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Abstract

Matching methods improve the validity of causal inference by reducing model dependence and of-
fering intuitive diagnostics. While they have become a part of the standard tool kit across disciplines,
matching methods are rarely used when analyzing time-series cross-sectional data. We fill this method-
ological gap. In the proposed approach, we first match each treated observation with control observations
from other units in the same time period that have an identical treatment history up to the pre-specified
number of lags. We use standard matching and weighting methods to further refine this matched set so
that the treated and matched control observations have similar covariate values. Assessing the quality
of matches is done by examining covariate balance. Finally, we estimate both short-term and long-term
average treatment effects using the difference-in-differences estimator, accounting for a time trend. We
illustrate the proposed methodology through simulation and empirical studies. An open-source software
package is available for implementing the proposed methods.
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1 Introduction

One common and effective strategy to estimating causal effects in observational studies is the comparison

of treated and control observations who share similar observed characteristics. Matching methods facilitate

such comparison by selecting a set of control observations that resemble each treated observation and offer-

ing intuitive diagnostics for assessing the quality of resulting matches (e.g., Rubin, 2006; Stuart, 2010). By

making the treatment variable independent of observed confounders, these methods reduce model depen-

dence and improve the validity of causal inference in observational studies (e.g., Ho et al., 2007).

Despite their popularity, matching methods have been rarely used for the analysis of time-series cross

section (TSCS) data, which consist of a relatively large number of repeated measurements on the same units.

In such data, each unit may receive the treatment multiple times and the timing of treatment administration

may differ across units. Perhaps, due to this complication, we find few applications of matching methods

to TSCS data, and an overwhelming number of social scientists use linear regression models with fixed

effects (e.g., Angrist and Pischke, 2009). Unfortunately, these regression models heavily rely on parametric

assumptions, offer few diagnostic tools, and make it difficult to intuitively understand how counterfactual

outcomes are estimated (Imai and Kim, 2019, 2021). Moreover, almost all of the existing matching methods

assume a cross-sectional data set (e.g., Hansen, 2004; Rosenbaum et al., 2007; Abadie and Imbens, 2011;

Iacus et al., 2011; Zubizarreta, 2012; Diamond and Sekhon, 2013).1

We fill this methodological gap by developing matching methods for TSCS data. In the proposed ap-

proach (Section 3), for each treated observation, we first select a set of control observations from other units

in the same time period that have an identical treatment history for a pre-specified time span. We further

refine this matched set by using standard matching or weighting methods so that matched control observa-

tions become similar to the treated observation in terms of covariate histories. After this refinement step, we

apply a difference-in-differences estimator that adjusts for a possible time trend. The proposed method can

be used to estimate both short-term and long-term average treatment effect of policy change for the treated

(ATT) and allows for simple diagnostics through the examination of covariate balance. Finally, we establish
1An exception is an unpublished paper by Nielsen and Sheffield (2009). Their matching method is substantially different from

our methodology.
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the formal connection between the proposed matching estimator and the linear regression estimator with unit

and time fixed effects. All together, the proposed methodology provides a design-based approach to causal

inference with TSCS data.2 The proposed matching methods can be implemented via the open-source statis-

tical software in R language , PanelMatch: Matching Methods for Causal Inference with Time-Series

Cross-Sectional Data, available at https://CRAN.R-project.org/package=PanelMatch.

In Section 4, we conduct a simulation study to evaluate the finite sample performance of the proposed

matching methodology relative to the standard linear regression estimator with unit and time fixed effects.

We show that the proposed matching estimators are more robust to model misspecification than this stan-

dard two-way fixed effects regression estimator. The latter is generally more efficient but suffers from a

substantial bias unless the model is correctly specified. In contrast, our methodology yields estimates that

are stable across simulation scenarios considered here. We also find that our asymptotic confidence interval

has a reasonable coverage.

Our work builds upon the growing methodological literature on causal inference with TSCS data. In an

influential work, Abadie et al. (2010) propose the synthetic control method, which constructs a weighted

average of pre-treatment outcomes among control units such that it approximates the observed pre-treatment

outcome of the treated unit. A major limitation of this approach is the requirement that only one unit receives

the treatment. Even when multiple treated units are allowed, they are assumed to receive the treatment at

a single point in time (see also Doudchenko and Imbens, 2017; Ben-Michael et al., 2019a). In addition,

the synthetic control method and its extensions require a long pre-treatment time period for good empirical

performance.

Recently, a number of researchers have extended the synthetic control method. For example, Xu (2017)

proposes a generalized synthetic control method based on the framework of linear models with interactive

fixed effects. This method, however, still requires a relatively large number of control units that do not

receive the treatment at all. Furthermore, although the possibility of some units receiving the treatment at

multiple time periods is noted (see footnote 7), the author assumes that the treatment status never reverses.

Indeed, such “staggered adoption” assumption is common even among the recently proposed extensions
2In epidemiology, such an approach is called trial emulation as it attempts to emulate a randomized experiment in an observa-

tional study (Hernán and Robins, 2016).
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of the synthetic control method (e.g., Ben-Michael et al., 2019b). In contrast, our methods allow multiple

units to be treated at any point in time, and units can switch their treatment status multiple times over

time. Moreover, the proposed methodology can be used to estimate causal effects using a panel data with a

relatively small number of time periods.

Another relevant methodological literature is the model-based approaches such as the structural nested

mean models (Robins, 1994) and marginal structural models (Robins et al., 2000). These models focus on

estimating the causal effect of treatment sequence while avoiding post-treatment bias (as future treatments

may be caused by past treatments) (see Blackwell and Glynn, 2018, for an introduction). These approaches,

however, require the modeling of potentially complex conditional expectation functions and propensity

score for each time period, which can be challenging for TSCS data that have a large number of time periods

(e.g., Imai and Ratkovic, 2015). Our proposed method can incorporate these model-based approaches within

the matching framework, permitting more robust confounding adjustment when estimating short-term and

long-term treatment effects.

2 Motivating Applications

This section introduces two influential studies that motivate our methodology. The first study is Acemoglu

et al. (2019), which examines the causal effect of democracy on economic development. Our second ap-

plication is Scheve and Stasavage (2012), which investigates whether war mobilization leads countries to

introduce significant taxation of inherited wealth. Both studies use linear regression models with fixed ef-

fects to estimate the causal effects of interest. After briefly describing the original analysis for each study,

we visualize the variation of treatment across time and space for each data set and motivate the proposed

methodology, which exploits this variation.

