∈[N ] |ai,t|

]
, we recall Sℓ+1 :=∪i∈[N ]Si,ℓ+1 where Si,ℓ+1 is defined

in Equation (15), and consider the following

E



∑

t∈Eℓ+1

∑

i∈[N ]

|ai,t|


 ≤ E



∑

t∈Sℓ+1

∑

i∈[N ]

|ai,t|


+E




∑

t∈Eℓ+1/Sℓ+1

∑

i∈[N ]

1

|Eℓ+1|




≤ NamaxE [|Sℓ+1|] +N

= NamaxE [|Sℓ+1| · (I{|Sℓ+1| ≤NLℓ+1}+ I{|Sℓ+1|>NLℓ+1})]+N

≤ Namax (NLℓ+1 + |Eℓ+1| ·P (|Sℓ+1|>NLℓ+1))+N

≤ N2amax (Lℓ+1 +1)+N , (63)
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where the first inequality holds because |ai,t| ≤ 1/|Eℓ+1| for all t ∈ Eℓ+1/Sℓ+1 and the fourth

inequality follows from Lemma 5 that shows P (|Si,ℓ+1|>Lℓ+1) ≤ 1/|Eℓ+1|, which implies

P (|Sℓ+1| ≤NLℓ+1)≥ P
(
∩i∈[N ] {|Si,ℓ+1| ≤Lℓ+1}

)
≥ 1−N/|Eℓ+1|.

Hence, Equations (62) and (63) show that
∑

t∈Eℓ+1
R(2)

t is upper bounded as

∑

t∈Eℓ+1

R(2)
t ≤ vmaxN(Kℓ+4)+ (vmaxcf +1)

(
N2amax (Lℓ+1 +1)+N

)

≤ c2cfN
2 · log(|Eℓ+1|)

log (1/η)
, (64)

for some absolute constant c2 > 0. Combining this with the upper bound

c1cf
√

dN3 log(|Eℓ|)
(√

T +

√
N3 log(|Eℓ|)T

1
4

log(1/η)

)
shown in Equation (61), the expected cumulative

regret in phase Eℓ+1 is

∑

t∈Eℓ+1

Regrett ≤ c3cf
√
dN3 log(T )

(
√
T +

√
N3 log(T )T

1
4

log (1/η)

)
,

for some absolute constant c3 > 0. Finally, since the total number of phases is upper bounded by

⌈log log(T )⌉+1, the cumulative expected regret over the entire horizon T is

Regret(T ) ≤ vmax|E1|+
⌈log log(T )⌉∑

ℓ=2

c3cf
√
dN3 log(T )

(
√
T +

√
N3 log(T )T

1
4

log (1/η)

)

= O
(
cf
√
dN3 log(T ) · log (log(T ))

(
√
T +

√
N3 log(T )T

1
4

log (1/η)

))
.

10.1. Lemmas for proving Theorem 2

Lemma 5 (Bounding number of lies). Consider a buyer i ∈ [N ] and some phase ℓ≥ 1. Then,

the cardinality of Si,ℓ = {t∈Eℓ : |ai,t| ≥ 1/|Eℓ|} is bounded as

P (|Si,ℓ|>Lℓ)≤
1

|Eℓ|
,

where Lℓ = log (v2maxN |Eℓ|4 − 1)/log(1/η) and vmax is the maximum possible buyer valuation.
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Proof of Lemma 5. According to the definitions of the cumulative discounted utility defined

in Equation (1) and the NPAC-S policy in Algorithm 2, buyer i’s utility for submitting a bid

b∈ [0, vmax] in period t∈ [T ] conditioning on vi,t, b
+
−i,t, rt is given by

ui,t(b) =





(
vi,t −max{rt, b+−i,t}

)
I{b >max{rt, b+−i,t}} no isolation

(vi,t − rt) I{b > rt} i is isolated

0 j 6= i is isolated

, (65)

where b+−i,t is the highest bid excluding that of buyer i, and the reserve price rt =

r̂tI{no isolation in t}+ rut (1− I{no isolation in t}) (r̂t and rut are defined in Equations (10) and

(11) of the NPAC-S policy respectively). Note that ui,t(b) is a random variable that depends on

the xt,{ǫi,t}i∈[N ], b
+
−i,t and rt. The undiscounted utility loss u−

i,t for buyer i if he submits a bid bi,t

compared to bidding truthfully is u−
i,t = ui,t(vi,t)−ui,t(bi,t).

Now, when any buyer j 6= i is isolated, the utility for buyer i is always 0 regardless of what

he submits, so there is no utility loss due to bidding behaviour. We now consider the scenarios

when no isolation occurs and when buyer i is isolated, respectively, using the definition of utility

in Equation (1).

No isolation occurs: The undiscounted utility loss for bidding untruthfully is

u−
i,tI{no isolation in t} = (ui,t(vi,t)−ui,t(bi,t)) I{no isolation in t}

=
(
vi,t −max{rt, b+−i,t}

)
I{vi,t >max{rt, b+−i,t}}

−
(
vi,t −max{rt, b+−i,t}

)
I{bi,t >max{rt, b+−i,t}}

=
∣∣vi,t −max{rt, b+−i,t}

∣∣ I{vi,t >max{rt, b+−i,t}> bi,t}

+
∣∣vi,t −max{rt, b+−i,t}

∣∣ I{vi,t <max{rt, b+−i,t}< bi,t}

≥ 0 . (66)

Isolating buyer i: The undiscounted utility for submitting any bid b ∈ R for any given rt is

(vi,t − rt) I{b > rt}. Hence,

u−
i,tI{i is isolated} = (ui,t(vi,t)−ui,t(bi,t)) I{i is isolated}
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= (vi,t − rt) I{vi,t > rt}− (vi,t − rt) I{bi,t > rt}

= (vi,t − rt) I{vi,t > rt > bi,t}+(−vi,t + rt) I{vi,t < rt < bi,t} . (67)

The NPAC-S policy offers a price rt drawn from Uniform(0, vmax) to the isolated buyer i with

probability 1/|Eℓ|, where i is chosen uniformly among all buyers. So, the expected utility loss u−
i,t

for a buyer i∈ [N ] conditioned on the fact that the buyer lies by an amount of ai,t is

