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Abstract

We propose an estimator for the LASSO that iteratively optimizes the coefficients in pairs.

In addition to improving efficiency by coordinating the updates of the the paired variables, our

algorithm affords insights into the nature of the LASSO problem. Our method outperforms the

popular glmnet algorithm in all but high-K low-N settings, executing increasingly better as N

increases.
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1 Introduction

We offer an improvement to the coordinate wise descent method for estimating the LASSO pioneered

by Tibshirani (1996), Fu (1998), and by Friedman, Hastie and Tibshirani (2010a). Our bicoordinate

descent method generalizes the one parameter at a time soft thresholding embodied in Fu’s “shooting

algorithm” by updating the parameter values in pairs. When the regressors are orthogonal our

algorithm coincides with one coordinate at a time soft thresholding, but when the explanators are

correlated our algorithm coordinates the simultaneous adjustment of the coefficients to update the

coefficient estimates more efficiently in pairs. The results is a substantial reduction in the number

of passes through the data that the algorithm takes on its path to convergence. The time required

by our method for each pass through the data increases relative to unicoordinate descent by much

less than the number of passes falls, resulting in an overall improvement in the time to convergence.
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Our exposition proceeds as follows. The next section introduces our bicoordinate descent al-

gorithm for LASSOed regression, and provides graphical intuition about its workings. Proofs are

provided in Appendix A. The subsequent section discusses some algorithmic adaptations that acceler-

ate computation. In the subsequent section we we provide some results comparing the computational

speed of our algorithm with that of the standard glmnet software. In the following section we ex-

tend the model, to encompass the probit, using the EM algorithm to create an interface between the

bicoordinate descent solution for the least squares problem and the nonlinear nature of the probit

model1. A final section concludes and discusses ongoing directions of research. The open source soft-

ware, bcd: Bicoordinate Descent for the LASSO, for fitting the proposed method is available

through the Comprehensive R Archive Network (http://cran.r-project.org/package=bcd).

2 Estimating the LASSO

Tibshirani (1996) promulgated the LASSO model as a practical sparse estimator. He noted that

in the special case of orthogonal regressors a remarkably straightforward solution can be found by

individually soft thresholding each of the estimated coefficients. Fu (1998) developed a “shooting”

algorithm that generalizes this approach to any set of regressors–at each pass through the data the

algorithm successively updates the parameters one at a time using soft thresholding. Convergence

of Fu’s algorithm is quick, and Friedman, Hastie and Tibshirani (2010a), hereafter “FHT”, make

the algorithm even faster by arraying solutions to a sequence of LASSO problems in a trellis, which

they refer to as a “regularization path”, in which they use each solution as a starting value for the

next problem. Their unicoordinate descent algorithm, which they supplement with a brace of best

programming practices, has defined the computational frontier for the LASSO model. Our primary

departure from the FHT algorithm is to update the parameters in pairs, exploiting correlations

among the explanatory variables to generate a more direct pathway to the solution.

2.1 Formalizing the Algorithm

Starting with data of the form
{
Yi, {Xij}

k
j=1

}n
i=1

we first center the observations, and normalize the l2

norm of each of the explanators to equal one, leaving us with:
{
yi, {xij}

k
j=1

}n
i=1

satisfying
n∑
i=1

yi = 0,

and for each j ∈ {1, ..., k} we also have
n∑
i=1

xij = 0, and
n∑
i=1

x2ij = 1. If any pairs of explanators

are perfectly correlated we arbitrarily remove one element of the perfectly correlated pair, until no

1We defer presenting some analytical results for weighted least squares to an appendix.
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perfectly correlated pairs of explanators remain2.

The LASSO estimator introduced by Tibshirani (1996) is the solution to a problem of the form:

P1 : min
{βj}

k
j=1

RSS
(
{βj}

k
j=1|
{
{yi, {xij}

k
j=1

}n
i=1

)
subject to

k∑
j=1

|βj| ≤ t (1)

where:

RSS
(
{βj}

k
j=1|
{
yi, {xij}

k
j=1

}n
i=1

)
=

n∑
i=1

(
yi −

k∑
j=1

βjxij

)2
(2)

Next, recalling that we have culled all of the perfectly correlated observations, let’s arrange our

data into C =
⌊
k
2

⌋
pairs, indexed by c ∈ {1, ..., C}, with at most one singleton observation which

remains when k is odd.

Now suppose that we take successive passes through the data. At iteration s we turn to each

pair of coefficients in turn, taking the others as given at their current values. We seek to minimize

the constrained residual sum of squares with respect to {β2c−1, β2c} only, while of course continuing

to satisfy the constraint. We can formalize this problem as:

P2sc : min
β2c−1,β2c

RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n
i=1

)
subject to |β2c−1|+ |β2c| ≤ θsc

where:

RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n
i=1

)
=

n∑
i=1

(vsic − β2c−1xi,2c−1 − β2cxi,2c)
2

and:

vsic =
(
yi −

∑
j<2c−1

βs,lasso
j xij −

∑
2c<j

βs−1,lasso
j xij

)
while θsc = t−

∑
j<2c−1

|βs,lasso
j |−

∑
2c<j

|βs−1,lasso
j |

We denote the solutions to P2sc by (βs,lasso
2c−1 , βs,lasso

2c ).

Finally, if k is odd, there remains a singleton observation that is not encompassed by any of the

pairs. Define:

P3s : min
βk

n∑
i=1

(
vsik − βkxi,k

)2
subject to |βk| ≤ θsp

2Of course for each perfectly correlated pair for which at least one element is selected by the LASSO there will in

general be a continuum of equivalent solutions to our problem.
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where:

vsik =
(
yi −

∑
j<k

βs,lasso
j xij

)
and θsk = t−

∑
j<k

|βs,lasso
j |

and we denote the solutions to P3s by βs,lasso
k .

2.2 The Bicoordinate Descent Algorithm

Our algorithm for calculating (βs,lasso
2c−1 , βs,lasso

2c ) proceeds as follows. Let (βs,ols
2c−1, β

s,ols
2c ) solve:

POLSsc : min
β∗
2c−1

,β∗
2c

RSSc
(
β∗
2c−1, β

∗
2c|
{
vsic, xi,2c−1, xi,2c

}n
i=1

)
so:

βs,ols
2c−1

βs,ols
2c

 =
1

1− R2
c


n∑
i=1

vsic(xi,2c−1 − Rcxi,2c)

n∑
i=1

vsic(xi,2c − Rcxi,2c−1)


where:

Rc =

n∑
i=1

xi,2c−1xi,2c (3)

Next define:

Rs∗
c = sign(βs,ols

2c−1)× sign(βs,ols
2c )× Rc (4)

We let λ denote the Lagrange multiplier associated with the constraint in P1. We will treat this

as a “tuning parameter” shared by all of the P2sc.

Couched in terms of λ, when:

λ

2(1+ Rs∗
c )

< min{|βs,ols
2c−1|, |β

s,ols
2c |} (5)

our estimates are calculated as:

βs,lasso
2c−1

βs,lasso
2c

 =

sign(βs,ols
2c−1)

(
|βs,ols

2c−1|−
λ

2(1+Rs∗
c )

)
sign(βs,ols

2c )
(
|βs,ols

2c |− λ
2(1+Rs∗

c )

)
 (6)

When condition (5) fails, but
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|βs,ols
2c−1| > |βs,ols

2c | (7)

then the update step for (βs,lasso
2c−1 , βs,lasso

2c ) is:

(
βs,lasso
2c−1 , βs,lasso

2c

)
= sign(βs,ols

2c−1)max

{
|βs,ols

2c−1|+ R∗s
2c|β

s,ols
2c |−

λ

2
, 0

}
(8)

whereas if (5) fails but the inequality in condition (7) is reversed, then:

(
βs,lasso
2c−1 , βs,lasso

2c

)
= sign(βs,ols

2c )max

{
0, |βs,ols

2c |+ R∗s
c |βs,ols

2c−1|−
λ

2

}
(9)

Notice that when Rs∗
c = 0 the bicoordinate descent algorithm coincides with the soft thresholding

embodied in the “shooting” algorithm of Fu (1998).

Of course, the solution to P3s is simply given by the soft thresholding result returned by Fu’s

algorithm:

βs,lasso
p = sign(βs,ols

p )max

{
|βs,ols

p |−
λ

2
, 0

}
(10)

where:

βs,ols
p =

n∑
i=1

vsicxik

2.3 Why it Works

Let’s take a closer look at the objective function for P2sc. First it’s useful to define a few terms. For

comparison let’s start with the unconstrained sum of squared errors:

ssec,s0 =

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)2
(11)

Next consider the following quadratic function Q(β2c−1 − βs,ols
2c−1, β2c − βs,ols

2c , Rs∗
c ):

Q(β2c−1−βs,ols
2c−1, β2c−βs,ols

2c , Rs∗
c ) = (β2c−1−βs,ols

2c−1, β2c−βs,ols
2c )

 1 Rs∗
c

Rs∗
c 1

β2c−1 − βs,ols
2c−1

β2c − βs,ols
2c

 (12)

It turns out that we can reconceive the objective function for P2sc in terms of Q. We state this

formally as:
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Lemma 1: RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n
i=1

)
= ssec,s0 +Q(β2c−1 − βs,ols

2c−1, β2c − βs,ols
2c , Rs∗

c )

Proof of Lemma 1: See the appendix.

Notice that ssec,s0 is constant with respect to β2c−1 and β2c, so Lemma 1 allows us to reformulate

P2sc as a quadratic programming problem:

P2s′c : min
β2c−1,β2c

Q(β2c−1 − βs,ols
2c−1, β2c − βs,ols

2c , Rs∗
c ) subject to |β2c−1|+ |β2c| ≤ θsc

The constraint is in the form of a diamond, while the level sets of the objective function for P2s′c

are ellipses. This is illustrated in the lefthand panel of figure 1, where the hollow dot corresponds

to (βs,ols
2c−1, β

s,ols
2c ) while (βs,lasso

2c−1 , βs,lasso
2c ) is represented by the solid dot.

β2c

β2c−1

z2c

z2c−1

Figure 1: Optimization P2s′c vs PZ

There is an isomorphic relationship amongst solutions in distinct quadrants. To see this, define

δsj ≡ sign(βs,ols
j ) and let zsj = δsjβj, and then rewrite problem P2s′c as:

min
z2c−1,z2c

Q
(
δs2c−1z2c−1 − δs2c−1|β

s,ols
2c−1|, δ

s
2cz2c − δs2c|β

s,ols
2c |, Rs∗

c

)
subject to |z2c−1|+ |z2c| ≤ θsc

recalling our definition of Rs∗
c from expression (4) this can be reexpressed as:

PZ : min
z2c−1,z2c

Q
(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)
subject to |z2c−1|+ |z2c| ≤ θsc

If (ẑs2c−1, ẑ
s
2c) solves PZ then
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(βs,lasso
2c−1 , βs,lasso

2c ) = (δs2c−1ẑ
s
2c−1, δ

s
2cẑ

s
2c) (13)

is a solution to P2s′c . The righthand panel of figure 1 depicts the reformulation of P2s′c as PZ. The

orientation of the ellipse shifts with the translation to the first quadrant, this corresponds to the

change from Rs
c to Rs∗

c . The hollow dot in the right panel corresponds to (|βs,ols
2c−1|, |β

s,ols
2c |) whereas

the solid dot indicates the solution values (zs2c−1, z
s
2c) for PZ.