2.1 Democracy and Economic Growth

Scholars have long debated whether democracy promotes economic development. Acemoglu et al. (2019)

conducts an up-to-date and comprehensive empirical study to investigate this question. The authors analyze

an unbalanced TSCS data set, which consists of a total of 184 countries over a half century from 1960 to

2010.
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The main results presented in the original study are based on the following dynamic linear regression

model with country and year fixed effects,

Yit = αi + γt + βXit +
4∑
`=1

{
ρ`Yi,t−` + ζ>` Zi,t−`

}
+ εit (1)

for i = 1, . . . , N and t = 5, . . . , T (the notation assumes a balanced panel for simplicity) where Yit is

logged real GDP per capita, and Xit represents the democracy indicator variable that equals 1 if country i

in year t receives both a “Free” or “Partially Free” in Freedom House and a positive score in the Polity IV

index, and 0 otherwise. The model also includes four lagged outcome variables, Yi,t−` for ` = 1, . . . , 4,

as well as a set of time-varying covariates Zit and their lagged values. For the basic model specification,

Zit includes the log population, the log population below 16 years old, the log population above 64 years

old, net financial flow as a fraction of GDP, trade volume as a fraction of GDP, and a binary measure of

social unrest.3 The choice of four lags is particularly important, specifying how far back in time one needs

to consider when adjusting for confounding factors.

The authors assume the following standard sequential exogeneity,

E(εit | Yi,t−1, Yi,t−2, . . . , Yi1, Xit, Xi,t−1, . . . , Xi1,Zit,Zi,t−1, . . . ,Zi1, αi, γt) = 0 (2)

which implies that the error term is independent of past outcomes, current and past treatments and covari-

ates. It is well known that the ordinary least squares (OLS) estimate of β has an asymptotic bias of order

1/T (Nickell, 1981). To address this problem, Acemoglu et al. also fit the model in equation (1) using the

generalized method of moments (GMM) estimation (Arellano and Bond, 1991) with the following moment

conditions implied by equation (2),

E{(εit − εi,t−1)Yis} = E{(εit − εi,t−1)Xi,s+1} = 0 (3)

for all s ≤ t − 2. The error terms are assumed to be serially uncorrelated, and the authors use the

heteroskedasticity-robust standard errors.

Table 1 presents the estimates of the coefficients of this model given in equation (1). Following the

original paper, the estimated coefficients and standard errors are multiplied by 100 for the ease of interpre-

tation. The results in the first two columns are based on the model without the time-varying covariates Z

3In the original study, the authors include one covariate at a time rather than including them all together.
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Democracy and Growth War and Taxation
(Acemoglu et al., 2019) (Scheve and Stasavage, 2012)

(1) (2) (3) (4) (5) (6) (7) (8)

ATE (β̂)
0.787 0.875 0.666 0.917 6.775 1.737 5.532 1.539

(0.230) (0.374) (0.306) (0.461) (2.392) (0.729) (2.091) (0.753)

ρ̂1
1.238 1.204 1.098 1.046 0.909 0.904

(0.038) (0.041) (0.042) (0.043) (0.014) (0.014)

ρ̂2
−0.207 −0.193 −0.133 −0.121
(0.046) (0.045) (0.040) (0.038)

ρ̂3
−0.026 −0.028 0.005 0.014

(0.029) (0.028) (0.030) (0.029)

ρ̂4
−0.043 −0.036 −0.031 −0.018
(0.018) (0.020) (0.024) (0.023)

country FE Yes Yes Yes Yes Yes No Yes No
time FE Yes Yes Yes Yes Yes Yes Yes Yes

time trends No No No No Yes Yes Yes Yes
covariates No No Yes Yes No No Yes Yes
estimation OLS GMM OLS GMM OLS OLS OLS OLS

N 6,336 6,161 4,416 4,245 2,780 2,779 2,537 2,536

Table 1: Regression Results from the Two Motivating Empirical Applications. The estimated coeffi-
cients for the treatment variable and lagged outcome variables are presented with standard errors in paren-
theses. For the Acemoglu et al. study, we show four models based on equation (1) using OLS or GMM
estimation and with or without covariates. The estimated coefficients and standard errors are multiplied by
100 for the ease of interpretation. For the Scheve and Stasavage study, we show two statistic models based
on equation (4) and the dynamic models defined in equation (6), with or without covariates. The standard
errors are in parentheses. For the Acemoglu et al. study, we use the heteroskedasticity-robust standard
errors. For the Scheve and Stasavage study, we cluster standard errors by countries for the static models
while the panel corrected standard errors are used for the dynamic models.

whereas the next two columns are those from the model with the covariates. For each model, we use both

OLS (columns (1) and (3)) and GMM (columns (2) and (4)) estimation as explained above. As shown in

the original study, the effect of democracy on logged GDP per capita is positive and statistically significant

across all four models. Based on this finding, the authors conclude that in the year of democratization the

GDP per capita increases more than 0.5 percent, a substantial effect given that democratization may have a

long term effect on economic growth.
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2.2 War and Taxation

As a central element of redistributive policies, inheritance taxation plays an essential role in wealth accu-

mulation and income inequality. Scheve and Stasavage (2012) is among the first to empirically investigate

this normatively controversial subject by examining the political conditions that underpin progressive in-

heritance taxation. The study documents that participation in inter-state war propels countries to increase

inheritance taxation.

Scheve and Stasavage analyze an unbalanced TSCS data set of 19 countries repeated over 185 years,

from 1816 to 2000. The treatment variable of interestXit is binary, indicating whether country i experiences

an inter-state war in year t, whereas the outcome variable Yit represents top rate of inheritance taxation for

country i in year t. The study measures the outcome variable for each country in a given year using the

top marginal rate for a direct descendant who inherits an estate. Although the authors of the original study

aggregate the data into five-year or decade intervals, we analyze the annual data to avoid any aggregation

bias.

The authors fit the following static linear regression model with country and time fixed effects as well

as country-specific linear time trends,

Yit = αi + γt + βXi,t−1 + δ>Zi,t−1 + λit+ εit (4)

where Zit represents a set of the time-varying covariates, including an indicator variable for a leftist execu-

tive, a binary variable for the universal male suffrage, and logged real GDP per capita. The authors use the

lagged values of the treatment variable and time-varying covariates in order to avoid the issue of simultane-

ity. However, unlike the Acemoglu et al. study, they exclude lagged outcome variables and only include

one period lag of time-varying confounders. The OLS estimation is used for fitting the model, requiring the

following strict exogeneity assumption,

E(εit | Xi,Zi, αi, γt, λi) = 0 (5)

where Xi = (Xi1, Xi2, . . . , XiT ) and Zi = (Z>i1,Z
>
i2, . . . ,Z

>
iT )
>. The authors use the cluster-robust

standard error to account for the auto-correlation within each country.
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Recognizing the limitation of such static models and yet wishing to avoid the bias of dynamic models

mentioned above, Scheve and Stasavage also fit the following model with the lagged outcome variable and

country specific time trends but without country fixed effects,

Yit = γt + βXi,t−1 + ρYi,t−1 + δ>Zi,t−1 + λit+ εit (6)

where the strict exogeneity assumption is now given by,

E(εit | Xi,Zi, Yi,t−1, γt, λit) = 0 (7)

The OLS estimation is employed for model fitting while panel-corrected standard errors are used to account

for correlation across countries within a time period (Beck and Katz, 1995).

The last four columns of Table 1 present the results. Column (5) and (7) report the results obtained using

the static model given in equation (4) without and with the time-varying covariates, respectively. Similarly,

columns (6) and (8) are based on the dynamic model specified in equation (6) without and with the time

varying covariates, respectively. These results show that war has a positive estimated effect of several

percentage points on inheritance taxation although the magnitude for contemporaneous effect in dynamic

models is much smaller.