E[u−
i,t | ai,t]

= E[u−
i,tI{i is isolated}+u−

i,tI{no isolation in t} | ai,t]

≥ E[u−
i,tI{i is isolated} | ai,t]

= E [(vi,t − rt) I{vi,t > rt > bt}+(−vi,t + rt) I{bt < rt <vi,t} | ai,t]

=
1

vmaxN |Eℓ|
E

[
E

[∫ vi,t

vi,t−ai,t

(vi,t − r)dr+

∫ vi,t+ai,t

vi,t

(−vi,t + r)dr
∣∣∣ ai,t, vi,t

] ∣∣∣ ai,t

]

=
(ai,t)

2

vmaxN |Eℓ|
. (68)

The first inequality follows from u−
i,tI{i is isolated} ≥ 0 as demonstrated in Equation (66). Now we

lower bound the total expected utility loss in phase Eℓ. First, by Equations (66) and (67), we know

that u−
i,t ≥ 0 for ∀i, t. Therefore, denoting sℓ+1 as the first period of phase Eℓ+1, for any z̃ > 0 we

have

E

[
∑

t∈Eℓ

ηtu−
i,t

]
≥ E



∑

t∈Si,ℓ

ηtu−
i,t




≥ E




∑

t∈Si,ℓ

ηtu−
i,tI{|Si,ℓ| ≥ z̃}





= E



E




∑

t∈Si,ℓ

ηtu−
i,t

∣∣∣ {ai,t}t∈Eℓ



 I{|Si,ℓ| ≥ z̃}





≥ E



∑

t∈Si,ℓ

ηt

vmaxN |Eℓ|3
· I{|Si,ℓ| ≥ z̃}




≥ E




sℓ+1−1∑

t=sℓ+1−|Si,ℓ|

ηt

vmaxN |Eℓ|3
· I{|Si,ℓ| ≥ z̃}



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≥ E




sℓ+1−1∑

t=sℓ+1−z̃

ηt

vmaxN |Eℓ|3
· I{|Si,ℓ| ≥ z̃}





=
ηsℓ+1 (1− η−z̃)

(1− η)vmaxN |Eℓ|3
P (|Si,ℓ| ≥ z̃) , (69)

where the first equality holds because |Si,ℓ|=
∑

t∈Eℓ
I{ai,t > 1/Eℓ} is a function of {ai,t}t∈Eℓ

; the

third inequality follows from Equation (68) and ai,t ≥ 1/|Eℓ| for any t∈ Si,ℓ; and the fourth inequal-

ity is because η ∈ (0,1).

Furthermore, corrupting a bid at time t∈Eℓ will only impact the prices offered by the seller in

future phases, i.e., phase ℓ+1, ℓ+2, . . . , so the utility gain due to lying in phase ℓ, denoted as U+
i,ℓ

is upper bounded by vmax

∑
t≥sℓ+1

ηt = vmaxη
sℓ+1/(1−η). Since the buyer is utility maximizing, the

net utility gain due to lying in phase ℓ should be greater than 0, otherwise the buyer can choose

to always bid 0 in phase ℓ which is equivalent to not participating in the auctions. Hence,

E

[
U+

i,ℓ −
∑

t∈Eℓ

ηtu−
i,t

]
≥ 0 .

Combining this with U+
i,ℓ ≤ vmaxη

sℓ+1/(1 − η) and the lower bound for E

[∑
t∈Eℓ

u−
i,t

]
shown in

Equation (69), we have

vmaxη
sℓ+1

1− η
≥ ηsℓ+1 (1− η−z̃)

(1− η)vmaxN |Eℓ|3
P (|Si,ℓ| ≥ z̃) ,

which holds for any z̃ > 0. Taking z̃ = log (v2maxN |Eℓ|4 − 1)/ log(1/η) and by rearranging terms, the

inequality above yields

P

(
|Si,ℓ| ≥

log (v2maxN |Eℓ|4 − 1)

log( 1
η
)

)
≤ 1

|Eℓ|
.

�

Lemma 6 (Bounding outcome changes for non-isolation periods). Define the following

two sets of time periods:

Bs
i,ℓ =

{
t∈Eℓ : I

{
vi,t ≥{b+−i,t, r̂t}

}
= 1 , I

{
bi,t ≥ {b+−i,t, r̂t}

}
=0
}

and

Bo
i,ℓ =

{
t∈Eℓ : I

{
vi,t ≥{b+−i,t, r̂t}

}
= 0 , I

{
bi,t ≥ {b+−i,t, r̂t}

}
=1
}
, (70)
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where b+−i,t is the highest among all bids excluding that submitted by buyer i, and r̂t is the reserve

price offered to all buyers if no isolation occurs (defined in Equation (11)). Then, for Bi,ℓ :=

Bs
i,ℓ ∪Bo

i,ℓ, we have

P (|Bi,ℓ| ≤ 2Lℓ +4cf +8 log(|Eℓ|)) ≥ 1− 4

|Eℓ|
.

Here, the probability is taken with respect to the randomness in {(xτ , ǫi,τ , ai,τ )}τ∈Eℓ,i∈[N ].

Proof of Lemma 6. We first provide a road-map for the proof of this lemma. Recall the defi-

nition of Si,ℓ in Equation (15), and hence Eℓ/Si,ℓ = {t ∈Eℓ : |ai,t| ≤ 1/|Eℓ|}, where ai,t = vi,t − bi,t.

Note that Eℓ/Si,ℓ can be considered as the set of periods during which buyer i “slightly” corrupts

her bids. We start with the case when a buyer shades her bids. For any give period t ∈ Eℓ, we

provide an upper bound on the probability that a buyer “slightly” shades her bids but changes

the outcome of the auction had she bid truthfully (i.e. t ∈ (Eℓ/Si,ℓ) ∩ Bs
i,ℓ). Then, we translate

these probabilities for every period in Eℓ into a high probability bound for the number of such

periods (i.e. a bound for |(Eℓ/Si,ℓ) ∩ Bs
i,ℓ|), which further yields a bound for |Bs

i,ℓ| since |Bs
i,ℓ| =

|Si,ℓ ∩Bs
i,ℓ|+ |(Eℓ/Si,ℓ)∩Bs

i,ℓ| ≤ |Si,ℓ|+ |(Eℓ/Si,ℓ)∩Bs
i,ℓ|, and |Si,ℓ| is bounded in virtue of Lemma 5.