As it transpires the solution to PZ is non-negative. In fact, if the constraint binds the solution

is to be found along the first quadrant simplex ∆(θsc):

∆(θsc) =
{
(zs2c−1, z

s
2c)|z

s
2c−1 + zs2c = θsc and z2c−1 ≥ 0 and z2c ≥ 0

}
(14)

We state this important result as:

Lemma 2: The solutions to PZ satisfy ẑ2c−1 ≥ 0 and ẑ2c ≥ 0, while for θsc ≤ |βOLS
2c−1| + |βOLS

2c |,

(ẑs2c−1, ẑ
s
2c) ∈ S.

Proof: See the appendix.

Now let’s take a graphical approach to the solution. Consider the objective function:

Q
(
zs2c−1 − |βs,ols

2c−1|, z
s
2c − |βs,ols

2c |, Rs∗
c

)
(15)

for PZ. The lefthand panel of figure 2 shows the level curves for Q. At an interior solution for

(zs2c−1, z
s
2c) the highest level curve that makes contact with the constraint will be tangent to ∆(θsc),

and so it will have the same slope, −1, as the simplex, several points at which the slope of a level

curve matches −1 are depicted in the lefthand panel of figure 2. The level curve slopes are given by:

dzs2c
dzs2c−1

= −

∂Q
∂z2c−1

∂Q
∂z2c

(16)

Setting this slope to −1 and solving we recover the locus of points at which the level curves of

Q share the same slope as ∆(θsc), see the central panel of figure 2:

zs2c = |βs,ols
2c |− |βs,ols

2c−1|+ zs2c−1 (17)

Putting this formally, we have:

Lemma 3: The locus of points at which the level curves of Q share the same slope as ∆(θsc) is given

by (17).

Proof: See the appendix.
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If the line (17) intersects ∆(θsc) we have a tangency solution for PZ, such a solution is depicted

in the righthand panel of figure 2, where it corresponds to the solid dot whose coordinates are given

by:

(zs2c−1, z
s
2c) =

(
θsc + |βs,ols

2c−1|− |βs,ols
2c |

2
,
θsc + |βs,ols

2c |− |βs,ols
2c−1|

2

)
(18)

y

x

y

x

y

x

Figure 2: Left: Tangencies Center: Locus of Tangencies Right: Interior Solution

|βs,ols
2c |

|βs,ols
2c−1|

θsc

θsc T

U

R

Figure 3: Solutions relative to θsc

A tangency solution will only exist if the locus of tangencies intersects ∆(θsc), and expression

(17) tells us that this set of tangencies always corresponds to a line with slope 1 passing through
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(
|β2c−1|, |β2c|

)
. This tells us that that whenever (β2c−1, β2c) lie in the region of figure 3 that is

marked T , southeast of the line through (|β2c−1|, |β2c|) = (0, θsc) with slope equal to one:

z2c = θsc + z2c−1 (19)

northwest of the line with unit slope that passes through (|βs,ols
2c−1|, |β

s,ols
2c |) = (θsc, 0):

z2c = −θsc + z2c−1 (20)

and northeast of the boundary θsc < |βs,ols
2c−1|+ |βs,ols

2c |:

z2c = θsc − z2c−1 (21)

we will have a tangency solution. We can express the conditions, that establish whether the least

squares estimates are in region T more compactly as:

|βs,ols
2c |− |βs,ols

2c−1| ≤ θsc (22)

So whenever the LASSO constraint is binding and we satisfy condition (22) we will have a tangency

solution given by (18).

In contrast, if |βs,ols
2c−1|, and |βs,ols

2c | lie outside region T in figure 3, and so fail to satisfy condition

(22), then Lemma 3 implies we cannot have a tangency solution .

For the remaining solutions it is useful to refer to the following lemma:

Lemma 4: whenever θsc > 0

sign
(
Q(θsc − |βs,ols

2c−1|,−|βs,ols
2c |, R∗

c) −Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c)
)
= sign

(
|βs,ols

2c−1|− |βs,ols
2c |

)
Proof: See the appendix3.

Thus we have:

Corollary A: (|βs,ols
2c−1|, |β

s,ols
2c |) ∈ U implies

Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c) > Q(θsc − |βs,ols

2c−1|,−|βs,ols
2c |, R∗

c)

3Notice that the case in which θs
c = 0 is trivial, as the only possible solution is (ẑ2c−1, ẑ2c) = (0, 0) in which case

distinctions among tangencies and various corner solutions are vacuous.
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Proof: By the definition of U, (|βs,ols
2c−1|, |β

s,ols
2c |) ∈ U implies |βs,ols

2c | > |βs,ols
2c−1|+ θ > |βs,ols

2c−1|, and so by

Lemma 4 we have Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c) > Q(θsc − |βs,ols

2c−1|,−|βs,ols
2c |, R∗

c). □

Corollary B: (|βs,ols
2c−1|, |β

s,ols
2c |) ∈ R implies

Q(θsc − |βs,ols
2c−1|,−|βs,ols

2c |, R∗
c) > Q(−|βs,ols

2c−1|, θ
s
c − |βs,ols

2c |, R∗
c)

The proof of Corollary B is completely analogous.

Now let’s consider what happens when
(
|βs,ols

2c−1|, |β
s.ols
2c |

)
lies outside of region T , so that we do not

have a tangency solution. If we have a (βs,ols
2c−1, β

s,ols
2c ) pair above the line (19), in the region marked

U in figure 3, so that:

|βs,ols
2c |− |βs,ols

2c−1| ≥ θsc (23)

then by Lemma 2 we must have a solution in ∆(θsc), but we have just established that
(
|βs,ols

2c−1|, |β
s.ols
2c |

)
∈

T is a necessary condition for a first quadrant tangency, so the only remaining alternatives are a

solution at the upper corner of the constraint set (0, θsc) and a solution at the righthand corner,

(θsc, 0). Corollary A to Lemma 4 implies that the upper corner of the constraint set:

(βs,ols
2c−1, β

s,ols
2c ) = (0, θsc) (24)

provides a better solution. Likewise, if (βs,ols
2c−1, β

s,ols
2c ) lie below (20), in the region of figure 3 marked

R, so that:

|βs,ols
2c |− |βs,ols

2c−1| ≥ θsc (25)

then Lemma 4 Corollary B betokens a solution at the right corner:

(z2c−1, z2c) = (θsc, 0) (26)

It remains for us to solve for θsc. Given that the constraint is binding, which it will be when

λ > 0, we will have (z2c−1, z2c) ∈ ∆(θsc), and we can reposit PZ as:
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PZ′ : min
z2c−1,z2c

Q
(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)

subject to z2c−1 + z2c = θsc

z2c−1 ≥ 0

z2c ≥ 0

Formulating the Lagrangian we have:

min
z2c−1,z2c

L = Q
(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)
+ λ

(
z2c−1 + z2c − θsc

)
− µ2c−1z2c−1 − µ2cz2c (27)

Now let’s consider the possible solutions.

Lemma 5: At an interior solution to (27) with with both z2c−1 > 0 and z2c > 0 we have:

θsc = |βs,ols
2c−1|+ |βs,ols

2c |−
λ

1+ Rs∗
c

(28)

Proof: See the Appendix.

Substituting from (28) into (22) and rearranging terms we have our conditions for a tangency

solution in terms of |βs,ols
2c−1|, |β

s,ols
2c |, and λ:

λ

2(1+ Rs∗
c )

≤ min
{
|βs,ols

2c−1|, |β
s,ols
2c |
}

(29)

when (29) is satisfied we can substitute from (28) into (18) to obtain our tangency solution:

(z2c−1, z2c) =

(
|βs,ols

2c−1|−
λ

2(1+ Rs∗
c )

, |βs,ols
2c |−

λ

2(1+ Rs∗
c )

)
(30)

The lefthand panel of figure 4 depicts the solutions when Rs∗
c > 0, while the right hand panel shows

the case of Rs∗
c < 0. In each figure, the region marked T , for “tangency”, corresponds to condition

(29). Notice that for a given value of λ this area is more extensive when Rs∗
c > 0, as shown in the

left panel, than it is for negatively correlated pairs of regressors, as depicted in the righthand panel.

Now suppose we have a corner solution with z2c−1 > 0 but z2c = 0.

Lemma 6: At a corner solution to (27) with with z2c−1 > 0 but z2c = 0 we have:
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|βs,ols
2c |

|βs,ols
2c−1|

λ
2

λ
2

TU

RZ

λ
2(1+Rs∗

c )

λ
2(1+Rs∗

c )

|βs,ols
2c |

|βs,ols
2c−1|

λ
2

λ
2(1+Rs∗

c )

λ
2

λ
2(1+Rc)

TU

RZ

Figure 4: Left: Solutions with Rs∗
c > 0, Right: Solutions with Rs∗

c < 0

θsc = |βs,ols
2c−1|+ Rs∗

c |βs,ols
2c |−

λ

2
(31)

Proof: See the Appendix.

Of course, this only works provided θsc ≥ 0, that is, if:

λ

2
≤ |βs,ols

2c−1|+ Rs∗
c |βs,ols

2c | (32)

Substituting θsc from (31) into ∂L
∂z2c

≥ 0 we have:

∂L

∂z2c
= 2Rs∗

c (z2c − |βs,ols
2c−1|) + 2(0− |βs,ols

2c |) + λ

= 2Rs∗
c (|βs,ols

2c−1|+ Rs∗
c |βs,ols

2c |−
λ

2
− |βs,ols

2c−1|) + 2(0− |βs,ols
2c |) + λ

= −2|βs,ols
2c |+ 2Rs∗2

c |βs,ols
2c |+ λ(1− Rs∗

c ) ≥ 0

that is, we need:

λ

2
≥ (1+ R∗

c)|β
s,ols
2c | (33)

Combining conditions (32) and (33), we have:

(1+ R∗
c)|β

s,ols
2c | ≤ λ

2
≤ |βs,ols

2c−1|+ Rs∗
c |βs,ols

2c |

The set of (|βs,ols
2c−1|, |β

s,ols
2c |) pairs satisfying this condition corresponds to the region labeled R in

figure 4. This region is larger when Rs∗
c < 0, as shown in the right hand panel, than it is when

12



the regressors are positively correlated–the bicoordinate descent LASSO update is more likely to

eliminate one of the coefficients at the update step when the correlation between the regressors is

negative.

Substituting from (31) into (26) we have:

(z2c−1, z2c) =

(
|βs,ols

2c |+ Rs∗
c |βs,ols

2c−1|−
λ

2
, 0

)
(34)

Likewise, we have a solution at the top corner, with:

(z2c−1, z2c) =

(
0, |βs,ols

2c |+ Rs∗
c |βs,ols

2c−1|−
λ

2

)
(35)

provided:

(1+ R∗
c)|β

s,ols
2c−1| ≤

λ

2
≤ |βs,ols

2c |+ Rs∗
c |βs,ols

2c−1|

Notice that when Rs∗
c < 0 a wider range of parameter estimates results in one parameter, as

in regions R and U, or both coefficients, corresponding to region Z, being updated to zero, see the

righthand panel of figure 4, than in the case shown in the left panel, corresponding to Rs∗
c > 0. In

either case, with Rs∗
c ̸= 0 at each pass through the data the bicoordinate descent algorithm allocates

slack across the variables more efficiently than does unicoordinate descent, while in the “knife’s edge”

situation of Rs∗
c = 0 unicoordinate and bicoordinate descent update identically conditional on the

remaining parameter estimates.