2.3 The Treatment Variation Plot

A variety of linear regression models with fixed effects used in these studies represent the most common

methodological approaches to causal inference with TSCS data. However, a major drawback of these mod-

els is that it is difficult to understand how they use observed data to estimate relevant counterfactual quanti-

ties (Imai and Kim, 2019, 2021).

We introduce the treatment variation plot, which visualizes the variation of treatment across space and

time, in order to help researchers build an intuition about how comparison of treated and control observa-

tion can be made. In the left panel of Figure 1, we present the distribution of the treatment variable for

the Acemoglu et al. study where a red (blue) rectangle represents a treated (control) country-year observa-

tion. White areas indicate the years when countries did not exist. We observe that many countries stayed

either democratic or autocratic throughout years with no regime change. Among those that experienced

a regime change, most have transitioned from autocracy to democracy, but some of them have gone back
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Figure 1: The Treatment Variation Plots for Visualizing the Distribution of Treatment across Space
and Time. The left panel displays the spatial-temporal distribution of treatment for the study of democracy’s
effect on economic development (Acemoglu et al., 2019), in which a red (blue) rectangle represents a
treatment (control) country-year observation. A white area represents the years when a country did not
exist. The right panel displays the treatment variation plot for the study of war’s effect on inheritance
taxation (Scheve and Stasavage, 2012).

and forth multiple times. When ascertaining the causal effects of democratization, therefore, we may con-

sider the effect of a transition from democracy to autocracy as well as that of a transition from autocracy to

democracy.

The treatment variation plot suggests that researchers can make a variety of comparisons between the

treated and control observations. For example, we can compare the treated and control observations within

the same country over time, following the idea of regression models with unit fixed effects (Imai and Kim,

2019). With such an identification strategy, it is important not to compare the observations far from each

other to keep the comparison credible. We also need to be careful about potential carryover effects where

democratization may have a long term effect, introducing post-treatment bias. Alternatively, researchers

can conduct comparison within the same year, which would correspond to year fixed effects models. In this

case, we wish to compare similar countries with one another for the same year and yet we may be concerned

about unobserved differences among those countries.
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The right panel of Figure 1 shows the treatment variation plot for the Scheve and Stasavage study, in

which a treated (control) observation represents the time of interstate war (peace) indicated by a red (blue)

rectangle. We observe that most of the treated observations are clustered around the time of two world wars.

This implies that although the data set extends from 1816 to 2000, most observations in earlier and recent

years would not serve as comparable control observations for the treated country-year observations.4 As a

result, it may be difficult to generalize the estimates obtained from this data set beyond the two world wars.

In sum, the treatment variation plot is a useful graphical tool for visualizing the distribution of treatment

across time and units. Researchers should pay special attention to whether the treatment sufficiently varies

both over time and across units as in the Acemoglu et al. study or the treatment variation is concentrated

in a relatively small subset of the data as in the Scheve and Stasavage study. Since the internal and external

validity of causal effect estimation with TSCS data critically rely upon such variation, the treatment variation

plot plays an essential role when considering the causal identification strategies.

3 The Proposed Methodology

In this section, we propose a general matching method for causal inference with TSCS data, which can be

summarized as follows. For each treated observation, researchers first find a set of control observations

that have the identical treatment history up to the pre-specified number of periods. We call this group of

matched control observations a matched set. Once a matched set is selected for each treated observation,

we further refine it by adjusting for observed confounding via standard matching and weighting techniques

so that the treated and matched control observations have similar covariate values. Finally, we apply the

difference-in-differences estimator in order to account for an underlying time trend. At the end of this

section, we establish the connections to the linear fixed effects regression estimator and discuss covariate

balance diagnostics and standard errors.
4The treatment variation plot is also useful for detecting potential anomalies in data. For example, the right panel of Figure 1

shows that Korea is coded to be in war only in 1953 during the course of the Korean War (1950–1953).

9



3.1 Matching Estimators

Consider a TSCS data set with N units (e.g., countries) and T time periods (e.g., years). For the sake of

notational simplicity, we assume a balanced TSCS data set where the data are observed for all N units in

each of T time periods. However, all the methods described below are applicable to an unbalanced TSCS

data set. For each unit i = 1, 2, . . . , N at time t = 1, 2, . . . , T , we observe the outcome variable Yit, the

binary treatment indicator Xit, and a vector of K time-varying covariates Zit. We assume that within each

time period the causal order is given by Zit, Xit, and Yit. That is, these covariates Zit are realized before

the administration of the treatment in the same time period Xit, which in turn occurs before the outcome

variable Yit is realized.

3.1.1 Causal Quantity of Interest

The first step of the proposed methodology is to define a causal quantity by choosing a non-negative integer

F as the number of leads, which represents the outcome of interest measured at F time periods after the

administration of treatment. For example, F = 0 represents the contemporaneous effect while F = 2

implies the treatment effect on the outcome two time periods after the treatment is administered. Specifying

F > 0 allows researchers to examine a cumulative (or long-term) effect.

In addition, our methodology requires researchers to select another non-negative integerL as the number

of lags to adjust for. Unlike the choice of leads, which should be primarily driven by researchers’ substan-

tive interests, selecting the number of lags is part of the identification assumption. That is, researchers

should evaluate the extent to which past treatment status could be a confounder affecting the current out-

come as well as the current treatment (Imai and Kim, 2019). As in the regression approach, the choice

of L is important and faces a bias-variance tradeoff. While a greater value improves the credibility of the

unconfoundedness assumption introduced below, it also reduces the efficiency of the resulting estimates by

reducing the number of potential matches.

We assume the absence of spillover effect but allow for some carryover effects (up to L time periods).

That is, the potential outcome for unit i at time t + F depends neither on the treatment status of other

units, e.g., Xi′t′ with i′ 6= i and for any t′, nor the previous treatment status of the same unit after L
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time periods, i.e., {Xi,t−`}t−1`=L+1. In many applications, the assumption of no spillover effect may be too

restrictive. Although the methodological literature has begun to relax the assumption of no spillover effect

in experimental settings (e.g., Hudgens and Halloran, 2008; Tchetgen Tchetgen and VanderWeele, 2010;

Aronow and Samii, 2017; Imai et al., 2021). We will leave the challenge of enabling the presence of

spillover effects in TSCS data settings to future research.

Once these two parameters, L and F , are selected, we can define a causal quantity of interest. We first

consider the average treatment effect of policy change among the treated (ATT),

δ(F,L) = E
{
Yi,t+F

(
Xit = 1, Xi,t−1 = 0, {Xi,t−`}L`=2

)
−

Yi,t+F
(
Xit = 0, Xi,t−1 = 0, {Xi,t−`}L`=2

)
| Xit = 1, Xi,t−1 = 0

}
(8)

where the treated observations are those who experience the policy change, i.e., Xi,t−1 = 0 and Xit = 1.

In our two applications, this quantity represents the average causal effect of democratization on economic

growth and that of war initiation on inheritance taxation, respectively.