A symmetric argument results in a bound for |Bo
i,ℓ| by considering the case where buyers overbid,

and the final result will follow from the fact that Bi,ℓ = Bs
i,ℓ ∪Bo

i,ℓ.

In light of this roadmap, we now formally prove the lemma. Defining Hi,t := {(b+−i,τ , r̂τ , xτ )}τ∈[t],

we have

E
[
I{t∈ (Eℓ/Si,ℓ)∩Bs

i,ℓ} | Hi,t

]

= P
(
t∈ (Eℓ/Si,ℓ)∩Bs

i,ℓ | Hi,t

)

= P
(
vi,t ≥max{b+−i,t, r̂t} , bi,t <max{b+−i,t, r̂t} , ai,t ∈ (0,1/|Eℓ|) | Hi,t

)

= P
(
max{b+−i,t, r̂t}− 〈xt, β〉 ≤ ǫi,t ≤max{b+−i,t, r̂t}− 〈xt, β〉+ ai,t , ai,t ∈ (0,1/|Eℓ|) | Hi,t

)

≤ P
(
max{b+−i,t, r̂t}− 〈xt, β〉 ≤ ǫi,t ≤max{b+−i,t, r̂t}− 〈xt, β〉+1/|Eℓ| | Hi,t

)

= E

[∫ max{b+
−i,t

,r̂t}−〈xt,β〉+1/|Eℓ|

max{b+
−i,t,r̂t}−〈xt,β〉

f(z)dz
∣∣∣ Hi,t

]

≤ cf
|Eℓ|

. (71)
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The last inequality uses the fact that cf = supz̃∈[−ǫmax,ǫmax] f(z̃).

Define ζt = I{t∈ (Eℓ/Si,ℓ)∩Bs
i,ℓ} and φt =E

[
I{t∈ (Eℓ/Si,ℓ)∩Bs

i,ℓ} | Hi,t

]
. Then E[ζt | Hi,t] = φt,

which implies E[ζt − φt | ∑τ<t ζτ ,
∑

τ<tφτ ] = E
[
E [ζt −φt | Hi,t] |

∑
τ<t ζτ ,

∑
τ<tφτ

]
= 0. Hence,

in the context of the multiplicative Azuma inequality described in Lemma 13, by setting z1,t = ζt,

z2,t = φt, γ̃ = 1/2 and A= 2 log(|Eℓ|) we have |z1,t − z2,t| ≤ 1

P

(
1

2

∑

t∈Eℓ

ζt ≥
∑

t∈Eℓ

φt +2 log(|Eℓ|)
)
≤ exp(− log(|Eℓ|)) . (72)

Now, according to Equation (71), we have φt ≤ cf/|Eℓ|, so
∑

t∈Eℓ
φt ≤ cf . Moreover, |(Eℓ/Si,ℓ) ∩

Bs
i,ℓ|=

∑
t∈Eℓ

ζt. Hence, following Equation (72), we have

P
(
|(Eℓ/Si,ℓ)∩Bs

i,ℓ| ≥ 2cf +4 log(|Eℓ|)
)

≤ P

(
1

2

∑

t∈Eℓ

ζt ≥
∑

t∈Eℓ

φt +2 log(|Eℓ|)
)

≤ exp(− log(|Eℓ|)) =
1

|Eℓ|
. (73)

When the event Gi,t = {|Si,ℓ| ≤Lℓ} occurs, where Lℓ = log (v2maxN |Eℓ|4 − 1)/log(1/η), we have

|Bs
i,ℓ| ≤ |Si,ℓ|+ |(Eℓ/Si,ℓ)∩Bs

i,ℓ| ≤Lℓ + |(Eℓ/Si,ℓ)∩Bs
i,ℓ|. Therefore when event Gi,t occurs,

P
(
|Bs

i,ℓ| ≤Lℓ +2cf +4 log(|Eℓ|)
)

≥ P

({
|Bs

i,ℓ| ≤Lℓ +2cf +4 log(|Eℓ|)
} ⋂

Gi,t

)

≥ P

({
|(Eℓ/Si,ℓ)∩Bs

i,ℓ| ≤ 2cf +4 log(|Eℓ|)
} ⋂

Gi,t

)

≥ 1−P
(
|(Eℓ/Si,ℓ)∩Bs

i,ℓ| ≥ 2cf +4 log(|Eℓ|)
)
−P

(
Gc
i,t

)

≥ 1− 2

|Eℓ|
.

The second inequality follows from |Bs
i,ℓ| ≤ Lℓ + |(Eℓ/Si,ℓ) ∩ Bs

i,ℓ| when the event Gi,t occurs; the

third inequality applies the union bound, and the final inequality follows from Equation (73) and

Lemma 5.

Similarly, we can show the same probability upper bound for |Bo
i,ℓ|. Finally, using the fact that

Bi,ℓ =Bs
i,ℓ ∪Bo

i,ℓ and applying a union bound would yield the desired expression. �
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Lemma 7 (Bounding Estimation Errors in β). For any phase Eℓ and γ > 0, we have

P

(
‖β̂ℓ+1 −β‖1 ≤ γ+

d (NLℓamax +1)xmax

|Eℓ|λ2
0

)

≥ 1− 2d exp

(
− Nγ2λ4

0|Eℓ|
2ǫmax

2x2
maxd

)
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
− N

|Eℓ|
,

where λ2
0 is the minimum eigenvalue of the covariance matrix Σ, β̂ℓ+1 is defined in Equation (8),

and Lℓ = log (v2maxN |Eℓ|4 − 1)/log(1/η). Furthermore, setting γ =

√
2d log(|Eℓ|)ǫmaxxmax

λ2
0

√
N |Eℓ|

and denoting

δℓ = γ ·xmax +
d(NLℓamax+1)x2max

|Eℓ|λ2
0

, we have

P

(
‖β̂ℓ+1 −β‖1 ≤

δℓ
xmax

)
≥ 1− 2d+N

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
.