2.4 Comparison with Unicoordinate Descent

To illustrate the advantages bicoordinate descent affords, consider a typical update step using each of

unicoordinate descent, the strategy used by Tibshirani (1996), and Friedman, Hastie and Tibshirani

(2010a), and bicoordinate descent. While each algorithm will take it’s own pathway to a global

solution to the LASSO problem, let’s consider a hypothetical update step for coefficient pair c:

{β2c−1, β2c} holding constant {βj}j /∈{2c−1,2c}. Let the LASSO constraint correspond to4:

k∑
j=1

|βj| ≤ t

4Both algorithms parameterize the constraint by setting the first order conditions equal to the Lagrange multiplier

λ, but there is an isomorphism between λ and t. Here we make the constraint explicit to clarify the advantages of

bicoordinate descent.
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where k is the number of potential explanators in our model. Now define:

v0ic = yic −
∑

j /∈{2c−1,2c}

βjxij

and let:

θ0 = t−
∑

j /∈{2c−1,2c}

|βj|

while {β0
2c−1, β

0
2c} denote our starting values.

A unicoordinate algorithm will update as follows:

firstly choose βunicoord
2c−1 to solve:

minβ2c−1

N∑
i=1

(
v0ic − β2c−1x2c−1,i − β0

2cx2c,i
)2

subject to: |β2c−1| ≤ θ0 − |β0
2c|

next, update the second coefficient βunicoord
2c as the solution to:

P12c : minβ2c

N∑
i=1

(
v0ic − βunicoord

2c−1 x2c−1,i − β2cx2c,i
)2

subject to:

|β2c| ≤ θ0 − |βunicoord
2c−1 | (36)

The resulting sum of squares is:

RSS0(βunicoord
2c−1 , βunicoord

2c ) =

N∑
i=1

(
v0ic − βunicoord

2c−1 x2c−1,i − βunicoord
2c x2c,i

)2
While any solution to P12c must satisfy the constraint (36). Substituting βunicoord

2c for β2c we

are left with:

|βunicoord
2c−1 |+ |βunicoord

2c | ≤ θ0 (37)

In contrast, our bicoordinate descent algorithm will simultaneously update the coefficients to

(βbicoord
2c−1 , βbicoord

2c ) that solve:

Pe
2 : min(β2c−1,β2c)

N∑
i=1

(
v0ic − β2c−1x2c−1,i − β2cx2c,i

)2
(38)

subject to:
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|β2c−1|+ |β2c| ≤ θ0 (39)

resulting in a residual sum of squares of:

RSS0(βbicoord
2c−1 , βbicoord

2c ) =

N∑
i=1

(
v0ic − βbicoord

2c−1 x2c−1,i − βbicoord
2c x2c,i

)2
In particular, any other coefficient pair (β′

2c−1, β
′
2c) that satisfy condition (39) must give rise to

at least as high a sum of squares as the solution to Pe
2, (β

bicoord
2c−1 , βbicoord

2c ):

RSS0(βbicoord
2c−1 , βbicoord

2c ) ≤ RSS0(β′
2c−1, β

′
2c)

But from inequality (37) we know that (βunicoord
2c−1 , βunicoord

2c ) satisfy (39), and hence:

RSS0(βbicoord
2c−1 , βbicoord

2c ) ≤ RSS0(βunicoord
2c−1 , βunicoord

2c )

For equal starting values, the sum of squares achieved by bicoordinate descent weakly dominates

the unicoordinate solution. This is the payoff for choosing the pairings for the explanators, and for

the trivial extra calculation involved in computing the bicoordinate updates. In Section 4, we show

that in practice bicoordinate descent can substantially reduce the number of updates required for

each coefficient pair.

3 Computational Mechanics

The payoff to our algorithm is the speed with which it computes the LASSO estimates. While

bicoordinate descent provides savings in the number of passes to be taken through the data, we need

also to be abstemious in the computations required at each iteration. We highlight several areas in

which we have enhanced the efficiency of the algorithm.

3.1 Warm Starts

Firstly, the glmnet algorithm used by (Friedman, Hastie and Tibshirani, 2010b) takes advantage of

“warm starts.” Their algorithm begins by identifying the smallest value for λ that will still set all of

the coefficients equal to zero. Their algorithm descends from this value of λ in a sequence of steps,

each of which takes its predecessor as the source of a starting value.

We emulate their approach. Let ry,j be given by:
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ry,j =

n∑
i=1

yixj,i

Now define:

λmax ≡ 2max
{
ry,j
}k
j=1

Next we choose a multiple ϵ of λmax to define the smallest λ value we will consider, λmin = ϵλmax.

Next we choose a number of “cross pieces”, M, for the trellis. Finally, we construct a “shrinkage

step”:

σ =
(1− ϵ)λmax

M

such that λmin = λmax−Mσ. At each iteration we shrink λ from it’s previous value: λm = λm−1−σ.

We then start our calculations with lagged values for β⃗lasso of β⃗0,lasso = β⃗−1,lasso = 0⃗. Our starting

value for round m ∈ {1, ...,M} of our descent to the next cross piece of the trellis is:

β⃗m,start
m = 2β⃗m−1,lasso − σβ⃗m−2,lasso

At each iteration we then update the first and second lags of β⃗. We find that these interpolated

“warm starts” provide more advantageous initial values than do the unalloyed elements of β⃗m−1,lasso.

3.2 Sufficient Statistics

Our algorithm calls for us to calculate (βs,ols
2c−1, β

s,ols
2c ) at each iteration step. While these calculations

depend on the status quo values for the coefficients, they also rely on various cross products from

the data. We eschew recalculation of the latter.

Let rj,j′ be defined analogously with ry,j:

rj,j′ =

n∑
i=1

xj,ixj′,i

Notice that in this notation Rc ≡ r2c−1,2c.

To be comprehensive, let’s suppose there are k = 2k∗ + 1 explanators. The case of an even

number is yet easier. Now formulate the k × (k + 1) matrix S, which we’ll use to keep track of the

moments in the data. For c ≤ k∗, we’ll denote row 2c− 1 of S, as s⃗′2c−1. It’s elements are:
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S2c−1,j =



−rj,2c−1 + r2c,2c−1rj,2c

1− r2c,2c−1
c

j /∈ {2c− 1, 2c, k+ 1}

0 j ∈ {2c− 1, 2c}

ry,2c−1 − r2c,2c−1ry,2c

1− r22c,2c−1

j = k+ 1

(40)

Likewise, the elements of row 2c of S, s⃗′2c, are:

S2c,j =



−rj,2c + r2c,2c−1rj,2c−1

1− r22c,2c−1

j /∈ {2c− 1, 2c, k+ 1}

0 j ∈ {2c− 1, 2c}

ry,2c − r2c,2c−1ry,2c−1

1− r22c,2c−1

j = k+ 1

(41)

the kth and final row of S, s⃗′k, is:

Sk,j =


−rj,k 1 ≤ j < k

0 j = k

ry,k j = k+ 1

(42)

Starting from the initial (k+ 1)× 1 vector α⃗s,c,ols, where:

αs,c,ols
j =


βs,ols
j j ≤ 2c− 2

βs−1,ols
j 2c+ 1 ≤ j ≤ k

1 j = k+ 1

(43)

while:

αs,c,ols
j =


βs,ols
j j < k

βs−1,ols
k j = k

1 j = k+ 1

(44)

we update (βs,ols
2c−1, β

s,ols
2c ):

βs,ols
2c−1 = s⃗′2c−1α⃗

s,c,ols and βs,ols
2c = s⃗′2cα⃗

s,c,ols (45)

While:

βs,ols
k = s⃗′kα⃗

s,k,ols (46)

We note that this algorithm yields the same results as reiterated solution of Pc
2, a claim we

formalize as:
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Lemma 7: Given
{
βs,ols
j

}
j≤2c−2

,
{
βs−1,ols
j

}
2c−1<j≤k

}
, and

{
yi, {xij}

k
j=1

}n
i=1

, the left hand side values

of (45) and (46) correspond to solutions for P2sc and P3sc, respectively.

Proof: See the appendix.

Notice that as we move toward a solution the α⃗s,c,ols change, but S remains the same. For large

values of n this can represent a substantial computational saving. Hastie5 describes using a similar

procedure, which he calls “covariance updating.” Indeed, we suspect that, adjusting for differences

in notation, the row of S that deals with the odd singleton variable in our framework coincides

exactly with the algorithmic artfulness described by Hastie.

3.3 Managing the Active Set

Another important source of computational speed is the management of the “active set” used in the

estimation. The idea is to restrict our attention to only variables that have a chance of surviving

the LASSO process, and for this we have a straightforward screening procedure.

Firstly we identify the explanator xmax for which rmax,y ≥ rj,y∀j, this is our starting value λmax

for λ. Our “active set” of variables consists solely of xmax. At λ = rmax,y the LASSO with xmax as

our sole potential explanator will produce a coefficient of zero, just barely censoring xmax. We then

reduce λ by successive increments.

Now suppose that corresponding to the current value of λ we have an active set Aλ of variables

{xk}k∈Aλ
, we have estimated the LASSO coefficients corresponding to λ, and we are about to move

on to the next lower value, λ′ = λ−σ, in our sequence. Before we move on, for each variable xj that

is excluded from the active set we calculate:

bλshadow

j = ry,j −
∑
k∈Aλ

rj,kβ̂
LASSO
k (λ)

Notice that bλshadow

j is equivalent to the jth element of X′e⃗λ where e⃗λ is the vector of residual

values associated with λ.

Next we check whether there are any variables in the complement of Aλ for which:

bλshadow

j > λ (47)

If there are any such variables, we add them to Aλ, and then repeat the calculations for the λ

iteration. If there are no such variables, we then check whether for any variables outside of Aλ:

5See http://web.stanford.edu/∼hastie/TALKS/glmnet.pdf
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bλshadow

j > λ′ (48)

We then generate the active list for λ′, Aλ′ , as the union of Aλ and the set of new variables that

satisfy condition (48).

Next, we add any variable xj∗ for which bλshadow

j > λ′ to the active list Aλ′ corresponding to λ′.

These measures reduce the number of actual calculations needed to update the coefficients at

each iteration. In “wide” datasets with large numbers of explanatory variables this can represent

a substantial reduction in the computational burden. This approach to managing the active set

corresponds with the “strong rule” analyzed by Tibshirani et al. (2012).

3.4 Bounding the Correlations

Even the calculations required to evaluate (48) can become burdensome as the set of potential

explanators expands. We can delay, and in some cases entirely avoid, calculating some of the

correlations amongst the dormant variables by recycling the correlations we computed in the process

of establishing λmax, which required us to calibrate the crossproducts of each column of X with y⃗.