In this definition, Yi,t+F
(
Xit = 1, Xi,t−1 = 0, {Xi,t−`}L`=2

)
is the potential outcome under a policy

change, whereas Yi,t+F
(
Xit = 0, Xi,t−1 = 0, {Xi,t−`}L`=2

)
represents the potential outcome without the

policy change, i.e., Xi,t−1 = Xit = 0. In both cases, the rest of the treatment history, i.e., {Xi,t−`}L`=2 =

{Xi,t−2, . . . , Xi,t−L}, is set to the realized history. For example, δ(1, 5) represents the average causal effect

of policy change on the outcome one time period after the treatment while assuming that the potential

outcome only depends on the treatment history up to five time periods back.5

This causal quantity allows for a future treatment reversal in a sense that the treatment status could go

back to the control condition before the outcome is measured, i.e., Xi,t+` = 0 for some ` with 1 ≤ ` ≤ F .

Later in this section, we discuss an alternative quantity of interest, which does not permit treatment status

reversal, and define the ATT of stable policy change. This represents a counterfactual scenario, in which

the treatment is in place at least for F time periods after policy change (see Section 3.1.5 for a discussion
5 One may be interested in the average treatment effect of policy reversal among the reversed (ART). This quantity corresponds

to the effects of authoritarian reversal estimated in Section 5 and is defined as,

ξ(F,L) = E
{
Yi,t+F

(
Xit = 0, Xi,t−1 = 1, {Xi,t−`}L`=2

)
−Yi,t+F

(
Xit = 1, Xi,t−1 = 1, {Xi,t−`}L`=2

)
| Xit = 0, Xi,t−1 = 1

}
.
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of this alternative causal quantity).

How should researchers choose the values of L and F ? A large value of L improves the credibility of the

aforementioned limited carryover effect assumption because it allows a greater number of past treatments

(i.e., those up to time t − L) to affect the outcome of interest (i.e., Yi,t+F ). However, this may reduce the

number of matches and yield less precise estimates. We emphasize that choosing an appropriate number of

lags is as important for our methods as for regression models. In practice, we recommend that researchers

choose the number of lags based on their substantive knowledge and examine the sensitivity of empirical

results to this choice. Similarly, the choice of F should be substantively motivated as it determines whether

one is interested in short-term or long-term causal effects. We note that a large value of F may make the

interpretation of causal effects difficult if many units switch the treatment status during the F lead time

periods.

3.1.2 Identification Assumption

Given the values of F and L and the causal quantity of interest, we need an additional identification as-

sumption. One possibility is to assume that conditional on the treatment, outcome, and covariate history up

to time t− L, the treatment assignment is unconfounded. This assumption is called sequential ignorability

in the literature (e.g., Robins et al., 2000),

{
Yi,t+F

(
Xit = 1, Xi,t−1 = 0, {Xi,t−`}L`=2

)
, Yi,t+F

(
Xit = 0, Xi,t−1 = 0, {Xi,t−`}L`=2

)}
⊥⊥ Xit | Xi,t−1 = 0, {Xi,t−`}L`=2, {Yi,t−`}L`=1, {Zi,t−`}L`=0 (9)

where Zit is a vector of observed time-varying confounders for unit i at time period t. The assumption will

be violated if there exist unobserved confounders. The violation also occurs if the treatment, outcome, and

covariate histories before time t− L confound the causal relationship between Xit and Yi,t+F .

In many practical applications with TSCS data, however, researchers are concerned about the potential

existence of unobserved confounding variables. Therefore, instead of the unconfoundedness assumption

given in equation (9), we adopt the difference-in-differences (DiD) design (e.g., Abadie, 2005). Specifically,

we make the following parallel trend assumption after conditioning on the treatment, outcome, and covariate
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histories,

E[Yi,t+F
(
Xit = 0, Xi,t−1 = 0, {Xi,t−`}L`=2

)
− Yi,t−1 | Xit = 1, Xi,t−1 = 0, {Xi,t−`, Yi,t−`}L`=2, {Zi,t−`}L`=0]

= E[Yi,t+F
(
Xit = 0, Xi,t−1 = 0, {Xi,t−`}L`=2

)
− Yi,t−1 | Xit = 0, Xi,t−1 = 0, {Xi,t−`, Yi,t−`}L`=2, {Zi,t−`}L`=0] (10)

where the conditioning set includes the treatment history, the lagged outcomes (except the immediate lag

Yi,t−1), and the covariate history. It is well known that this parallel trend assumption cannot account for

unobserved time-varying confounders. As such, it is important to examine whether the outcome time trends

are indeed parallel on average between the treated and matched control units, using the data from the pre-

treatment periods.

3.1.3 Constructing the Matched Sets

The next step of the proposed methodology is to construct, for each treated observation (i, t), the matched

set of control units that share the identical treatment history from time t− L to t− 1. We choose to match

exactly on the treatment history because this allows us to partially control for carryover effects. We also

believe that in many cases past treatments are among the most important confounders as they are likely

to affect both the current treatment and outcome. It is also important to note that the matched sets only

include observations from the same time period, implying exact matching on time period. We do this in

order to adjust for time-specific unobserved confounders. Partially relaxing these matching restrictions is

straightforward. For example, we can match each treated observation with control observations that have

a similar treatment history, where the degree of similarity is defined by researchers. The consequences of

such relaxation needs to be carefully investigated in future research.

Figure 2 illustrates how the matched sets, with the identical treatment history with the treated obser-

vations, are constructed when L = 3. For example, in the left panel (the ATT), the control observations

(i, t) = (2, 4) and (4, 4) (red triangles) are matched to the treated observation (1, 4) (red circle) as they

share the identical treatment history at t = 1, 2, 3 (red rectangles). The right panel, on the other hand,

shows the matched set for the ART (see footnote 5) where the treated observation (red triangle) is matched

to the control observation (red circle). Another control observation highlighted by a blue circle has an

empty matched set because no treated observation shares the same treatment history. We exclude these
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Figure 2: An Example of Matched Sets with Five Units and Six Time Periods. Panels (a) and (b) illus-
trate how matched sets are chosen for the ATT (as defined in equation (11)) and the ART (see footnote 5),
respectively, when L = 3. For each treated observation (colored circles), we select a set of control ob-
servations from other units in the same time period (triangles with the same color) that have an identical
treatment history (rectangles with the same color).

observations from the subsequent analysis to preserve the internal validity. It is important for researchers to

examine the characteristics of these removed observations as this modifies the target population.

Formally, the matched set is defined as,

Mit = {i′ : i′ 6= i,Xi′t = 0, Xi′t′ = Xit′ for all t′ = t− 1, . . . , t− L} (11)

for the treated observations with Xit = 1 and Xi,t−1 = 0. For the ART, we define the matched set as

Mit = {i′ : i′ 6= i,Xi′t = 1, Xi′t′ = Xit′ for all t′ = t − 1, . . . , t − L}. The observations in this set are

matched to the control observations with Xit = 0 and Xi,t−1 = 1.