Proof of Lemma 7. The proof of this lemma is based on several modifications to that of Lemma

3 to resolve the issues that arise when estimating β in the presence of corrupted bids submitted

by buyers.

Recall that the smallest eigenvalue λ2
0 of the covariance matrix Σ of x∼D is greater than 0, and

as argued in the proof of Lemma 3, we note that the smallest eigenvalue of E[xtx
⊤
t ] is at least λ

2
0 > 0.

We denote the design matrix of all the features in phase Eℓ as X ∈R|Eℓ|×d, and ǭτ =
∑

i∈[N] ǫi,τ

N
for

∀τ ∈Eℓ.

We first consider the case where the smallest eigenvalue of the second moment matrix

λmin (X
⊤X/|Eℓ|) ≥ λ2

0/2, which implies that (X⊤X)−1 exists and (X⊤X)−1 = (X⊤X)†. By the

definition bi,t = vi,t − ai,t, and the definition of b̄τ for any τ ∈ [T ] in Equation (12) we have

β̂ℓ+1 =
(
X⊤X

)−1
X⊤




b̄1

...

b̄t




=
(
X⊤X

)−1
X⊤




∑
i∈[N] vi,1−ai,1

N

...
∑

i∈[N] vi,t−ai,t

N




= β+
(
X⊤X

)−1
X⊤




∑
i∈[N] ǫi,1−ai,1

N

...
∑

i∈[N] ǫi,t−ai,t

N




= β+
(
X⊤X

)−1
X⊤ (Ē −A

)
, (74)
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where Ē is the column vector consisting of all ǭτ :=
∑

i∈[N] ǫi,τ

N
, and A is the column vector consisting

of all āτ :=
∑

i∈[N] ai,τ

N
for ∀τ ∈ [t]. Therefore,

‖β̂ℓ+1 −β‖2 = ‖
(
X⊤X

)−1
X⊤ (Ē −A

)
‖2

≤ 1

|Eℓ|λ2
0

(
‖X⊤Ē‖2 + ‖X⊤A‖2

)
. (75)

Denote Xj as the jth column of X, i.e. the jth row of X⊤ for j =1,2 . . . d, we now bound ‖X⊤Ē‖2

and ‖X⊤A‖2 separately. First, since ‖X⊤Ē‖22 =
∑

j∈[d]

∣∣Ē⊤Xj
∣∣2, for any γ > 0,

⋂

j∈[d]

{∣∣Ē⊤Xj
∣∣≤ |Eℓ|λ2

0γ√
d

}
⊆
{

1

|Eℓ|λ2
0

· ‖X⊤Ē‖2 ≤ γ

}
. (76)

We observe that Ē⊤Xj =
∑

τ∈Eℓ

∑
i∈[N] ǫi,τXτj

N
, where all ǫi,τXτj are 0-mean and ǫmaxxmax-subgaussion

random variables. Therefore by Hoeffding’s inequality, for any γ̃ > 0

P
(∣∣N Ē⊤Xj

∣∣≤ γ̃
)
≥ 1− 2 exp

(
− γ̃2

2ǫmax
2x2

max|Eℓ|N

)
. (77)

Replacing γ̃ with N |Eℓ|λ2
0γ/

√
d and using Equation (76) yields:

P

({
1

|Eℓ|λ2
0

· ‖X⊤Ē‖2 ≤ γ

})
≥ P




⋂

j∈[d]

{∣∣Ē⊤Xj
∣∣≤ |Eℓ|λ2

0γ√
d

}



≥ 1−
∑

j∈[d]

P

(∣∣Ē⊤Xj
∣∣> |Eℓ|λ2

0γ√
d

)

≥ 1− 2d exp

(
− Nγ2λ4

0|Eℓ|
2ǫmax

2x2
maxd

)
, (78)

where the first inequality follows from Equation (76), the second inequality applies the union

bound, and the last inequality follows from Equation (77).

In the following, we show a high probability bound for ‖X⊤A‖22 by using the fact that |ai,t| ≤

1/|Eℓ| for any t∈Eℓ/Si,ℓ, where Si,ℓ = {t∈Eℓ : |ai,t|> 1/|Eℓ|}, and Si,ℓ ≤Lℓ with high probability.

Recall the event Gi,ℓ = {|Si,ℓ| ≤Lℓ}, and in Lemma 5 we showed that P
(
Gc
i,ℓ

)
= P (|Si,ℓ|>Lℓ)≤

1
|Eℓ|

. We now bound ‖X⊤A‖2 under the occurrence of Gi,ℓ for all i.

‖X⊤A‖22 =
∑

j∈[d]

∣∣A⊤Xj
∣∣2 =

∑

j∈[d]

(∑
τ∈Eℓ

∑
i∈[N ] ai,τXτj

N

)2

≤
∑

j∈[d]

(∑
τ∈Eℓ

∑
i∈[N ] |ai,τ |xmax

N

)2

. (79)
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For periods in Sℓ := ∪i∈[N ]Si,ℓ, we have,

∑
τ∈Sℓ

∑
i∈[N ] |ai,τ |xmax

N
≤
∑

τ∈Sℓ

amaxxmax ≤ NLℓamaxxmax , (80)

where the last inequality holds because events Gi,ℓ occurs for all i. On the other hand, recall that

|ai,t| ≥ 1/|Eℓ| for any i and t∈ Si,ℓ. Hence, |ai,t| ≤ 1/|Eℓ| for periods in Eℓ/Sℓ,

∑
τ∈Eℓ/Sℓ

∑
i∈[N ] |ai,τ |xmax

N
≤

∑

τ∈Eℓ/Sℓ

xmax

|Eℓ|
≤

∑

τ∈Eℓ

xmax

|Eℓ|
= xmax . (81)