Once we have the current round of coefficient estimates in hand, it is likewise straightforward to

calculate the crossproduct of the error vector e⃗λ with y⃗. As it happens, these quantities convey some

information about the magnitudes of the correlations between e⃗λ the columns of X, which is to say,

about the bλshadow

j .

Consider the following matrix of crossproducts involving y⃗, e⃗λ and x⃗, and arbitrary column of X:

M =


s2y syserey syrxy

syserey s2e serex

syrxy serex 1

 (49)

We know that M is positive definite; all of our variables are centered, and the elements of X have

been normalized, so M is in fact a sample covariance matrix.

In particular, M will be positive definite if and only if the following matrix is also positive

definite6:

6Just pre and post multiply M by a diagonal matrix that contains 1
sy

as the first diagonal entry, 1
se

as the second,

and one as the third element of the diagonal.
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C =


1 rey rxy

rey 1 rex

rxy rex 1

 (50)

In particular, from positive definiteness of C we know that r2ex < 1, while det(C) > 0, that is:

− r2ex + 2reyrexrxy + 1− r2ey − r2xy > 0 (51)

Notice that rex = 0 satisfies (51) only if:

r2ey + r2xy < 1 (52)

If the correlations of e⃗λ and x⃗ with y⃗ violate condition (52), then their correlation with each

other cannot equal zero.

The roots of:

θ2 − (2rxyrey)θ− (1− r2xy − r2ey) = 0 (53)

are:

(θ1, θ2) = (reyrxy −
√

1− r2ey

√
1− r2xy, reyrxy +

√
1− r2ey

√
1− r2xy) (54)

Notice that these roots straddle the origin when we satisfy inequality 52, whereas the are both

of the same sign when the inequality is reversed.

In any case, positive definiteness of C tells us that rex must take on a value between min{θ1, θ2}

and max{θ1, θ2}. Moreover, the roots to (53) will always lie on [−1, 1]. In fact, when rey = rxy the

roots are {−1, 1}, while otherwise our roots, and rex are guaranteed to lie on the interior of (−1, 1).

So, in particular, for the gradient check at step k we compare serex with λk−1, adding x⃗ to the

active set if:

2se|rex| < λk−1 (55)

whereas we otherwise omit it from the current round of calculations.

Of course, evaluating (55) entails calculating rex. But we can obviate the calculation of this

correlation when we satisfy:
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2se
(
|reyrxy|+

√
1− r2ey

√
1− r2xy

)
< λk−1 (56)

When condition (56) is met we can exploit the fact that rex is bounded by the roots, so that:

|rex| <
(
|reyrxy|+

√
1− r2ey

√
1− r2xy

)
and hence we know rex will satisfy condition (55) without having to calculate it.

At each iteration of the LASSO our algorithm tallies the vector of residuals e⃗λ, and then calculates

a fresh value rey, but this allows us to eschew the computation of any rex that satisfies (56).

3.5 Analytical inflection points and the Active Set

All of the preceding computational procedures are easily adapted to cases in which some of the

variables are exempted from the LASSO, as might arise when one knows that a certain list of

variables from a “reference model” need to be included in the specification. However, when the

entire complement of variables are subject to the LASSO, we have one more computational arrow in

our quiver–we can solve for the first two inflection points after λmax at very low computation cost,

bringing analytical formulas to bear. This enables us to jump quickly through the initial portion of

the LASSO trellis, providing another substantial boost to the speed of our algorithm. These first

two steps are tantamount to the initial updates used by the LARS algorithm of Efron et al. (2004).

The LARS algorithm entails inverting a cascade of increasingly large matrices, but our first two

steps involve no matrices larger than 2× 2.

3.5.1 The First Jump

On the interval between λmax and the smallest λ value, λsidekick, that leaves but one nonzero LASSO

coefficient we know that the coefficient for the nonzero LASSO coefficient is a linear function of λ:

βmax = sign(rmax,y)
(
|rmax,y|−

λ
2

)
= amax + cmaxλ

where amax = rmax,y and cmax = − 1
2
sign(rmax,y).

Over the same interval, the remaining OLS coefficients, conditional on βmax, are themselves

linear in βmax:

βj = rj,y − rmax,jβmax
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and hence they are also linear in λ:

βj = (rj,y − rmax,jamax) + rmax,jcmaxλ = aj + cjλ

where aj = rj,y − rmax,jrmax,y and cj =
1
2
sign(rmax,y)rmax,j.

Every variable except xmax will satisfy the following condition for λ ∈ (λsidekick, λmax):

−λ < aj + cjλ < λ

Now let:

λ+j =
aj

1− cj
and λ−j =

−aj

1+ cj

while:

λ̂j =

 λ+j if cj > 0

λ−j if cj < 0

and λ∗j = max{λ̂j, 0}.

It follows that:

λsidekick = maxj{λ
∗
j }j ̸=max

If we let xsidekick denote the variable associated with this maximum value we see that at λsidekick

we have:

βLASSO
max = amax + cmaxλsidekick

while all the other beta values are equal to zero. We’ll denote the active set of coefficients as

Aλsidekick . After the first jump Aλsidekick consists of {sidekick,max}.

3.5.2 The Second Jump

Now let’s consider what happens for λ ∈ (λnext, λsidekick), where λnext corresponds to the next

inflection point after λsidekick. Let (α̂max, α̂sidekick} denote the coefficients from an OLS regression

of y on xmax and xsidekick. Along this interval we will have an interior solution for the LASSO

coefficients corresponding to xmax and xsidekick, which will thus be linear functions of λ:
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αLASSO
max = α̂max −

sign(α̂max)

2(1+ rmax,sidekick)
λ and αLASSO

sidekick = α̂sidekick −
sign(α̂sidekick)

2(1+ rmax,sidekick)
λ

while the conditional least squares estimator for each of the remaining coefficients is linear in αLASSO
max

and αLASSO
sidekick:

β̂j = ryj − αLASSO
max rj,max − αLASSO

sidekickrj,sidekick

Substituting from our expressions for the two active coefficients this becomes:

β̂j = ãj + c̃jλ

where:

ãj = ryj − α̂maxrj,max − α̂sidekickrj,sidekick

and:

c̃j =
sign(α̂max)rj,max + sign(α̂sidekick)rj,sidekick

2(1+ rmax,sidekick)

We now proceed in parallel with the first update, every variable except xmax and xsidekick will

satisfy the following condition for λ ∈ (λnext, λsidekick):

−λ < ãj + c̃jλ < λ

Now let:

λ̃+j =
ãj

1− c̃j
and λ̃−j =

−ãj

1+ c̃j

λ̄j =

 λ̃+j if cj > 0

λ̃−j if cj < 0

and λ̃∗j = max{λ̄j, 0}.

It follows that:

λnext = maxj{λ̃
∗
j }j /∈{max,sidekick}
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If we let xnext denote the variable associated with this maximum value we see that at λnext we

have:

αLASSO
max = α̂max − sign(α̂max)

λnext

2(1+ rmax,sidekick)

αLASSO
sidekick = α̂sidekick − sign(α̂sidekick)

λnext

2(1+ rmax,sidekick)

while all the other beta values are equal to zero7. Notice that Aλnext = {next, sidekick,max}.

4 Comparative Timing

Our algorithm is still at the developmental stage, and in the hands of professional programmers we

do not doubt that our procedure will execute even more rapidly than it does. However, we do want

to provide the reader with an idea of the efficacy of our code so we here present some benchmarks

relative to the unicoordinate descent glmnet algorithm, using a variety of datasets that vary in size,

and in the severity of the collinearity observed among their component variables.

Data First Third

Passes Min. Quintile Mean Median Quintile Max.

DIABETES Diabetes data from Efron et al. (2004)

Bicoord. 215 412.044 427.4355 461.4442 452.783 478.276 1062.181

glmnet 1164 1839.346 1883.3175 2040.9046 1921.353 1975.819 7571.260

RED Wine quality data (red varietals) from Cortez et al. (2009)

Bicoord. 121 15.82811 17.01458 18.62527 17.43571 18.32009 45.96997

glmnet 342 60.78047 62.07158 65.92969 62.99484 66.20146 125.62298

SOIL Soil Quality data from Bondell and Smith (2008)

Bicoord. 245 43.91919 45.29539 46.01222 45.85828 46.47594 49.01433

glmnet 647 138.48964 143.93945 146.69634 144.66505 145.93290 173.56228

WHITE Wine quality data (white varietals) from Cortez et al. (2009)

Bicoord. 253 51.66146 52.67688 53.69331 53.02394 53.33742 82.76253

glmnet 520 100.26352 102.47824 104.02415 102.89359 103.92719 131.41892

Table 1: Speed Comparisons between Bicoordinate Decent and glmnet: Results are from
100 trials. Units are in milliseconds.

7In the very unlikely event that λnext < λdrop = 2sign(α̂max)(1 + rmax,sidekick)α̂max we instead stop at λdrop, at

which point the “max” variable goes dormant, and we repeat the second jump using sidekick in place of max, and

λdrop instead of λsidekick.
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Figure 5: Sample Characteristics and Relative Convergence Speed: Simulation is based on
a set of randomly generated datasets with varying number of observations (N) and covariates (K).
The shaded region in gray color corresponds to the size of input matrix (N × K) where bcd is faster
than glmnet.

Results of several time trials appear in Table 1. We used the microbenchmark package in R

for the speed tests, with 100 trials. The first column counts complete “passes” through the data,

with each pass corresponding to a full set of parameter updates. Notice that this count is not an

accounting artifact of bicoordinate descent updating parameters two at a time. If we have twenty

parameters in our model, one data pass by bicoordinate descent consists of updating each of the

ten pairs of parameters, whereas one data pass for unicoordinate descent involves twenty single

parameter updates, either way twenty parameters are updated, and either way we count but a single

pass through the data. Managing the active set also leaves our accounting for iterations unaffected,

if we have twenty parameters with six active and fourteen dormant, then one round of updates to

the six active parameters counts as a full “data pass.”

We observe a dramatic reduction in data passes moving from glmnet to bicoordinate descent,

and a comparable reduction in the time required to conduct the calculations, with the bicoordinate

algorithm working between two and three and a half times as fast. We note that this speed advantage

comes despite the extra “overhead” costs of bicoordinate descent, which recalibrates the parameter

matches every time a new parameter enters the active set.

In general, for a given number of explanators there is a critical sample size above which bicoor-

dinate descent achieves results faster than glmnet.
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5 Extensions

In this section we present some results for the probit model, while we defer analytical results to

Appendix B. We note that while the probit model is of considerable interest in its own right as

an alternative to the logit, probits are also widely used in dealing with the censoring and sample

selection issues that can arise in a regression context.