Finally, we note that unlike the existing methods for staggered adoption, units are allowed to switch

their treatment status multiple times over time. This matched set also differs from the risk set of Li et al.

(2001). The latter only includes units who have not received the treatment in the previous time periods.

Instead, we allow for the possibility of a unit receiving the treatment multiple times, which is common in

many TSCS data sets.
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3.1.4 Refining the Matched Sets

The matched sets, defined above in equation (11), only adjust for the treatment history. However, the parallel

trend assumption, defined in equation (10), demands that we also adjust for other confounders such as past

outcomes and (possibly time-varying) covariates. Below, we discuss examples of matching and weighting

methods that make additional adjustments by further refining the matched sets.

We first consider the application of matching methods. Suppose that we wish to match each treated

observation with at most J control units from the matched set with replacement, i.e., |Mit| ≤ J . For

example, we can use the Mahalanobis distance measure although other distance measure can also be used

(see e.g., Rubin, 2006; Stuart, 2010). Specifically, we compute the average Mahalanobis distance between

the treated observation and each control observation over time,

Sit(i
′) =

1

L

L∑
`=1

√
(Vi,t−` −Vi′,t−`)>Σ−1i,t−`(Vi,t−` −Vi′,t−`) (12)

for a matched control unit i′ ∈ Mit where Vit′ represents the time-varying covariates one wishes to adjust

for and Σit′ is the sample covariance matrix of Vit′ . That is, given a matched control unit, we compute the

standardized distance using the time-varying covariates and average it across time periods.6

Alternatively, we can use the distance measure based on the estimated propensity score. The propen-

sity score is defined as the conditional probability of treatment assignment given pre-treatment covariates

(Rosenbaum and Rubin, 1983). To estimate the propensity score, we first create a subset of the data, con-

sisting of all treated observations and their matched control observations from the same year. We then fit a

treatment assignment model to this data set. For example, we may use the logistic regression model,

eit({Ui,t−`}L`=1) = Pr(Xit = 1 | Ui,t−1, . . . ,Ui,t−L) =
1

1 + exp(−
∑L

`=1 β
>
` Ui,t−`)

. (13)

where Uit′ = (Xit′ ,V
>
it′)
>.7 In practice, researchers may assume a more parsimonious model, in which

some elements of β are set to zero. For example, setting β = 0 for ` < t − 1 means that the model only
6For example, we might use all the observed time-varying covariates by setting Vit′ = Zi,t′+1. It is also possible to adjust for

the lagged outcome variable by setting Vit′ = (Yit′ ,Z
>
i,t′+1)

> though typically researchers prefer to adjust for the differences in

the lagged outcomes through assuming the parallel trend under the difference-in-differences design.
7Note that since we only use the observations contained in the matched sets, this is equivalent to modeling the conditional

probability of policy change (as opposed to no change).
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includes the contemporaneous covariates Zit and the previous value of the treatment variable. In addition,

alternative robust estimation procedures such as the covariate balancing propensity score (CBPS) of Imai

and Ratkovic (2014) can be used.

Given the fitted model, we compute the estimated propensity score for all treated observations and their

matched control observations. Then, we adjust for the lagged covariates by matching on the estimated

propensity score, yielding the following distance measure,

Sit(i
′) = |logit{êit({Ui,t−`}L`=1)} − logit{êi′t({Ui′,t−`}L`=1)}| (14)

for each matched control observation i′ ∈Mit where êi′t({Ui,t−`}L`=1) is the estimated propensity score.

Once the distance measure Sit(i′) is computed for all control units in the matched set, then we refine

the matched set by selecting up to J most similar control units that satisfy a caliper constraint C specified

by researchers and giving zero weight to the other matched control units. In this way, we choose a subset of

control units within the original matched set that are most similar to the treated unit in terms of the observed

confounders. Formally, the refined matched set for the treated observation (i, t) is given by,

M∗it = {i′ : i′ ∈Mit, Sit(i
′) < C,Sit(i

′) ≤ S(J)
it } (15)

where S(J)
it is the J th order statistic of Sit(i′) among the control units in the original matched setMit.

Instead of matching, we can also use weighting to refine the matched sets. The idea is to construct a

weight for each control unit i′ within a matched set of a given treated observation (i, t) where a greater

weight is assigned to a more similar unit. For example, we can use the inverse propensity score weighting

method (Hirano et al., 2003), based on the propensity score model given in equation (13).8 In this case, the

weight for a matched control unit i′ is defined as,

wi
′
it ∝

êi′t({Ui,t−`}L`=1)

1− êi′t({Ui,t−`}L`=1)
(16)

such that
∑

i′∈Mit
wi
′
it = 1 and wi

′
it = 0 for i′ /∈ Mit. Note that the model should be fitted to the entire

sample of treated and matched control observations.
8One can also use calibration weights instead of inverse propensity score weights.
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The weighting refinement further generalizes the matching refinement since the latter assigns an equal

weight to each unit in the refined matched setM∗it,

wi
′
it =


1
|M∗it|

if i′ ∈M∗it

0 otherwise

(17)

In addition to propensity score weighting, other weighting methods such as calibration weights can also be

used to refine each matched set.

3.1.5 The Difference-in-Differences Estimator

Given the refined matched sets, we estimate the ATT of policy change defined in equation (8). To do

this, for each treated observation (i, t), we estimate the counterfactual outcome Yi,t+F (Xit = 0, Xi,t−1 =

0, Xi,t−2, . . . , Xi,t−L) using the weighted average of the control units in the refined matched set. We then

compute the difference-in-differences estimate of the ATT for each treated observation and then average it

across all treated observations. Formally, our ATT estimator is given by,

δ̂(F,L) =
1∑N

i=1

∑T−F
t=L+1Dit

N∑
i=1

T−F∑
t=L+1

Dit

(Yi,t+F − Yi,t−1)−
∑

i′∈Mit

wi
′
it

(
Yi′,t+F − Yi′,t−1

) (18)

where Dit = Xit(1−Xi,t−1) · 1{|Mit| > 0}, and wi
′
it represents the non-negative normalized weight such

that wi
′
it ≥ 0 and

∑
i′∈Mit

wi
′
it = 1. Note that Dit = 1 only if observation (i, t) changes the treatment status

from the control condition at time t − 1 to the treatment condition at time t and has at least one matched

control unit.

When researchers are interested in a non-contemporaneous treatment effect (i.e., F > 0), the ATT

defined in equation (8) does not specify the future treatment sequence. As a result, the matched control

units may include those units who receive the treatment after time t but before the outcome is measured

at time t + F . Similarly, some treated units may return to the control conditions between time t and time

t+F . However, in certain circumstances, researchers may be interested in the ATT of stable policy change

where the counterfactual scenario is that a treated unit does not receive the treatment before the outcome is

measured. We can modify the ATT by specifying the future treatment sequence so that the causal quantity

is defined with respect to the counterfactual scenario of interest. Appendix A on page 1 further discusses

this alternative quantity of interest.
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3.2 Checking Covariate Balance

One advantage of the proposed methodology, over regression methods, is that researchers can examine the

resulting covariate balance between treated and matched control observations, enabling the investigation of

whether the treated and matched control observations are comparable with respect to observed confounders.