Combining Equations (79), (80), and (81), we have

‖X⊤A‖2 ≤

√√√√d

(∑
τ∈[t]

∑
i∈[N ] |ai,τ |xmax

N

)2

≤
√
d (NLℓamax +1)xmax . (82)

Now, following the same arguments of Equation (39) in the proof of Lemma 3, but by replacing t

with |Eℓ|, we have

P

(
λmin

(
X⊤X

|Eℓ|

)
≥ λ2

0

2

)
≥ 1− d exp

(
−|Eℓ|λ2

0

8x2
max

)
. (83)

Putting everything together, we get

P

(
‖β̂ℓ+1 −β‖1 ≤ γ+

√
d (NLℓamax +1)xmax

|Eℓ|λ2
0

)

≥ P

(
‖β̂ℓ+1 −β‖2 ≤ γ+

√
d (NLℓamax +1)xmax

|Eℓ|λ2
0

)

≥ P

({
1

|Eℓ|λ2
0

(
‖X⊤Ē‖2 + ‖X⊤A‖2

)
≤ γ+

√
d (NLℓamax +1)xmax

|Eℓ|λ2
0

}
⋂{

λmin

(
X⊤X

|Eℓ|

)
≥ λ2

0

2

})

≥ P




{

1

|Eℓ|λ2
0

‖X⊤Ē‖2 ≤ γ

} ⋂



⋂

i∈[N ]

Gi,ℓ




⋂ {

λmin

(
X⊤X

|Eℓ|

)
≥ λ2

0

2

}



≥ 1−P

({
1

|Eℓ|λ2
0

‖X⊤Ē‖2 > γ

})
−
∑

i∈[N ]

P
(
Gc
i,ℓ

)
−P

({
λmin

(
X⊤X

|Eℓ|

)
≤ λ2

0

2

})

≥ 1− 2d exp

(
− Nγ2λ4

0|Eℓ|
2ǫmax

2x2
maxd

)
− N

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
.

The first inequality follows from the fact that ‖z‖1 ≤ ‖z‖2 for any vector z; the second inequality

follows from Equation (75); the third inequality follows from Equation (82) when the event ∩i∈[N ]Gi,ℓ

occurs; the fourth inequality applies a simple union bound; and the final inequality follows from

Equations (78), (83) and Lemma 5. �
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Lemma 8 (Bounding Estimation Error in F− and F+). Define σ̃t to be the sigma algebra

generated by all {xτ , ai,τ , ǫi,τ}i∈[N ],τ∈[t]. Then, for any σ̃t-measurable random variable z and γ > 0,

we have

P

(∣∣∣F̂−
ℓ+1(z)−F−(z)

∣∣∣≤ 2N2zℓ

)
≥ 1− 4 exp

(
−2N |Eℓ|γ2

)
− 4(d+N)

|Eℓ|
− 2d exp

(
−|Eℓ|λ2

0

8x2
max

)

P

(∣∣∣F̂+
ℓ+1(z)−F+(z)

∣∣∣≤Nzℓ

)
≥ 1− 4 exp

(
−2N |Eℓ|γ2

)
− 4(d+N)

|Eℓ|
− 2d exp

(
−|Eℓ|λ2

0

8x2
max

)
,

where zℓ := γ+ cfδℓ+(cf +Lℓ)/|Eℓ|, cf = supz̃∈[−ǫmax,ǫmax]
f(z̃), δℓ is defined in Equation (41), and

Lℓ = log (v2maxN |Eℓ|4 − 1)/log(1/η).

Proof of Lemma 8. We first bound the error in the estimate of F , namely
∣∣∣F̂ℓ+1(z)−F (z)

∣∣∣.

Then, we use the relationship F−(z) =NFN−1(z)− (N − 1)FN(z) and F+(z) = FN(z), as well as

the definition of F̂−
ℓ+1(z) and F̂+

ℓ+1(z) in Equation (14) to show the desired probability bounds.

We first upper and lower bound F̂−
ℓ+1(z) for any z ∈ R. Recall the event Si,ℓ =

{t∈Eℓ : |ai,t| ≥ 1/|Eℓ|} and in Lemma 5 we showed that P (|Si,ℓ|>Lℓ) ≤ 1/|Eℓ|. Hence, for any

i∈ [N ], we have |ai,t| ≤ 1/|Eℓ| for all periods τ ∈Eℓ/Si,ℓ, so

∑

τ∈Eℓ

I

{
bi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}

=




∑

τ∈Eℓ/Si,ℓ

I

{
bi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}
+
∑

τ∈Si,ℓ

I

{
vi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}



+



∑

τ∈Si,ℓ

I

{
bi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}
−
∑

τ∈Si,ℓ

I

{
vi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}

 . (84)

Consider the sum in first the parenthesis of Equation (84) and note that bi,τ = vi,τ −ai,τ = 〈β,xτ〉+

ǫi,τ − ai,τ . Since |ai,τ | ≤ 1/|Eℓ| for any i ∈ [N ] and τ ∈Eℓ/Si,ℓ,

〈β,xτ〉+ ǫi,τ −
1

|Eℓ|
≤ bi,τ ≤ 〈β,xτ 〉+ ǫi,τ +

1

|Eℓ|
, ∀τ ∈Eℓ/Si,ℓ . (85)

Now, assume that the event ξℓ+1 =
{
‖β̂ℓ+1 −β‖1 ≤ δℓ/xmax

}
holds. Therefore, we can upper

bound the sum in first the parenthesis of Equation (84) as

∑

τ∈Eℓ/Si,ℓ

I

{
bi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}
+
∑

τ∈Si,ℓ

I

{
vi,τ −〈β̂ℓ+1, xτ〉 ≤ z

}
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≤
∑

τ∈Eℓ/Si,ℓ

I

{
ǫi,τ ≤ z+ 〈β̂ℓ+1 −β,xτ〉+

1

|Eℓ|

}
+
∑

τ∈Si,ℓ

I

{
ǫi,τ ≤ z+ 〈β̂ℓ+1 −β,xτ〉+

1

|Eℓ|

}

=
∑

τ∈Eℓ

I

{
ǫi,τ ≤ z+ 〈β̂ℓ+1 −β,xτ〉+

1

|Eℓ|

}

≤
∑

τ∈Eℓ

I

{
ǫi,τ ≤ z+ δℓ +

1

|Eℓ|

}
, (86)

where the first equality follows from vi,τ = 〈β,xτ〉 + ǫi,τ and bi,τ = vi,τ − ai,τ ; the first inequal-

ity follows Equation (85); and the final inequality is due to the occurrence of the event ξℓ+1 =
{
‖β̂ℓ+1 −β‖1 ≤ δℓ/xmax