5.1 Extension to the Probit

It is straightforward to extend the bicoordinate descent algorithm to encompass the probit model

(Bliss, 1934), the nonlinear nature of that framework notwithstanding. To do so we exploit the EM

algorithm of Dempster, Laird and Rubin (1977), which allows us to convert a curvilinear maximum

likelihood problem into an syncopated sequence of “e-steps” and regression like “m-steps” each of

which lends itself to an unvarnished application of our LASSO algorithm. The applicability of the

EM algorithm to probit models was noticed by McCulloch (1999), who observes that the “working

probits” method of Finney (1952), which applies an iterative weighted least squares algorithm,

converges more rapidly. However, for our purposes the straightforward interface between the m-step

and bicoordinate descent renders the EM process a natural artifice. We are not the first to advocate

the use of an EM algorithm to sparsify a probit model. Figueredo (2003) shows how to apply the EM

algorithm as part of a Maximum A Posteriori estimation of a Bayesian probit model with Laplacian

priors that closely resembles the LASSO. We note that glmnet contains a very efficient logit feature,

but does not include a probit module. Extension of bicoordinate descent to a logit setting is also

possible, but it entails the use of a weighted least squares algorithm, and a consequent increment to

the complexity of the algorithm described in the next section.

5.2 The Model

We now seek to solve:

max
β

n∑
i=1

lnΦ
(
(2δi − 1)⃗xiβ⃗

)
subject to

k∑
j=1

|βj| ≤ T (57)

where δi ∈ {0, 1} is the dichotomous dependent variable for the probit.

We’ll do this using the EM algorithm of Dempster, Laird and Rubin (1977). First, let’s consider

the E-step.
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5.2.1 The E-step

First of all, let’s define p̄ = 1
n

∑n
i=1 δi as the sample mean of δ. We can start out estimating the

latent dependent variable, z∗i , as:

z0i =

 Φ−1(p̄) if δi = 1

Φ−1(1− p̄) if δi = 0

More generally, if we inherit a set of estimates {zs−1
i } from the preceding iteration, s − 1, of the

algorithm, along with estimates {βs−1,LASSO
j }kj=1, for {βj}

k
j=1, we can start from:

zi = x⃗′iβ⃗− ϵi

where ϵi ∼ N(0, 1). This framework tells us the probability δi = 1 is equal to the probability that

ϵ ≤ x⃗′iβ⃗, which is to say Φ(⃗x′iβ⃗). If we take expectations we have:

E{zi|δi} = x⃗′iβ⃗− E{ϵi|δi, x⃗
′
iβ⃗} = x⃗′iβ⃗+ (2δi − 1)

ϕ(⃗x′iβ⃗)

Φ
(
(2δi − 1)⃗x′iβ⃗

) (58)

To align with our LASSO framework we want to set the mean of our latent dependent variable z

equal to zero at each iteration. This means that for a given {zs−1
i }ni=1 we calculate the mean z̄a. We

then generate an estimate for {zsi }
n
i=1:

ẑi(z̄
a) = z̄a + x⃗′iβ⃗

s,LASSO + (2δi − 1)
ϕ(z̄a + x⃗′iβ⃗)

Φ
(
(2δi − 1)[z̄a + x⃗′iβ⃗]

) (59)

We now calculate the mean of the resulting values for ẑi, call this z̄
b. We repeat the steps with

z̄b in place of z̄a until the resulting sequence of means converges to z̄s. We then subtract this mean

from the expression in (59) to obtain the latent dependent variable for the M-step zsi = ẑi(z̄
s) − z̄s.

5.2.2 The M-step

We now apply the next stage of the bicoordinate descent algorithm using zsi as our dependent variable

in place of yi.

To speed the process we evaluate the inverse Mills ratios (2δi − 1)
ϕ(z̄a + x⃗′iβ⃗)

Φ
(
(2δi − 1)[z̄a + x⃗′iβ⃗]

) using

lookup tables, and otherwise applying the computational expedients we employ with the regular

bicoordinate descent algorithm8. One artifice from our least squares toolkit that does not translate

8We have a version of the LASSOed probit software adapted to encompass settings in which only some of the

variables are to be LASSOed.
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to the LASSOed probit is the application of two LARS like steps at the start of the algorithm.

6 Discussion

Given the advantages offered by exploitation of the correlations among the explanators, why should

one stop at bicoordinate descent? Why not coordinate across even more variables at each step?

Indeed, when the design matrix is of full rank the standard formula for calculating regression coeffi-

cients converges in but a single step. However, with a large number of explanators the constraint set

of the LASSO becomes a high dimensional polytope with myriad corners, edges, and faces to check

for possible solutions. Also, of course, the matrix inversion problem can be computationally intense

when the design matrix is of full rank but large, while it becomes impossible when the matrix is

nonsingular, as it is guaranteed to be for a sufficiently large number of explanators.

The huge appeal of one at a time coordinate wise descent is its robustness to the rank of the

design matrix. Tibshirani’s soft thresholding vastly streamlines the updating process, and it relies

on the convenient result that the signs of the LASSO coefficient updates will never be opposite those

of the signs of the unconstrained coordinate wise regression update steps.

The analogy to this “no sign reversal” condition in our formulation is that our pairwise LASSO

updates are guaranteed to remain in the closure of the same quadrant as the pairwise conditional

regression coefficient updates. The cost of moving to bicoordinate descent is that it will only work

for pairs of explanatory variables that are not perfectly correlated. But this is a scant price to pay,

as the analyst has a variety of options; our solution is simply to drop one element one each perfectly

correlated pair of variables from the specification. Alternatively, one could simply rematch the

perfectly correlated pairs with other variables, or one could apply ordinary coordinate wise descent

to the offending pairs.

Could this approach be extended to encompass tricoordinate descent? Perhaps, but the very

convenient result that the LASSO updates will always be found in the same quadrants as the uncon-

strained updates does not generalize. In his figure 3a, Tibshirani (1996) p.271 shows that with three

variables the LASSO coefficients may constitute interior solutions in a different quadrant than the

conditional regression coefficients. An interesting subject for ongoing research is to identify whether

there are conditions on the correlations among triples of variables that guarantee that the LASSO

updates will be contained in the same octant as the least squares coefficient update steps.

Adapting bicoordinate descent to a weighted least squares setting is a subject of our ongoing

research. In a weighted least squares setting the LASSOed coefficients are no longer guaranteed
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to inhabit the same quadrant as the conditional regression coefficients, however, we show that it

is still possible to generate closed form solutions for the pairwise LASSO updates. As a practical

matter, most of these do remain in the same quadrant as the conditional regression coefficients. The

weighted least squares extension permits analysts to apply the bicoordinate descent algorithm to

logit models, as well as to other nonlinear models, such as those involving duration data.

7 Conclusion

We develop a bicoordinate descent algorithm for the LASSO. When the explanatory variables of a

regression model are correlated our algorithm takes a more efficient path toward the solution, while

it entails only a trivial amount of extra calculation as compared with the standard unicoordinate

descent approach. We compare the speediness of our algorithm with that of the state of the art

glmnet algorithm of Friedman, Hastie and Tibshirani (2010a). We also adapt the bicoordinate

descent approach to encompass an application of the LASSO to the probit. In addition, we show

how to adapt bicoordinate descent for weighted least squares estimators.
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Appendix A

Proof of Lemma 1

Proof.

RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n
i=1

)
=

n∑
i=1

(
vsic − β2c−1xi,2c−1 − β2cxi,2c

)2
=

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c − (β2c−1 − βs,ols

2c−1)xi,2c−1 − (β2c − βs,ols
2c )xi,2c

)2
=

n∑
i=1

((
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)2
+2
(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)(
(β2c−1 − βs,ols

2c−1)xi,2c−1 + (β2c − βs,ols
2c )xi,2c

)
−
(
(β2c−1 − βs,ols

2c−1)xi,2c−1 + (β2c − βs,ols
2c )xi,2c

)2)

=

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)2
+2(β2c−1 − βs,ols

2c−1)
( n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)
xi,2c−1

)
+2(β2c − βs,ols

2c )
( n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)
xi,2c

)
+

n∑
i=1

(
(β2c−1 − βs,ols

2c−1)xi,2c−1 + (β2c − βs,ols
2c )xi,2c

)2
but the least squares estimates are chosen to guarantee that:

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)
xi,2c−1 = 0 and

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)
xi,2c = 0

so our expression simplifies to:

RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n
i=1

)
=

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)2
+

n∑
i=1

(
(β2c−1 − βs,ols

2c−1)xi,2c−1 + (β2c − βs,ols
2c )xi,2c

)2
= ssec,s0 +Q(β2c−1 − βs,ols

2c−1, β2c − βs,ols
2c , Rc)
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Proof of Lemma 2

Proof. When the constraint is not binding, the result is trivial and the OLS and LASSO estimates

coincide, whereas if θsc = 0 then the result again holds trivially, as the LASSO estimates must both

equal zero. Now consider what happens when 0 < θsc < |βs,ols
2c−1| + |βs,ols

2c |. Any pair z⃗0 = (z2c−1, z2c)

such that z2c−1 + z2c = α < θsc is dominated by z⃗′ = (z2c−1 +
θsc−α
2

, z2c +
θsc−α
2

):

z2c

z2c−1

z⃗′

z⃗0

Figure 6: The unit simplex dominates the constraint set.

Q
(
z2c−1 +

θsc−α
2

− |βs,ols
2c−1|, z2c +

θsc−α
2

− |βs,ols
2c |, Rs∗

c

)
−Q

(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)
=

(θsc−α
2

,
θsc−α
2

) 1 Rs∗
c

Rs∗
c 1

θsc−α
2

θsc−α
2

+ 2
(θsc−α

2
,
θsc−α
2

) 1 Rs∗
c

Rs∗
c 1

z2c−1 − |βs,ols
1 |

z2c − |βs,ols
2 |


= 2(1+ Rs∗

c )
(θsc−α

2

)2
+ 2(1+ Rs∗

c )
(θsc−α

2

){
z2c−1 + z2c − |βs,ols

1 |− |βs,ols
2 |
}

< (1+ Rs∗
c )(θsc − α)

{θsc−α
2

+ α− θsc
}

= −(1+ Rs∗
c )
{(θsc − α)2

2

}
< 0

Thus the only portion of the constraint that is not dominated according to this argument is the

line segment ∆(θsc):
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∆(θsc) = {(z1, z2)|z1 ≥ 0, z2 ≥ 0, z1 + z2 = θsc} (60)

hence the solution to PZ: (ẑ2c−1, ẑ2c) ∈ ∆(θsc).