Under the proposed framework, examination of covariate balance is straightforward once the matched sets

are determined and refined.

We propose to examine the mean difference of each covariate (e.g. Vit′j , which represents the jth

variable in Vit′) between a treated observation and its matched control observations at each pre-treatment

time period, i.e. t′ < t. We further standardize this difference, at any given pre-treatment time period, by the

standard deviation of each covariate across all treated observations in the data so that the mean difference

is measured in terms of standard deviation units. Formally, for each treated observation (i, t) with Dit = 1,

we define the covariate balance for variable j at the pre-treatment time period t− ` as,

Bit(j, `) =
Vi,t−`,j −

∑
i′∈Mit

wi
′
it Vi′,t−`,j√

1
N1−1

∑N
i′=1

∑T−F
t′=L+1Di′t′(Vi′,t′−`,j − V t′−`,j)2

(19)

whereN1 =
∑N

i′=1

∑T−F
t′=L+1Di′t′ is the total number of treated observations and V t−`,j =

∑N
i=1Di,t−`,j/N .

We then aggregate this covariate balance measure across all treated observations for each covariate and pre-

treatment time period.

B(j, `) =
1

N1

N∑
i=1

T−F∑
t=L+1

DitBit(j, `) (20)

Finally, we emphasize that one must examine the balance of the lagged outcome variables over multiple

pre-treatment periods as well as that of time-varying covariates. This helps us evaluate the appropriateness

of the parallel trend assumption used to justify the proposed DiD estimator.

3.3 Relations with Linear Fixed Effects Regression Estimators

It is well known that the standard DiD estimator is equivalent to the linear two-way fixed effects regression

estimator if there are two time periods and the treatment is administered to some units only in the second

time period. Unfortunately, this equivalence does not generalize to the multi-period DiD design considered

in this paper, in which the number of time periods may exceed two and each unit may receive the treatment
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multiple times (see e.g., Imai and Kim, 2011, 2021; Abraham and Sun, 2018; Athey and Imbens, 2018;

Chaisemartin and D’Haultfœuille, 2018; Goodman-Bacon, 2018). Nevertheless, researchers often motivate

the use of the two-way fixed effects estimator by referring to the DiD design (e.g., Angrist and Pischke,

2009). Bertrand et al. (2004), for example, call the linear regression model with two-way fixed effects “a

common generalization of the most basic DiD setup (with two periods and two groups)” (p. 251).

The following theorem establish the algebraic equivalence between the proposed matching estimator

given in equation (18) and weighted two-way fixed effects estimator. Our estimand is the ATT of stable

policy change relative to no policy change as defined in equation (1), in which the treatment will be in

place at least for F time periods. This generalizes the result of Imai and Kim (2021). Specifically, we

allow for estimating both short-term and long-term average treatment effects with nonparametric covariate

adjustment.

THEOREM 1 (DIFFERENCE-IN-DIFFERENCES ESTIMATOR AS A WEIGHTED TWO-WAY FIXED EFFECTS

ESTIMATOR) Assume that there is at least one treated and control unit, i.e., 0 <
∑N

i=1

∑T
t=1Xit < NT ,

and that there is at least one unit withDit = 1, i.e., 0 <
∑N

i=1

∑T
t=1Dit. The difference-in-differences esti-

mator, δ̂(F,L) defined in equation (18), is equivalent to β̂DiD where β̂DiD is the following weighted two-way
fixed effects regression estimator,

β̂DiD = argmin
β

N∑
i=1

T∑
t=1

Wit{(Yit − Y
∗
i − Y

∗
t + Y

∗
)− β(Xit −X

∗
i −X

∗
t +X

∗
)}2. (21)

The asterisks indicate weighted averages, i.e., Y ∗i =
∑T

t=1WitYit/
∑T

t=1Wit, Y
∗
t =

∑N
i=1WitYit/

∑N
i=1Wit,

X
∗
i =

∑T
t=1WitXit/

∑T
t=1Wit,X

∗
t =

∑N
i=1WitXit/

∑N
i=1Wit, Y

∗
=
∑N

i=1

∑T
t=1WitYit/

∑N
i=1

∑T
t=1Wit,

X
∗
=
∑N

i=1

∑T
t=1WitXit/

∑N
i=1

∑T
t=1Wit, and the regression weights are given by,

Wit =

N∑
i′=1

T∑
t′=1

Di′t′ · vi
′t′
it and vi

′t′
it =


1 if (i, t) = (i′, t′ + F )
1 if (i, t) = (i′, t′ − 1)
wii′t′ if i ∈Mi′t′ , t = t′ + F
−wii′t′ if i ∈Mi′t′ , t = t′ − 1

0 otherwise.

(22)

Proof is in Appendix B on page 1.

Importantly, the regression weight Wit can take a negative value in many cases, implying that the two-

way fixed effects regression estimator critically relies upon its parametric assumption. Although many

applied researchers motivate the use of two-way fixed effects regression by the DiD design, Theorem 1

shows that such an argument is invalid unless the modeling assumption is correct.
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3.4 Standard Error Calculation

To compute the standard errors of the proposed estimator given in equation (18), we condition on the

weights implied by the matching procedure, which represents the number of times an observation is used for

matching (Imbens and Rubin, 2015). Much like the conditional variance in regression models, the resulting

standard errors do not account for the uncertainty about a matching procedure, but can be interpreted as

the uncertainty measure conditional upon it (Ho et al., 2007). For the proposed estimator, this observation-

specific weight can be computed as follows,

W ∗it =

N∑
i′=1

T∑
t′=1

Di′t′ · vi
′t′
it and vi

′t′
it =



1 if (i, t) = (i′, t′ + F )

−1 if (i, t) = (i′, t′ − 1)

−wii′t′ if i ∈Mi′t′ , t = t′ + F

wii′t′ if i ∈Mi′t′ , t = t′ − 1

0 otherwise.

(23)

which differs from the weight defined in Theorem 1. Note that δ̂(F,L) defined in equation (18) can be at-

tained by applying the weights directly to each observation: δ̂(F,L) =
∑N

i=1

∑T
t=1W

∗
itYit/

∑N
i=1

∑T
t=1Dit.

We consider both conditional and unconditional standard errors. In both cases, we apply the strategy

of matching as non-parametric preprocessing (Ho et al., 2007) and do not account for the uncertainty of

the matching process. This results in the treatment of the weight Wit as an observed variable. Define

A =
∑N

i=1Ai with Ai =
∑T

t=1W
∗
itYit and B =

∑N
i=1Bi with Bi =

∑T
t=1Dit. Then, for the conditional

standard error, under the assumption of independence across units (but not across time periods), we have,

V
(
δ̂(F,L) | D

)
=

N∗V(Ai)
B2

where N∗ represents the total number of units with at least one non-zero weight.

For the unconditional standard error, we use the first-order Taylor approximation for the asymptotic

variance.