}
. Similarly, we can also lower bound the sum in the first parenthesis of

Equation (84):

∑

τ∈Eℓ/Si,ℓ

I

{
bi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}
+
∑

τ∈Si,ℓ

I

{
bi,τ −〈β̂ℓ+1, xτ〉 ≤ z

}
≥

∑

τ∈Eℓ

I

{
ǫi,τ ≤ z− δℓ−

1

|Eℓ|

}
.

(87)

Furthermore, assuming events Gi,ℓ = {|Si,ℓ| ≤Lℓ} hold for all i ∈ [N ], we can simply upper bound

and lower bound the expression in the second parenthesis of Equation (84):

−Lℓ ≤
∑

τ∈Si,ℓ

I

{
bi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}
−
∑

τ∈Si,ℓ

I

{
vi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}
≤ Lℓ . (88)

Combining Equations (84), (86), (87), (88), and using the definition F̂ℓ+1(z) =

1
N |Eℓ|

∑
i∈[N ]

∑
τ∈Eℓ

I

{
bi,τ −〈β̂ℓ+1, xτ 〉 ≤ z

}
, under the occurrence of events ξℓ+1, and Gi,ℓ for all

i∈ [N ], we have

1

N |Eℓ|
∑

i∈[N ]

∑

τ∈Eℓ

I

{
ǫi,τ ≤ z− δℓ −

1

|Eℓ|

}
− Lℓ

|Eℓ|
≤ F̂ℓ+1(z) and

F̂ℓ+1(z) ≤ 1

N |Eℓ|
∑

i∈[N ]

∑

τ∈Eℓ

I

{
ǫi,τ ≤ z+ δℓ +

1

|Eℓ|

}
+

Lℓ

|Eℓ|
. (89)

Now, for any γ > 0,

P

(
F

(
z− δℓ−

1

|Eℓ|

)
− F̂ℓ+1(z)≤ γ+

Lℓ

|Eℓ|

)

≥ P




{
F

(
z− δℓ −

1

|Eℓ|

)
− F̂ℓ+1(z)≤ γ+

Lℓ

|Eℓ|

} ⋂
ξℓ+1

⋂



⋂

i∈[N ]

Gi,ℓ








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≥ P







F

(
z− δℓ−

1

|Eℓ|

)
− 1

N |Eℓ|
∑

i∈[N ]

∑

τ∈Eℓ

I

{
ǫi,τ ≤ z− δℓ−

1

|Eℓ|

}
≤ γ




⋂

ξℓ+1

⋂



⋂

i∈[N ]

Gi,ℓ









≥ P







sup

z̃∈R

∣∣∣∣∣∣
F (z̃)− 1

N |Eℓ|
∑

i∈[N ]

∑

τ∈Eℓ

I{ǫi,τ ≤ z̃}

∣∣∣∣∣∣
≤ γ




⋂

ξℓ+1

⋂



⋂

i∈[N ]

Gi,ℓ









≥ 1−P






sup

z̃∈R

∣∣∣∣∣∣
F (z̃)− 1

N |Eℓ|
∑

i∈[N ]

∑

τ∈Eℓ

I{ǫi,τ ≤ z̃}

∣∣∣∣∣∣
> γ






−P (ξℓ+1)−

∑

i∈[N ]

P (Gi,ℓ)

≥ 1− 2 exp
(
−2N |Eℓ|γ2

)
−
(
2d+N

|Eℓ|
+ d exp

(
−|Eℓ|λ2

0

8x2
max

))
− N

|Eℓ|

= 1− 2 exp
(
−2N |Eℓ|γ2

)
− 2(d+N)

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
, (90)

where the second inequality follows from Equation (89), the fourth inequality uses the union bound,

and the final inequality follows from the DKW inequality (Theorem 11), Lemma 7, and Lemma 5.

We note that we can apply the DKW inequality because {ǫi,τ}τ∈Eℓ,i∈[N ] are N |Eℓ| i.i.d. realizations

of noise variables. According to the Lipschitz property of F shown in Lemma 1, |F (z−δℓ−1/|Eℓ|)−

F (z)| ≤ cf (δℓ+1/|Eℓ|) for ∀z ∈R. Hence, combining this with Equation (90), yields

P

(
F (z)− F̂ℓ+1(z) ≤ γ+ cf

(
δℓ+

1

|Eℓ|

)
+

Lℓ

|Eℓ|

)

≥ P

(
F

(
z− δℓ −

1

|Eℓ|

)
− F̂ℓ+1(z) ≤ γ+

Lℓ

|Eℓ|

)

≥ 1− 2 exp
(
−2N |Eℓ|γ2

)
− 2(d+N)

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
. (91)

Similarly, |F (z+ δℓ +1/|Eℓ|)−F (z)| ≤ cf(δℓ+1/|Eℓ|) for ∀z ∈R, so we can show

P

(
F̂ℓ+1(z)−F (z) ≤ γ+ cf

(
δℓ+

1

|Eℓ|

)
+

Lℓ

|Eℓ|

)

≥ P

(
F̂ℓ+1(z)−F

(
z+ δℓ +

1

|Eℓ|

)
≤ γ+

Lℓ

|Eℓ|

)

≥ 1− 2 exp
(
−2N |Eℓ|γ2

)
− 2(d+N)

|Eℓ|
− d exp

(
−|Eℓ|λ2

0

8x2
max

)
. (92)