Finally we need to check that if z2c−1 + z2c = α < θsc is inside the constraint set, then so is

(z2c−1 +
θsc−α
2

, z2c +
θsc−α
2

). The constraint |z2c−1| + |z2c| ≤ θsc can be rewritten as: C1 : −θsc ≤

z2c−1 + z2c ≤ θsc and C2 : −θsc ≤ z2c−1 − z2c ≤ θsc. The pair (z2c−1 +
θsc−α
2

, z2c +
θsc−α
2

) satisfy C1 by

construction, while z2c−1 +
θsc−α
2

− (z2c +
θsc−α
2

) = z2c−1 − z2c so that if −θsc ≤ z2c−1 − z2c ≤ θsc it

follows that θsc ≤ z2c−1 +
θsc−α
2

− (z2c +
θsc−α
2

) ≤ θsc

Proof of Lemma 3

Proof. Differentiating our expression for Q, (15), we have:

∂Q

∂z2c−1

= 2(z2c−1 − |β2c−1|) + 2Rs∗
c (z2c − |β2c|) and

∂Q

∂z2
= 2(z2c − |β2c|) + 2Rs∗

c (z2c−1 − |β2c−1|)

substituting into (16) this yields:

dz2c

dz2c−1

= −
2(z2c−1 − |β2c−1|) + 2Rs∗

c (z2c − |β2c|)

2(z2c − |β2c|) + 2Rs∗
c (z2c−1 − |β2c−1|)

= −
(z2c−1 − |β2c−1|) + Rs∗

c (z2c − |β2c|)

(z2c − |β2c|) + Rs∗
c (z2c−1 − |β2c−1|)

Proof of Lemma 4

Proof. Substituting from (12) we have:

Q(θsc − |βs,ols
2c−1|,−|βs,ols

2c |, R∗
c)

=
(
θsc − |βs,ols

2c−1|,−|βs,ols
2c |

) 1 Rs∗
c

Rs∗
c 1

θsc − |βs,ols
2c−1|

−|βs,ols
2c |


= −2θsc(|β

s,ols
2c−1|+ Rs∗

c |βs,ols
2c |) +

(
θs2c +

(
−|βs,ols

2c−1|,−|βs,ols
2c |

) 1 Rs∗
c

Rs∗
c 1

−|βs,ols
2c−1|

−|βs,ols
2c |

) (61)
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likewise:

Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c)
)

=
(
−|βs,ols

2c−1|, θ
s
c − |βs,ols

2c |
) 1 Rs∗

c

Rs∗
c 1

 −|βs,ols
2c−1|

θsc − |βs,ols
2c |


= −2θsc(R

s∗
c |βs,ols

2c−1|+ |βs,ols
2c |) +

(
θs2c +

(
−|βs,ols

2c−1|,−|βs,ols
2c |

) 1 Rs∗
c

Rs∗
c 1

−|βs,ols
2c−1|

−|βs,ols
2c |

) (62)

Calculating the difference between (61) and (62) we have:

Q(θsc − |βs,ols
2c−1|,−|βs,ols

2c |, R∗
c) −Q(−|βs,ols

2c−1|, θ
s
c − |βs,ols

2c |, R∗
c)
)

= 2θsc

(
(|βs,ols

2c−1|+ Rs∗
c |βs,ols

2c |) −
(
Rs∗
c (|βs,ols

2c−1|+ |βs,ols
2c |)

))
= 2θsc(1− Rs∗

c )
(
|βs,ols

2c |− |βs,ols
2c−1|

)
However |Rs∗

c | < 1; recall that our data contain no perfectly correlated pairs. Likewise θsc > 0 by

assumption, and so 2θsc(1− Rs∗
c ) > 0, hence we have:

sign

(
Q(θsc − |βs,ols

2c−1|,−|βs,ols
2c |, R∗

c) −Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c)
))

= sign
(
|βs,ols

2c |− |βs,ols
2c−1|

)

Proof of Lemma 5

Proof. Considering cases for which λ > 0, at an interior solution the non-negativity constraints are

not binding, so that µ2c−1 = µ2c = 0. Differentiating (27) with respect to z2c−1, z2c, and λ we have:

∂L

∂z2c−1

= 2(z2c−1 − |βs,ols
2c−1|) + 2Rc(z2c − |βs,ols

2c−1|) + λ = 0

∂L

∂z2c
= 2Rc(z2c − |βs,ols

2c−1|) + 2(z2c−1 − |βs,ols
2c−1|) + λ = 0

∂L

∂λ
= z2c−1 + z2c − θsc = 0 (63)

If we add the first two equations:
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2(1+ Rc)(z2c−1 − |βs,ols
2c−1|) + 2(1+ Rc)(z2c − |βs,ols

2c |) + 2λ = 0

rearranging terms this becomes:

2(1+ Rc)(z2c−1 + z2c) − 2(1+ Rc)|β
s,ols
2c−1|− 2(1+ Rc)|β

s,ols
2c |+ 2λ = 0 (64)

now substitute from ∂L
∂λ

= 0 to obtain:

2(1+ Rc)θ
s
c − 2(1+ Rc)|β

s,ols
2c−1|− 2(1+ Rc)|β

s,ols
2c |+ 2λ = 0 (65)

solving for θsc we have:

θsc = |βs,ols
2c−1|+ |βs,ols

2c |−
λ

1+ Rc

Proof of Lemma 6

Proof. Turning to our first order conditions for (27) we require:

∂L

∂z2c−1

= 2(z2c−1 − |βs,ols
2c−1|) + 2Rs∗

c (0− |βs,ols
2c |) + λ = 0

∂L

∂λ
= z2c−1 + 0− θsc = 0 (66)

Substituting z2c−1 from the third expression into the first and solving for θsc yields:

θsc = |βs,ols
2c−1|+ Rs∗

c |βs,ols
2c |−

λ

2

Proof of Lemma 7

Proof. Start with the update for (βs,ols
2c−1, β

s,ols
2c ). We solve:

minβ∗
2c−1

,β∗
2c

n∑
i=1

(
yi −

∑
j≤2c−2

xj,iβ
s,ols
j −

∑
j≥2c+1

xj,iβ
s−1,ols
j − x2c−1,iβ

∗
2c−1 − x2c,iβ

∗
2c

)2
This leads to the following first order conditions:
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−2

n∑
i=1

(
yi −

∑
j≤2c−2

xj,iβ
s,ols
j −

∑
j≥2c+1

xj,iβ
s−1,ols
j − x2c−1,iβ

∗
2c−1 − x2c,iβ

∗
2c

)
x2c−1,i = 0

−2

n∑
i=1

(
yi −

∑
j≤2c−2

xj,iβ
s,ols
j −

∑
j≥2c+1

xj,iβ
s−1,ols
j − x2c−1,iβ

∗
2c−1 − x2c,iβ

∗
2c

)
x2c,i = 0

Using our newly developed notation we can rewrite these conditions as:

−2
(
ry,2c−1 −

∑
j≤2c−2

rj,2c−1β
s,ols
j −

∑
j≥2c+1

rj,2c−1β
s−1,ols
j − β∗

2c−1 − r2c−1,2cβ
∗
2c

)
= 0

−2
(
ry,2c −

∑
j≤2c−2

rj,2cβ
s,ols
j −

∑
j≥2c+1

rj,2cβ
s−1,ols
j − r2c−1,2cβ

∗
2c−1 − β∗

2c

)
= 0

That is:

 1 r2c−1,2c

r2c−1,2c 1

β∗
2c−1

β∗
2c

 =

ry,2c−1 −
∑

j≤2c−2

rj,2c−1β
s,ols
j −

∑
j≥2c+1

rj,2c−1β
s−1,ols
j

ry,2c −
∑

j≤2c−2

rj,2cβ
s,ols
j −

∑
j≥2c+1

rj,2cβ
s−1,ols
j


This simplifies to:

β∗
2c−1

β∗
2c

 =
1

1− r22c,2c−1

 1 −r2c−1,2c

−r2c−1,2c 1

−1
ry,2c−1 −

∑
j≤2c−2

rj,2c−1β
s,ols
j −

∑
j≥2c+1

rj,2c−1β
s−1,ols
j

ry,2c −
∑

j≤2c−2

rj,2cβ
s,ols
j −

∑
j≥2c+1

rj,2cβ
s−1,ols
j


=

s⃗′2c−1α⃗
s,c,ols

s⃗′2cα⃗
s,c,ols


But this is simply (45). Similar, and even more straightforward calculations show that (46) corre-

sponds to the solution for P3sc.

Proof of Lemma 8: Starting with a > c, which we have by assumption, we see that a−b > c−b,

and so, provided c > b, we divide by c − b to obtain the left inequality in (bothsteep). Similarly,

a > c implies a+ b > c+ b, and so, provided b < c, we can divide both sides by −(c+ b) to obtain

the right inequality of (bothsteep). □

Proof of Lemma 9: Starting with b < −c, expression (bbounded) tells us that a + b > 0, while

by assumption a > c, hence we have:
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ac− b2 > b2 − ac

ac+ (bc− ab) − b2 > b2 + (bc− ab) − ac

(a+ b)(c− b) > −(c+ b)(a− b)

a+ b > −(c+ b)
a− b

c− b

−
(a+ b

c+ b

)
>
(a− b

c− b

)
which corresponds to the righthand inequality in (plus45Steeper). Moreover, given that a > c while

b < 0 we also know that 0 < c− b < a− b, dividing by c− b > 0 gives us the lefthand inequality in

(plus45Steeper). □

Proof of Lemma 10: Starting with c < b, we have:

b2 − ac < ac− b2

b2 + (ba− bc) − ac < ac+ (ba− bc) − b2

− (c− b)(a+ b) < (c+ b)(a− b)

− (a+ b) > (c+ b)
a− b

c− b

−
(a+ b

c+ b

)
>
(a− b

c− b

)
which corresponds to (minus45Steeper). Moreover, given that a > c while b > 0 we also know

that 0 < c+ b < a+ b and so −a+b
c+b

< −1. □

Appendix B: Extension to Weighted Least Squares

To this point we have examined the bicoordinate solution to cases of ordinary least squares. Our

extension to the probit model first transformed the problem via the EM algorithm into a sequence

of m-steps, each of which was tantamount to estimating a least squares regression. Now we consider

the more general case in which we confront a weighted least squares problem, this encompasses the

solution developed in the preceding sections as an important special case. Weighted least squares

leads to different weights on each observation, and these differences in turn lead to different weights

on the first order conditions for different coefficients. This complicates the solution, but does not

render it intractable.
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Formulation

Now we generalize problem P2s′c . Suppose we seek a solution to the following problem:

min
b⃗

(b⃗− β⃗)′I(b⃗− β⃗) subject to ||⃗b||1 ≤ T (solveOriginal)

with T > 0 while:

b⃗ =

b1

b2

 and β⃗ =

β1

β2

 (67)

where ||⃗b||1 = |b1|+ |b2| is the l1 norm and

I =

I11 I12

I12 I22

 (68)

is a symmetric, positive definite matrix. When the diagonal terms of I are identical, this configuration

coincides with the quadratic form in expression (12), where I11 = I22 = 1 and I12 = I21 = Rs∗
c .

For convenience, rather than focusing on solveOriginal it is preferable to work with the following

“canonical” problem:

min
x,y

f(x, y) subject to |x|+ |y| ≤ T (solveQuad)

where T > 0 and:

f(x, y) = (⃗z− z⃗0)
′Q(⃗z− z⃗0) (69)

while:

z⃗ =

x

y

 and z⃗0 =

x0

y0

 (70)

with Q a symmetric, positive definite matrix:

Q =

a b

b c

 (Qdef)

Notice that positive definiteness of Q implies that

ac− b2 > 0 (71)
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Likewise, for the canonical problem we require:

x0 > 0 y0 > 0 x0 + y0 ≥ T a ≥ c > 0 (72)

We form the link between (solveQuad) and (solveOriginal) as follows. Let’s define the matrices

S:

S =

sign(β1) 0

0 sign(β2)


and T :

T =

δ(I22 ≤ I11) δ(I11 < I22)

δ(I11 < I22) δ(I22 ≤ I11)


where δ is the Dirac function: δ(TRUE) = 1 and δ(FALSE) = 0.