V
(
δ̂(F,L)

)
= V

(
A

B

)
≈ 1

E(B)2

{
V(A)− 2

E(A)
E(B)

Cov(A,B) +
E(A)2

E(B)2
V(B)

}
where E(A) = N · E(Ai), V(A) = N · V(Ai) E(B) = N · E(Bi), V(B) = N · V(Bi), Cov(A,B) =

N ·Cov(Ai, Bi). For unconditional standard error, it is also possible to apply the block bootstrap procedure
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to account for within-unit time dependence. That is, we sample each unit, which consists of a sequence of

T observations, with replacement, and compute
∑N

i′=1

∑T
t=1W

∗
i′tYi′t/

∑N
i′=1

∑T
t=1Di′t for the bootstrap

sample units i′ in each iteration. Abadie and Imbens (2008) shows that a standard bootstrap procedure

yields an invalid inference for matching estimators. However, we circumvent this problem by conditioning

on the weights rather than recompute them for each bootstrapped sample (see also Otsu and Rai, 2017).

4 A Simulation Study

We conduct simulations to examine the finite sample properties of the proposed matching estimator by

comparing its empirical performance with the standard linear regression models with fixed effects. Specifi-

cally, we assess the robustness of the estimators to various degrees of model misspecification. We choose a

simulation setting that is favorable to OLS by generating the data from a linear model. We then introduce

model misspecification by gradually omitting the lagged covariates and their interaction terms. This setup

is designed to replicate the common difficulty, faced by applied researchers, of determining the number of

lags when analyzing TSCS data.

All the details and results of the simulation study are given in Appendix C on page 3. Even in this

simulation setting favorable to OLS, we find that the proposed matching estimator is much more robust to

the omission of relevant lags than the linear regression estimator with fixed effects. However, this increased

robustness of matching comes at the expense of statistical power. This finding reflects a fundamental tradeoff

between bias and variance in statistics. In general, matching estimators tend to have less bias but also less

efficient than regression estimators.

5 Empirical Analyses

We revisit the two motivating studies described in Section 2 and reanalyze their data by applying the pro-

posed methodology described in Section 3. We find that the (negative) effect of authoritarian reversal on

economic growth is more pronounced than the (positive) effect of democratization, and that war appears to

increase inheritance tax rate but the effects are not precisely estimated.
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5.1 Application of Matching Methods

For the Acemoglu et al. study, we estimate the two effects of democracy on economic growth, the effect of

democratization and that of authoritarian reversal. Since the treatment variable Xit takes the value of one

(zero) if country i is democratic (autocratic) at year t, the average effect of democratization for the treated

is defined by equation (8). The average effect of autocratic reversal for the treated, on the other hand, is

defined as,

E
[
Yi,t+F

(
Xit = 0, Xi,t−1 = 1, {Xi,t−`}L`=2

)
− Yi,t+F

(
Xit = 1, Xi,t−1 = 1, {Xi,t−`}L`=2

)
| Xit = 0, Xi,t−1 = 1

]
(24)

In addition, one may also be interested in the ATT of stable policy (regime) change relative to no policy

(regime) change, as defined in equation (1). We present the covariate balance for this alternative quantity of

interest in Appendix D on page 11.

As shown in the left panel of Figure 1, although most countries transition from autocracy to democracy,

we also observe enough cases of authoritarian reversal, suggesting that we may have sufficient data to esti-

mate both effects. In contrast, for the Scheve and Stasavage study, we focus on the effect of involvement in

a war on inheritance tax rather than the effect of ending a war since the latter lacks enough control countries

(i.e., countries still in a war when a treated country ends a war). This is because most war observations

come from two world wars (see the right panel of Figure 1). Again, we present the covariate balance in the

case of an alternative quantity of interest in Appendix D on page 11.

We use the original studies to guide the specification of matching methods. In their regression models,

Acemoglu et al. include four years of lag for the outcome and time-varying covariates (see equation (1)).

Therefore, when estimating the ATTs of democratization and authoritarian reversal, we also condition on

four years of lag, i.e., L = 4, and estimate the ATT up to four years after regime change, i.e., F = 1, 2, 3, 4.

In contrast, the dynamic model of Scheve and Stasavage adjusts only for one year lag of the outcome

variable (see equation (6)). Since one year lag may not be sufficient, we also conduct an analysis based on

four year lags when estimating the effect of war on inheritance tax.

To illustrate the proposed methodology, we begin by constructing the matched set for each treated

observation based on the treatment history. Figure 3 presents the frequency distribution for the number of
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Figure 3: Frequency Distribution of the Number of Matched Control Units. The transparent (red) bar
represents the number of matched control units that share the same treatment history as a treated observation
for one year (four years) prior to the treatment year. The frequency distribution is presented for each of the
two treatments in the Acemoglu et al. (2019) study (top panel) and the Scheve and Stasavage (2012) study
(bottom panel). Thinner vertical bars at zero represent the number of treated observations that have no
matched control units.

matched control units given a treated observation in the case of one and four year lag as transparent and red

bars, respectively. The distribution is presented for the transition from the control to treatment conditions

(left column) and that from the treatment to control conditions (right column). As expected, the number

of matched control units generally decreases when we adjust for the treatment history of four year period

rather than that of one year period.

For the Acemoglu et al. study in the upper panel, there are 9 (5) treated observations for democratization

(authoritarian reversal) that have no control unit with the same treatment history when the number of lags is

four (represented by a thin red vertical bar at zero), whereas no such treated observation exists for the case

of one year lag. We have enough matched control units for both democratization and authoritarian reversal:

most treated observations have more than 30 matched control units.

However, for the Scheve and Stasavage study, most treated observations have less than five observations
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when studying the effect of ending war, suggesting that causal inference is more challenging in this setting.

In addition, there are also unmatched treated observations. For starting war as the treatment, there are 2

treated observations without any matched control units if we match on 4 lags, as represented by a thinner

red vertical bar at zero. For ending war as the treatment, the use of 4 (1) lags leads to the number of

unmatched treated observations to 18 (17), as represented by a thinner red (black) vertical bar at zero. Thus,

causal inference is challenging especially when estimating the effects of ending war. Below, we do not

estimate the effects of ending war because such estimates have low validity.

To refine the matched sets, we apply Mahalanobis distance matching, propensity score matching, and

propensity score weighting so that we can compare the performance of each refinement method. For match-

ing, we apply up-to-five matching and up-to-ten matching for the Acemoglu et al. study to examine the

sensitivity of empirical findings to the maximum number of matches. For the Scheve and Stasavage study,

we use one-to-one match and up-to-three matches because the matched sets are smaller to begin with. Ma-

halanobis distance is defined in equation (12), while we use the logistic regression model estimated with

just identified CBPS for propensity score matching (equation (14)) and weighting (equation (16)).

When specifying the Mahalanobis distance and the propensity score model, we use all time-varying

covariates. For the Acemoglu et al. study, the time-varying covariates include the log population, the

log population of age below 16 years, the log population of age above 64 years, net financial flow as a

fraction of GDP, trade volume as a fraction of GDP, and a dichotomous measure of social unrest (though the

original authors do not include all variables at once in their regression model). Similarly, for the Scheve and

Stasavage study, we use all available time-varying covariates, i.e., an indicator variable for leftist executive,

a binary variable for the universal male suffrage, and logged GDP per capita.