Combining Equations (91) and (92) using a union bound yields

P

(∣∣∣F̂ℓ+1(z)−F (z)
∣∣∣≤ γ+ cfδℓ +

cf +Lℓ

|Eℓ|

)

≥ 1− 4 exp
(
−2N |Eℓ|γ2

)
− 4(d+N)

|Eℓ|
− 2d exp

(
−|Eℓ|λ2

0

8x2
max

)
. (93)
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Finally, we now bound |F̂−
t (z) − F−(z)| and |F̂+

t (z) − F+(z)| using the fact that F−(z) =

NFN−1(z)− (N − 1)FN(z) and F+(z) = FN(z).

|F̂−
ℓ+1(z)−F−(z)| =

∣∣∣NF̂N−1
ℓ+1 (z)− (N − 1)F̂N

ℓ+1(z)−
(
NFN−1(z)− (N − 1)FN(z)

)∣∣∣

≤ N
∣∣∣F̂N−1

ℓ+1 (z)−FN−1(z)
∣∣∣+(N − 1)

∣∣∣F̂N
ℓ+1(z)−FN(z)

∣∣∣

= N

∣∣∣∣∣
(
F̂ℓ+1(z)−F (z)

)(N−1∑

n=1

(
F̂ℓ+1(z)

)n−1

(F (z))
N−1−n

)∣∣∣∣∣

+(N − 1)

∣∣∣∣∣
(
F̂ℓ+1(z)−F (z)

)( N∑

n=1

(
F̂ℓ+1(z)

)n−1

(F (z))
N−n

)∣∣∣∣∣

≤ N(N − 1)
∣∣∣F̂ℓ+1(z)−F (z)

∣∣∣+(N − 1)N
∣∣∣F̂ℓ+1(z)−F (z)

∣∣∣

< 2N2
∣∣∣F̂ℓ+1(z)−F (z)

∣∣∣ . (94)

The second equality uses am − bm = (a− b) (
∑m

n=1 a
n−1bm−n) for any integer m ≥ 2. The second

inequality follows from F̂ℓ+1(z), F (z)∈ [0,1] for ∀z ∈R. Combining Equations (93) and (94), we get

P

(∣∣∣F̂−
ℓ+1(z)−F−(z)

∣∣∣≤ 2N2

(
γ+ cfδℓ +

cf +Lℓ

|Eℓ|

))

≥ 1− 4 exp
(
−2N |Eℓ|γ2

)
− 4(d+N)

|Eℓ|
− 2d exp

(
−|Eℓ|λ2

0

8x2
max

)
.

The probability bound for
∣∣∣F̂−

ℓ+1(z)−F−(z)
∣∣∣ can be shown in a similar fashion by noting that

similar to Equation (94) we can show |F̂+
ℓ+1(z)−F+(z)|<N

∣∣∣F̂ℓ+1(z)−F (z)
∣∣∣. �

Lemma 9 (Bounding the Impact of Estimation Errors on Revenue). We assume that the

events ξℓ+1 =
{
‖β̂ℓ+1 −β‖1 ≤ δℓ

xmax

}
, ξ−ℓ+1 =

{∣∣∣F̂−
ℓ+1(z)−F−(z)

∣∣∣≤ 2N2
(
γℓ + cfδℓ +

cf+Lℓ

|Eℓ|

)}
and

ξ+ℓ+1 =
{∣∣∣F̂+

ℓ+1(z)−F+(z)
∣∣∣≤N

(
γℓ + cfδℓ +

cf+Lℓ

|Eℓ|

)}
occur for some phase ℓ≥ 1, where z ∈R, γℓ =

√
log(|Eℓ|)/

√
2N |Eℓ|, and δℓ is defined in Equation (41). Hence for any r ∈ {r⋆t , rt} where t∈Eℓ+1

we have the following:

(i) |ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)| ≤ 3rcfN

2δℓ a.s.

(ii)
∣∣∣ρt(r, ŷt, F−, F+)− ρt(r, ŷt, F̂

−
ℓ+1, F̂

+
ℓ+1)

∣∣∣ ≤ 3rN2
(
γℓ + cfδℓ+

cf+Lℓ

|Eℓ|

)
a.s.

where yt = 〈β,xt〉, ŷt = 〈β̂ℓ+1, xt〉, β̂ℓ+1, F̂
−
ℓ+1, F̂

+
ℓ+1 are defined in Equations (12) and (14). The

function ρt is defined in Equation (26).
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Proof of Lemma 9. Part (i) We consider the following:

∣∣ρt(r, yt, F−, F+)− ρt(r, ŷt, F
−, F+)

∣∣

=

∣∣∣∣
∫ r

0

[
F−(z− yt)−F−(z− ŷt)

]
dz− r

[
F+(r− yt)−F+(r− ŷt)

]∣∣∣∣

≤
∫ r

0

∣∣F−(z− yt)−F−(z− ŷt)
∣∣dz+ r

∣∣F+(r− yt)−F+(r− ŷt)
∣∣

≤
∫ r

0

2cfN
2|yt − ŷt|dz+ rcfN |yt − ŷt|

≤
∫ r

0

2cfN
2
(
‖β̂ℓ+1 −β‖1xmax

)
dz+ rcfN‖β̂ℓ+1 −β‖1xmax

≤ 3rcfN
2δℓ .

The first equality follows from definition of ρt in Equation (26), and the second inequality applies

the Lipschitz property of F− and F+ using Lemma 1. The third inequality follows from Cauchy’s

inequality: |yt − ŷt| = |〈β̂ℓ+1 − β,xt〉| ≤ ‖β̂ℓ+1 − β‖1xmax, and the last inequality follows from the

occurrence of ξℓ+1 and N ≥ 1.