Notice that (ST)−1 = TS, so we can rewrite (solveOriginal) as follows:

min
b⃗

(b⃗− β⃗)′STTSISTTS(b⃗− β⃗) subject to |b1|+ |b2| ≤ T

Next, if we let Q = TSIST , while z⃗ = TSb⃗ and z⃗0 = TSb⃗0 we have |b1| + |b2| = |x| + |y|, and so

our problem coincides with (solveQuad). To be sedulously clear, if we start with (solveOriginal),

we can reach the corresponding version of (solveQuad) by setting b = sign(β1) × sign(β2) × I12,

while if I11 ≥ I22 then x0 = sign(β1)β1, y0 = sign(β2)β2, a = I11 and c = I22, whereas if I11 < I22

then x0 = sign(β2)β2, y0 = sign(β1)β1, a = I22 and c = I11.

Notice that once we have solved (solveQuad) to obtain (x, y) we can go back to the solution for

(solveOriginal); (b1, b2) using the transformation b⃗ = STz⃗. In more excruciating detail, if I22 ≤ I11

we have b1 = sign(β1)x, and b2 = sign(β2)y, while if I11 < I22 we have b1 = sign(β1)y, and

b2 = sign(β2)x.

Preliminaries

Along the isoquant f(x, y) = k we have:

∂y

∂x
f=k = −

(
a(x− x0) + b(y− y0)

b(x− x0) + c(y− y0)

)
(73)

for any point (x, y) at which the isoquant of f has a slope of −1 we have:
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∂y

∂x
f=k = −1 → (y− y0) =

(a− b

c− b

)
(x− x0)

the lefthand panel of figure 7 shows several such points, the open circle corresponds to (x0, y0). In

fact, the set of all points at which the isoquant of f has a slope of −1 forms a straight line:

y =

(
y0 −

(a− b

c− b

)
x0

)
+
(a− b

c− b

)
x (minus45)

see the central panel of figure 7 where (minus45) corresponds to the line labeled τ−. This line is of

some practical use: if there is a tangency between an isoquant of f and the first quadrant constraint

it will occur at the intersection of the line (minus45) with the first quadrant edge of the LASSO

constraint, the line segment on which x ∈ [0, T ] and y = T − x. This outcome is depicted in the

righthand panel of figure 7. Conversely, if (minus45) fails to intersect the northeast edge of the

LASSO constraint, then there will not be a first quadrant tangency.

y

x

y

x

τ−
y

x

τ−

Figure 7: Right: Tangencies Center: minus45 Left: Interior Solution

We can likewise construct the set of points at which the the isolevels of f have slope 1:

∂y

∂x
f=k = 1 → (y− y0) = −

(a+ b

c+ b

)
(x− x0)

which comprise the following line:

y =

(
y0 +

(a+ b

c+ b

)
x0

)
−
(a+ b

c+ b

)
x (plus45)
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We shall see that if (plus45) intersects the second quadrant edge of the LASSO constant, then

we will have an interior solution in the second quadrant.

Some Useful Results

Notice that the slope of (plus45) is guaranteed to be negative unless −a < b < −c. In contrast,

(minus45) slopes upwards unless c < b < a.

However, because by (71), we have |b| <
√
ac where

√
ac denotes the positive square root of ac.

So −b <
√
ac, but the geometric mean is less than the arithmetic mean, hence:

− b <
√
ac ≤ a+ c

2
≤ a (bbounded)

and so it follows that (plus45) will not slope upwards unless:

c < −b (notQ1a)

In contrast, we know that (minus45) will have a positive slope unless:

c < b (notQ1b)

For future reference, let’s consolidate these claims as:

Lemma 8: Provided that |b| < c, the line (minus45) slopes upward, with a slope in excess of 1,

while (plus45) does not, exhibiting a slope more negative than −1:

1 <
(a− b

c− b

)
and −

(a+ b

c+ b

)
< −1 (bothsteep)

Likewise, we have:

Lemma 9: If b < −c the (plus45) line slopes upward more steeply than (minus45):

1 <
(a− b

c− b

)
< −

(a+ b

c+ b

)
(plus45Steeper)

Lemma 10: If instead c < b the (minus45) line slopes downward more steeply than (plus45):

(a− b

c− b

)
< −

(a+ b

c+ b

)
< −1 (minus45Steeper)
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Solutions

Solutions to (solveQuad) divide into several categories, and we organize them relative to the value

of b. Let’s consider them in turn.

b < −c

Conditional on (x0, y0) the solution to the LASSO problem will be unique provided Q has full rank,

but when we have an extremely low value9 of b there are no fewer than five potential and qualitatively

different forms this solution might take on. The set of (x0, y0) values leading to each solution type

are depicted in the right panel of figure 10, these include two interior solutions, the OLS estimates

leading to LASSO estimates in first the first quadrant are marked IQ1, while those corresponding to

a second quadrant interior solution are denoted IQ2. The set of values leading to a corner solution

at (T, 0) are labeled R, another set, marked T leads to a LASSO solution at (0, T), while the set

of (x0, y0) corresponding to the region labeled L correspond to a LASSO outcome at (−T, 0). Let’s

work through these cases one at a time.

R

y

x

α τ−
τ+

IQ1

y

x

α
ω

Figure 8: A Right Corner Solution A First Quadrant Interior Solution

9Notice that these cases can only arise when c < a, for if they have the same magnitude c < b would violate the

positive definiteness condition for Q.
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A Solution at (T, 0)

With b < −c we will have a corner solution at (T, 0) when (x0, y0), denoted by a small open circle

in the left panel of figure 8, is to the right of the line (alpha):

y =
a− b

c− b
(x− T) (alpha)

Notice that (alpha), labeled α in figure 8, passes through (T, 0) with slope a−b
c−b

.

Algebraically, we can express (x0, y0) being to the right of (alpha) as:

y0 ≤
a− b

c− b
(x0 − T) (rightB)

The region to the right of the α line is labeled R in the figure, the set of all possible tangencies

between level curves of f and the first quadrant portion of the LASSO constraint comprise the line

(minus45):

y = T − x with 0 ≤ x ≤ T (Quad1)

denoted in figure 8 by the line τ−. Because τ− is parallel to α, it never intersects the constraint

diamond for the LASSO, precluding a first quadrant tangency.

The set of potential second and fourth quadrant tangencies, corresponding to expression (plus45),

constitute the line τ+. This line also passes through (x0, y0), and by Lemma 9 it is even more steeply

sloped than τ−, so it also misses the LASSO constraint diamond.

Thus we have no interior solution. Amongst the possible corner solutions, and for any (x0, y0)

pair in region R, the right corner minimizes the loss of meeting the LASSO constraint; the ellipse

centered on (x0, y0) that just grazes (T, 0) represents the lowest attainable loss relative to OLS for

any estimator in the LASSO diamond.

An Interior Solution in the First Quadrant

With b < −c we will have a tangency in the first quadrant provided also that the line defined in

(minus45) intersects the constraint in the first quadrant, that is, along the line:

y = T − x
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with 0 ≤ x ≤ T . This will happen when (x0, y0) lies between the line with positive slope a−b
c−b

passing

through (T, 0), marked α in the righthand panel of 8, and the parallel line that includes (0, T), marked

ω on the right of figure 8. Algebraically this occurs when:

a− b

c− b
(x0 − T) < y0 < T +

a− b

c− b
x0 (IQ1)

in which case the solution will consist of:

x∗

y∗

 =

 (c−b)T+(a−b)x0−(c−b)y0

a+c−2b

(a−b)T−(a−b)x0+(c−b)y0
a+c−2b

 (solveIQ1)

The right hand panel of figure 8 illustrates such a case–the OLS estimate corresponds to the

open dot, while the ellipses are the level curves for f, the residual sum of squares.

A Solution at (0, T)

Still considering the case in which b < −c we arrive at a corner solution at the “top” vertex, (0, T),

when (x0, y0) lies above the line with slope a−b
c−b

that passes through (0, T), but below the line passing

through the same vertex with slope −a+b
c+b

:

T +
a− b

c− b
x0 ≤ y0 ≤ T −

(a+ b

c+ b

)
x0 (topcorner)

Pairs (x0, y0) satisfying (topcorner) correspond to the region labeled T in figure 10, and tan-

gencies with the constraint diamond are incompatible–the locus of potential tangencies with the left

upper face of the diamond that encompasses these points lies too far to the right to intersect the

upper left face of the diamond, while the potential tangencies with the righthand upper face of the

constraint pass to the left of that face. These points can only result in a corner solution, and a quick

check confirms that the least onerous element of the constraint is the corner at (0, T).

An Interior Solution in the Second Quadrant

Still taking as given that b < −c, we will have an interior solution in the second quadrant provided

(x0, y0) lies above the line with slope −a+b
c+b

that passes through (0, T), but below the parallel line

passing through (−T, 0). In this case the solution will be found at the intersection of the line given

in (plus45) with the second quadrant portion of the constraint:

T −
(a+ b

c+ b

)
x0 < y0 < −

(a+ b

c+ b

)(
x0 + T

)
(IQ2)
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which crossing occurs at:

x∗

y∗

 =

−(c+b)T+(a+b)x0+(c+b)y0
a+c+2b

(a+b)T+(a+b)x0+(c+b)y0
a+c+2b

 (solveIQ2)

A Solution at (−T, 0)

Finally, and still with b < −c, we are led to a corner solution at the “left” vertex, (−T, 0), when

(x0, y0) lies above the line with slope −a+b
c+b

that passes through (−T, 0):

−
(a+ b

c+ b

)
(x0 + T) ≤ y0 (leftcorner)

−c < b < c

There are only three qualitatively distinct types of solution in this case, an interior solution in the

first quadrant, a corner solution along the x axis, and a corner solution along the y axis. Notice that

the ordinary least squares model satisfies this condition, as the combination of a = c and ac−b2 > 0

guarantee that −c < b < c. Let’s first turn to the interior solution:

An Interior Solution in the First Quadrant

With |b| < c we will have a tangency in the first quadrant provided we satisfy (IQ1), leading to a

tangency at (solveIQ1).

A Corner Solution at (T, 0)

With |b| < c we have a right corner solution at:

(x∗, y∗) = (T, 0) (solverightcorner)

provided (x0, y0) lies below10 the line passing through (T, 0) with slope a−b
c−b

, a condition already

summarized as (rightB).

A Corner Solution at (0, T)

Again in the case of |b| < c we have a top corner solution when the line with positive inclination a−b
c−b

that includes (0, T) passes below (x0, y0), given above as the first of the two inequalities in condition

10Recall that by assumption (x0, y0) are in the closure of the first quadrant.
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(topcorner).

c < b

There are but two qualitatively different solution classes corresponding to extremely high values11

of b, an interior solution in the first quadrant, and a corner solution at (T, 0).