Figure 4 shows how the refinement of matched sets improves the covariate balance for the two studies.

In each scatter plot, we compare the absolute value of standardized mean difference defined in equation (20)

before (horizontal axis) and after (vertical axis) the refinement of matched sets. A dot below the 45 degree

line implies that the standardized mean balance is improved after the refinement for a particular time-varying

covariate. Across almost all variables the refinement results in the improved mean covariate balance. The

amount of improvement is the greatest for propensity score weighting (bottom row) whereas Mahalanobis
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Figure 4: Improved Covariate Balance due to the Refinement of Matched Sets. Each scatter plot com-
pares the absolute value of standardized mean difference for each covariate j and lag year ` defined in
equation (20) before (horizontal axis) and after (vertical axis) the refinement of matched sets. Rows repre-
sents the results based on different matching and weighting methods while the columns represent the results
using the adjustments for different lag lengths.

matching (top row) achieves only the modest degree of improvement.

Figure 5 further illustrates the improvement of covariate balance due to matching over the pre-treatment

time period. We focus on the results for matching methods that adjust for time-varying covariates during the

four year period prior to the administration of treatment. The top two rows present the standardized mean

covariate balance for the two treatments of the Acemoglu et al. study whereas the bottom row shows that

for the treatment of starting war in the Scheve and Stasavage study. The solid line represents the balance of

the lagged outcome whereas grey lines show the balance of other covariates.

In all three cases, we find that the construction of matched sets (i.e., the adjustment of treatment his-

tory alone) do not dramatically improve the covariate balance. In contrast, the improvement due to the

refinement of matched sets is substantial. In particular, propensity score weighting essentially eliminates al-

most all imbalance in confounders. Although some degree of imbalance remains for Mahalanobis distance
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Figure 5: Improved Covariate Balance due to Matching over the Pre-Treatment Time Period. Each
plot plots the standardized mean difference defined in equation (20) (vertical axis) over the pre-treatment
time period of four years (horizontal axis). The left column shows the balance before matching, while the
next column shows that before refinement but after the construction of matched sets. The remaining three
columns present the covariate balance after applying different refinement methods. The solid line represents
the balance of the lagged outcome variable whereas the grey lines represent that of time-varying covariates.

and propensity score matching, the standardized mean difference for the lagged outcome stays relatively

constant over the entire pre-treatment period. This suggests that the assumption of parallel trend for the

proposed difference-in-difference estimator may be appropriate.

5.2 Empirical Findings

We now present the estimated ATTs based on the matching methods. Figure 6 shows the matching estimates

of the effects of democratization (upper panel) and authoritarian reversal (lower panel) on logged GDP

per capita for the period of five years after the transition, i.e., F = 0, 1, . . . , 4. Across all five methods

(columns), we find that the point estimates of the effects for democratization are mostly close to zero over

the five year time period. On the other hand, the estimated effects of authoritarian reversal are negative

and statistically significant across all refinement methods during the year of transition and the one to four

years immediately after the transition when the treatment reversal is allowed. The estimated effects are
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Figure 6: Estimated Average Effects of Democracy on Logged GDP per Capita. The estimates are
based on the matching method that adjusts for the treatment and covariate histories during the four year
period prior to the treatment, i.e., L = 4. The estimates for the average effects of democratization (upper
panel) and authoritarian reversal (lower panel) are shown for the period of five years after the transition,
i.e., F = 0, 1, . . . , 4, with 95% asymptotic confidence intervals as vertical bars. Five different refinement
methods are considered and their results are presented in different columns.

substantively large, indicating an approximately 5 to 8 percent reduction of GDP per capita. Although the

confidence interval is wide, this effect size is greater than the estimated effect of one percent found in the

original analysis (see Table 1). In Figure E.1 of Appendix E on page 16, as a robustness check, we show

that the same analysis with the refinement based on one year period yields essentially the same results.

In sum, our analysis implies that the positive effect of democracy is driven by the negative effect of

authoritarian reversal. We find that the transition into democracy from autocracy does not necessarily lead

to a higher level of development. Rather, the treatment of backsliding into autocracy from democracy has a

pronounced negative effect on development at least in the short and medium term.9

Next, Figure 7 shows the results based on matching methods for estimating the ATT of interstate war
9The original authors also seek to separately estimate the effects of democratic transition and authoritarian reversal, using the

linear regression models. In Appendix F on page 16 discusses this approach in detail. The empirical results obtained from this

approach substantively differ from those presented here.
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Figure 7: Estimated Average Effects of Interstate War on Inheritance Tax Rate. The matching method
adjusts for the treatment and covariate histories during the one (upper panel) or four (lower panel) year
period prior to the treatment. The estimated effects are shown for the period of five years after the war,
i.e., F = 0, 1, . . . , 4, with 95% asymptotic confidence intervals as vertical bars. Five different match-
ing/weighting methods are considered and their results are presented in different columns.

on inheritance tax. The upper panel shows the estimates based on the refinement of matched sets while

adjusting for the treatment and covariates from one year period prior to the treatment. In contrast, the

lower panel presents the estimates based on the adjustment for the four year pre-treatment period. As in the

previous figure, each column represents the results based on a different matching/weighting method, and

the vertical bars indicate the 95% asymptotic confidence intervals.

We find that if we refine the matched set using the one year pre-treatment period, most of the estimated

effects are not statistically significant. All of the estimated causal effects are not statistically significant if

we refine the matched sets by adjusting for the four year pre-treatment period. This sensitivity may come

from the fact that as shown in the right panel of Figure 1 there is little variation in the treatment variable of

this study. Our analysis suggests that it is difficult to conclusively establish the positive effects of war on

inheritance tax rate.
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6 Concluding Remarks

Due to its simplicity and transparency, matching methods have become part of tool kit for empirical re-

searchers who wish to estimate causal effects in observational studies. Yet, most matching methods have

been developed for causal inference with cross-sectional data. We fill this gap by developing a methodolog-

ical framework that enables the application of matching methods to causal inference with time-series cross

section (TSCS) data. A main advantage of the proposed methodology over popular linear regression models

with fixed effects is that it clarifies the source of information used to estimate counterfactual outcomes. In

addition, our methods offer simple diagnostics through balance checking.

The proposed methodology can be extended in a number of ways. First, while we focus on the binary

treatment variable in this paper, the method can be extended to deal with a non-binary (e.g., continuous)

treatment variable by possibly combining it with a model-based approach. Second, it is of interest to relax

the assumption of no interference across units. While we allow for some degree of carryover effects (i.e., the

possibility that past treatments affect future outcomes), the proposed methodology assumes the absence of

spillover effects (i.e., one unit’s treatment does not affect the outcomes of other units). Within the proposed

matching framework, we can address this limitation by, for example, matching on the treatment history of

one’s neighbors as well as its own treatment history. We plan to explore such extensions of the proposed

methods in our future research.
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