Part (ii) Similar to part (i), we have

∣∣∣ρt(r, ŷt, F−, F+)− ρt(r, ŷt, F̂
−
ℓ+1, F̂

+
ℓ+1)

∣∣∣

=

∣∣∣∣
∫ r

0

[
F−(z− ŷt)− F̂−

ℓ+1(z− ŷt)
]
dz− r

[
F+(r− ŷt)− F̂+

ℓ+1(r− ŷt)
]∣∣∣∣

≤
∫ r

0

∣∣∣F−(z− ŷt)− F̂−
ℓ+1(z− ŷt)

∣∣∣dz+ r
∣∣∣F+(r− ŷt)− F̂+

ℓ+1(r− ŷt)
∣∣∣

≤ 3rN2

(
γℓ + cfδℓ +

cf +Lℓ

|Eℓ|

)
,

where the last inequality follows from the occurrence of events ξ−ℓ+1 and ξ+ℓ+1 and N ≥ 1. �

Lemma 10 (Bounding probabilities). The probability that not all events ξℓ+1, ξ−ℓ+1 and ξ+ℓ+1

occur for some phase ℓ≥ 1 is bounded as

P
(
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪
(
ξ+ℓ+1

)c) ≤ 9N +15d+8

|Eℓ|
,

where the events ξℓ+1, ξ
−
ℓ+1 and ξ+ℓ+1 are defined in Equations (40), (42), and (43) respectively.
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Proof of Lemma 10. We first bound the probability of ξcℓ+1, and then proceed to bound the the

probability of
(
ξ−ℓ+1

)c
and

(
ξ+ℓ+1

)c
.

Recall that ξℓ+1 =
{
‖β̂ℓ+1 −β‖1 ≤ δℓ

xmax

}
. Then,

P
(
ξcℓ+1

)
≤ 2d+N

|Eℓ|
+ d exp

(
−|Eℓ|λ2

0

8x2
max

)

≤ 2d+N

|Eℓ|
+ d exp

(
− log(|Eℓ|)T

1
4λ2

0

8x2
max

)

≤ N +3d

|Eℓ|
, (95)

where the first inequality follows from Lemma 7 by taking γ =

√
2d log(|Eℓ|)ǫmaxxmax/

(
λ2
0

√
N |Eℓ|

)
; the second inequality uses the fact that |Eℓ| ≥ |E1| =

√
T ,

T ≥ max

{(
8x2max

λ2
0

)4
,9

}
, which implies |Eℓ| ≥ log(|Eℓ|)

√
|Eℓ| ≥ T

1
4 log(|Eℓ|). Note that here we

used the fact that
√
x≥ log(x) for all x≥ 9.

We now bound the probability of
(
ξ−ℓ+1

)c
:

P
((
ξ−ℓ+1

)c) ≤ 4 exp


−2N |Eℓ| ·

(√
log(|Eℓ|)√
2N |Eℓ|

)2

+

4(d+N)

|Eℓ|
+2d exp

(
−|Eℓ|λ2

0

8x2
max

)

≤ 2(2N +3d+2)

|Eℓ|
, (96)

where the first inequality follows from Lemma 8 by taking γ = γℓ =
√

log(|Eℓ|)/
√
2N |Eℓ|, and

the last inequality again uses the fact that |Eℓ| ≥ log(|Eℓ|)
√

|Eℓ| ≥ T
1
4 log(|Eℓ|) when T ≥

max

{(
8x2max

λ2
0

)4
,9

}
.

Similarly, we can bound the probability of
(
ξ+ℓ+1

)c
:

P
((
ξ+ℓ+1

)c) ≤ 2(2N +3d+2)

|Eℓ|
, (97)

Finally, combining Equations (95), (96) and (97), we have

P
(
ξcℓ+1 ∪

(
ξ−ℓ+1

)c ∪
(
ξ+ℓ+1

)c) ≤ P
(
ξcℓ+1

)
+P

((
ξ−ℓ+1

)c)
+P

((
ξ+ℓ+1

)c) ≤ 9N +15d+8

|Eℓ|
.

�
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11. Supplementary Lemmas

Lemma 11 (Dvoretzky-Kiefer-Wolfowitz Inequality (Dvoretzky et al. (1956))). Let

Z1,Z2, . . .Zn be i.i.d. random variables with cumulative distribution function F , and denote the

associated empirical distribution function as

F̂ (z) =
1

n

n∑

i=1

I{Zi ≤ z} , z ∈R . (98)

Then, for any γ̄ > 0,

P

(
sup
z∈R

∣∣∣F̂ (z)−F (z)
∣∣∣≤ γ̄

)
≥ 1− 2 exp

(
−2nγ̄2

)
. (99)

Lemma 12 (Matrix Chernoff Bound (Tropp et al. (2015))). Consider a finite sequence of

independent, random matrices {Zk ∈ R
d}k∈[K]. Assume that 0 ≤ λmin(Zk) and λmax(Zk) ≤ B for

any k. Denote Y =
∑

k∈[K]Zk, µmin = λmin(E[Y ]), and µmax = λmax(E[Y ]). Then for ∀γ̄ ∈ (0,1),

P (λmin(Y )≤ γ̄µmin)≤ d exp

(
−(1− γ̄)2µmin

2B

)
.

Lemma 13 (Multiplicative Azuma Inequality(Koufogiannakis and Young (2014))).

Let Z1 =
∑

τ∈[T̃ ] z1,τ and Z2 =
∑

τ∈[T̃ ] z2,τ be sums of non-negative random variables, where T̃

is a random stopping time with a finite expectation, and, for all τ ∈ [T̃ ], |z1,τ − z2,τ | ≤ 1 and

E
[
(z1,τ − z2,τ )

∣∣ ∑
s<τ z1,s,

∑
s<τ z2,s

]
≤ 0. Let γ̃ ∈ [0,1] and A∈R. Then,

P ((1− γ̃)Z1 ≥Z2 +A)≤ exp(−γ̃A)


	1 Introduction
	2 Related Work
	3 Model and Preliminaries
	4 Benchmark and Seller's Regret
	5 Truthful Setting: NPAC-T Policy
	6 Strategic Setting: NPAC-S Policy
	7 Concluding Remarks
	8 Appendix for Section 4: Proof of Proposition 1
	9 Appendix for Section 5: Proof of Theorem 1
	9.1 Lemmas for proving Theorem 1

	10 Appendix for Section 6: Proof of Theorem 2
	10.1 Lemmas for proving Theorem 2

	11 Supplementary Lemmas