A Corner Solution at (T, 0)

With c < b, consistent with Lemma 10, the set of possible first quadrant tangencies forms a nega-

tively sloped line, denoted by τ− in the lefthand panel of figure 11, while the set of possible second

quadrant tangencies constitute an even more steeply sloped line, labeled τ+ in figure 11. The line

passing through (T, 0) and parallel to τ− marks the boundary of the set of (x0, y0) pairs that corre-

spond to a corner solution. All of the (x0, y0) pairs above and to the right of this line, recall that by

assumption (x0, y0) are in the first quadrant, correspond to a corner solution, as is depicted in the

righthand panel of the figure. The formal condition for this is given by expression (rightbplus):

−
a− b

c− b
(T − x0) ≤ y0 (rightbplus)

this region of the first quadrant, corresponding to solutions at the right corner of the constraint set,

is labeled R in the diagram.

A First Quadrant Tangency

The lefthand panel of figure 11 depicts a typical tangency. Elements of the scalene triangle marked

IQ1 correspond to interior solutions in quadrant one. Formally for the case of b > c we have a first

quadrant tangency when:

y0 < −
a− b

c− b
(T − x0) (tangent1b)

Notice that there are no corner solutions at (0, T), save for the trivial case in which (x0, y0) =

(0, T), a solution that is encompassed among the tangencies. This is a byproduct of the steepness

of the τ−1 curve, which slopes more steeply than the first quadrant constraint, and so even points

11Notice that these cases can only arise when c < a, for if they have the same magnitude c < b would violate the

positive definiteness condition for Q.
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along the y axis above (0, T) lead to interior solutions, provided y0 is not too large, or to right corner

solutions when y0 exceeds −a−b
c−b

(T − x0).

Connecting with λ

We now have a comprehensive solution for (x, y) in terms of (x0, y0, T). Whereas what we need is to

solve in terms of (x0, y0, λ). Our attention now turns to making the connection. Firstly let’s revisit

(solveQuad) and formulate the Lagrangian:

L = f(x, y) + λ
(
|x|+ |y|− T

)
(74)

The first order conditions for a maximum are:

∂

∂x
L = fx(x, y) + λsign(x) = 0

∂

∂y
L = fy(x, y) + λsign(y) = 0

which leaves us with:

a b

b c

x− x0

y− y0

 = −
λ

2

sign(x)

sign(y)

 (75)

At an interior solution we have:

x̂ = x0 −
λ

2

(csign(x) − bsign(y)

ac− b2

)
(interiorx)

and:

ŷ = y0 −
λ

2

(−bsign(x) + asign(y)

ac− b2

)
(interiory)

Corner solutions require a bit of extra care. Consider a solution at the right corner. We know

that the derivative of the objective function with respect to T will equal −λ, that is:

∂f

∂T
(T, 0) = −λ

Computing the resulting derivative and solving for T we have:

T = x0 +
b

a
y0 −

λ

2a
(RightX)
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and so our solution pair (x̂, ŷ) is:

(x̂, ŷ) =
(
x0 +

b

a
y0 −

λ

2a
, 0
)

(rightex)

For a solution at the left corner we must have:

∂f

∂T
(−T, 0) = −λ

which leads to:

T = −x0 −
b

a
y0 −

λ

2a
(LeftX)

and so the solution pair will be:

(x̂, ŷ) =
(
x0 −

b

a
y0 −

λ

2a
, 0
)

(leftex)

Likewise, at a top corner solution we have:

T =
b

c
x0 + y0 −

λ

2c
(TopY)

leading to (x̂, ŷ):

(x̂, ŷ) =
(
0,

b

c
x0 + y0 −

λ

2c

)
(topwhy)

Naturally, these solutions only make sense when T ≥ 0. When this condition is violated we will

be at the degenerate special case of a corner: (x, y) = (0, 0).

So, couldn’t we have skipped the preceding pages and simply jumped to expressions (interiorx),

(interiory), (rightex), (leftex) and (topwhy)? Yes, provided we could have correctly guessed the

values for sign(x) and sign(y). The real point of the preceding pages was to derive the conditions

for both types of interior solution and for each of the three potential corner solutions, and these we

have in terms of T . We need them relative to λ, and so, by a straightforward process of equating

our earlier solutions for (x, y) expressed in terms of T with our new ones, expressed relative to λ we

now solve for T in terms of (x0, y0, λ) for each of our special cases.

We already have expressions for T in the case of our corner solutions: (RightX), (LeftX), (TopY).

The interior solutions are straightforward. At a first quadrant interior solution the constraint that

x+ y ≤ T is binding, so starting with (interiorx) and (interiory) we can substitute to find T :
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T = x0 + y0 −
λ

2

(a+ c− 2b

ac− b2

)
(TIQ1)

likewise, at an interior solution in the second quadrant we will have −x + y = T , substituting from

(interiorx) and (interiory) yields:

T = −x0 + y0 −
λ

2

(a+ c+ 2b

ac− b2

)
(TIQ2)

b < −c

Now let’s revisit the five ranges of solution that can emerge in this case, connecting our earlier analysis

in terms of T with the Lagrange multiplier λ. Figure 12 provides a graphical depiction of the link

between (x0, y0) and the type of solution we will encounter when b < −c. Let’s consider these in

turn. The label “IQ1” indicates an interior solution in the first quartile, while “IQ2” corresponds to a

second quartile interior solution. The labels “Left”, “Top”, and “Right” indicate the corner solution

that will emerge for the indicated set of (x0, y0) pairs. The region labeled “Origin” corresponds to

the corner solution at which both x̂ and ŷ are equal to zero.

Right Corner

Substituting from (RightX) into (rightB) and simplifying we have:

y0 <
a− b

ac− b2

λ

2
(76)

we must also confirm that T is positive, substituting from (RightX) this condition becomes:

y0 <
λ

2b
−

a

b
x0 (TPRlambda)

So, when b < −c and we satisfy both conditions (76) and (TPRlambda) we have a corner solution

given by (rightex).

Interior Solution: First Quadrant

Substituting from (TIQ1) into (IQ1) and simplifying we have:

λ

2

c− b

ac− b2
< x0 and

λ

2

a− b

ac− b2
< y0 (IQ1lambda)
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Inspection of (TIQ1) reveals that if we satisfy both of these conditions, T is guaranteed to be

nonnegative, so when b < −c, (IQ1lambda) fully characterizes the sufficient conditions for an

interior solution with x̂ given by (interiorx) and ŷ corresponding to (interiory):

(x̂, ŷ) =
{
x0 −

λ

2

( c− b

ac− b2

)
, y0 −

λ

2

( a− b

ac− b2

)}
(IQ1Sol)

Top Corner

Now we start with (topcorner), and replace T with our expression in (TopY). After a little manip-

ulation, this expression becomes:

−
c+ b

ac− b2

λ

2
≤ x0 ≤

c− b

ac− b2

λ

2
(TClambda)

Expression (TopY) reveals that to ensure T > 0 we need:

y0 >
λ

2c
−

b

c
x0 (TPTlambda)

This tells us that we will have a corner solution given by (topwhy) if and only if we satisfy both

(TClambda) and (TPRlambda).

Interior Solution: Second Quadrant

In the case of an interior solution in the second quadrant we substitute from (TIQ2) into (IQ2).

When the chalk dust settles, we are left with:

x0 < −
c+ b

ac− b2

λ

2
and

λ

2

a+ b

ac− b2
< y0 (IQ2lambda)

As with the conditions for an interior solution in the first quadrant, given by (IQ1lambda),

satisfying (IQ2lambda) is sufficient to guarantee T > 0, leaving us with x̂ given by (interiorx) and

ŷ as in expression (interiory).

(x̂, ŷ) =
{
x0 +

λ

2

( c+ b

ac− b2

)
, y0 −

λ

2

( a+ b

ac− b2

)}
(IQ2Sol)

Left Corner

Now we substitute (LeftX) into (leftcorner). The resulting expression simplifies to:
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y0 <
a+ b

ac− b2

λ

2
(77)

We will have T > 0 whenever:

y0 > −
λ

2b
−

a

b
x0 (TPLlambda)

so, when b < c conditions (77) and (TPLlambda) are jointly necessary and sufficient for us to have

a corner solution characterized by (leftex).

Finally, we will have a solution at the origin, with x̂, ŷ) = (0, 0) if and only if we simultaneously

fail to satisfy (TPRlambda), (TPTlambda), and (TPLlambda). This condition can be expressed as:

λ

2b
−

a

b
x0 ≤ y0 ≤ min

{
−

λ

2b
−

a

b
x0,

λ

2c
−

b

c
x0
}

(78)

Mediocre b Values

The case |b| < c encompasses least squares regression with homoscedastic errors, and it contains

fewer cases than the more complicated situation that confronts us when b < −c. It is helpful to

refer to figure 13, which depicts 0 < b < c. In particular, with |b| < c, (IQ1lambda) is necessary

and sufficient for an interior solution, which will correspond to expression (IQ1Sol).

For a top corner solution, with (x̂, ŷ) as given by (topwhy), the righthand inequality in expression

(TClambda):

x0 ≤
c− b

ac− b2

λ

2

and:

λ

2c
−

b

c
x0 < y0 (79)

provide necessary and sufficient conditions. The latter of these two conditions, (79) guarantees that

T > 0, which we have when we encounter (x0, y0) above:

y =
λ

2c
−

b

c
x (80)

For a right corner solution, in which (x̂, ŷ) is given by (rightex), it is necessary and sufficient for

us simultaneously to satisfy (76) and (81):
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λ

2a
−

b

a
y0 ≤ x0 (81)

The latter condition guarantees that (x0, y0) is to the right of the line:

y =
λ

2b
−

a

b
x (82)

Finally, we will have a solution at (x̂, ŷ) = (0, 0) when (x0, y0) satisfy:

y0 ≤
λ

2c
−

b

c
x0 and x0 ≤

λ

2a
−

b

a
y0 (83)

When b ∈ (−c, 0) the analytics are the same, but the lines corresponding to (80) and to (82)

each slope upward instead of downward as they do in figure 13.

b > c

When we encounter large positive values, for b, that is b > c, matters become starkly simple, see

figure 14 for a graphical representation.

Let’s start by substituting T from (RightX) into expression (rightbplus). This yields:

y0 ≤
a− b

ac− b2

λ

2
(RightAnswer)

For there to be a right corner solution we also require that T > 0, which, substituting from

(RightX) leaves us with:

λ

2a
−

b

a
y0 ≤ x0 (RightBigB)

In this case we have a corner solution with x̂ given by (rightex), while ŷ = 0.

On the other hand, for an interior solution at (IQ1Sol), we must fail condition (RightBigB)

while at the same time we have T > 0. Substituting from (TIQ1) this second condition for an interior

solution becomes:

λ

2

a+ c− 2b

ac− b2
− x0 < y0 (84)

We will have a solution at the origin when:

y0 ≤ min
{λ
2

a+ c− 2b

ac− b2
− x0,

λ

2b
−

a

b
x0
}

(85)
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Glancing at 14 notice the long shared border between the region marked IQ1, corresponding to

(x0, y0) pairs that lead to an interior solution, and the region indicated by the self explanatory label

Origin. Notice also that the boundary of the set of (x0, y0) pairs that lead to a solution at the

origin has a kink at y0 =
λ
2

a−b
ac−b2

.
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Figure 9: A Top Corner Solution A Second Quadrant Interior Solution
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Figure 10: A Left Corner Solution Solution Types
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Figure 12: Solution types for (x0, y0) when b < −c
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Figure 13: Solution types for (x0, y0) when |b| < c.
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