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Abstract

This appendix contains two sets of supplemental results. First, we include a technical appendix

outlining estimation for SFA. Second, we include a set of supplemental empirical results.

1 Technical Appendix

1.1 The Legislator and Proposal Intercepts from the Voting Model

Let’s start with the legislator’s utility from the “Aye”:

Uvotel

´

Aye; txldu
D
d“1, tz

aye
pd u

D
d“1

¯

“ ´
1

2

D
ÿ

d“1

adpz
aye
pd ´ xldq

2 ` ξ̃ayelp (1)

and “Nay” alternatives:

Uvotel

´

Nay; txldu
D
d“1, tz

nay
pd u

D
d“1

¯

“ ´
1

2

D
ÿ

d“1

adpz
nay
pd ´ xldq

2 ` ξ̃naylp (2)

Next, let’s calculate the difference between these expressions to get the legislator’s preference intensity for

the Aye outcome. Substituting from expressions p1q and p2q we have:

V ˚lp “ Uvotel

´

Aye; txldu
D
d“1, tz

aye
pd u

D
d“1

¯

´ Uvotel

´

Nay; txldu
D
d“1, tz

nay
pd u

D
d“1

¯

“ ´
1

2

D
ÿ

d“1

adpz
aye
pd ´ xldq

2 ` ξ̃ayelp ´

˜

´
1

2

D
ÿ

d“1

adpz
nay
pd ´ xldq

2 ` ξ̃naylp

¸

“

D
ÿ

d“1

ad
2
pznay

2

pd ´ zaye
2

pd q `

D
ÿ

d“1

´ad
2
¨ 2xldpz

aye
pd ´ znaypd q

¯

` ξ̃ayelp ´ ξ̃naylp

“

˜

D
ÿ

d“1

ad
2
pznay

2

pd ´ zaye
2

pd q ` Etξ̃ayelp u ´ Etξ̃
nay
lp u

¸

`

D
ÿ

d“1

adxldpz
aye
pd ´ znaypd q

´

´

ξ̃naylp ´ ξ̃ayelp ` Etξ̃ayelp u ´ Etξ̃
nay
lp u

¯

(3)
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Now, let:

Etξ̃ayelp u “ πayel ` ϕayep and Etξ̃naylp u “ πnayl ` ϕnayp

substituting this into the first part of the equation (3),

D
ÿ

d“1

ad
2
pznay

2

pd ´ zaye
2

pd q ` Etξ̃ayelp u ´ Etξ̃
nay
lp u “

D
ÿ

d“1

ad
2
pznay

2

pd ´ zaye
2

pd q ` pπayel ` ϕayep q ´ pπnayl ` ϕnayp q

“ πayel ´ πnayl
loooooomoooooon

cvote
l

`

D
ÿ

d“1

ad
2
pznay

2

pd ´ zaye
2

pd q ` ϕayep ´ ϕnayp

looooooooooooooooooooooomooooooooooooooooooooooon

bvote
p

“ cvotel ` bvotep

Now let’s return to the last line of expression p3q and substitute:

V ˚lp “ Ulptxldu
D
d“1, tpdu

D
d“1q ´ Ulptxldu

D
d“1, tqdu

D
d“1q

“

˜

D
ÿ

d“1

ad
2
pznay

2

pd ´ zaye
2

pd q ` Etξ̃ayelp u ´ Etξ̃
nay
lp u

¸

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

cvote
l `bvote

p

`

D
ÿ

d“1

adxld pz
aye
pd ´ znaypd q

looooooomooooooon

gvote
pd

´

´

ξ̃naylp ´ ξ̃ayelp ` Etξ̃ayelp u ´ Etξ̃
nay
lp u

¯

looooooooooooooooooooooomooooooooooooooooooooooon

εvote
lp

“ cvotel ` bvotep `

D
ÿ

d“1

adxldg
vote
pd ´ εvotelp . (4)

Equation (4) matches equation (??).

1.2 Estimation of SFA

We now shift to a more condensed notation. Hereafter, we reindex the vote and term outcomes using a

common index, j, which falls into two sets: J term and Jvote for whether the observed outcome (now a

common Ylj) is a term outcome or vote outcome, and J “ |J term|` |Jvote|. We will denote the systematic

components of the vote and term selection as

θvotelp “ cvotel ` bvotep `

D
ÿ

d“1

adxldg
vote
pd (5)

θtermlw “ cterml ` btermw `

D
ÿ

d“1

adxldg
term
wd (6)

We will also suppress the superscript for the θtermlw and θvotelp while changing to the joint subscript j.

The likelihood is given by:

L
`

θvote¨¨ , θterm¨¨ , τ¨|T¨¨, V¨¨
˘

“

L
ź

l“1

$

&

%

˜

P
ź

p“1

PrtVlp|¨u
W`P

2P

¸1´α

¨

˜

W
ź

w“1

PrtTlw “ k|¨u
W`P
2W

¸α
,

.

-

(7)

where,
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PrtTlw “ k|¨u “

$

’

&

’

%

Φ pθtermlw ´ τ0q Tlw “ 0

Φ pθtermlw ´ τkq ´ Φ pθtermlw ´ τk´1q 0 ă Tlw

(8)

PrtVlp|¨u “ Φ
`

p2Vlp ´ 1qθvotelp

˘

(9)

The prior structure is given by:

cvotel , bvotep
i.i.d.
„ N pµ, 1q (10)

cterml , btermw
i.i.d.
„ N pµ, 1q (11)

µ „ N p0, 1q (12)

gtermwd
i.i.d.
„ N p0, 4q (13)

gvotepd
i.i.d.
„ N p0, 4q (14)

xld
i.i.d.
„ N p0, 4q (15)

logpβ1q, logpβ2q
i.i.d.
„ N p0, 1q (16)

Prpadq “
1

2λ
e´λ|ad| (17)

Prpλq “ 1.78e´1.78λ (18)

Combining the likelihood and prior gives us the posterior:

Prpθlj , τ¨, β1, β2|Y¨¨q “

"

ź

1ďlďL
1ďjďJ

Φ
`

p2Ylj ´ 1qθvotelp

˘1pjPtJvote
uq
W`P

2P p1´αq

ˆ
 

Φ
`

θlj ´ τ Ylj

˘

´ Φ
`

θlj ´ τ Ylj´1

˘ (1pjPtJterm
uq
W`P
2W α

*

ˆ
1
?

2π
e´

1
2µ

2

ˆ
ź

1ďlďL

1
?

2π
e´

1
2 pcl´µq

2

ˆ
ź

1ďjďJ

1
?

2π
e´

1
2 pbj´µq

2

ˆ
ź

1ďdďD
1ďlďL

1

2
?

2π
e´

1
8 pxldq

2

ˆ
ź

1ďdďD
1ďjďJ

1

2
?

2π
e´

1
8 pgjdq

2

ˆ
ź

1ďdďD

1

2λ
e´λ|ad|

ˆ
1

β1

?
2π
e´

1
2 plog β1q

2

ˆ
1

β2

?
2π
e´

1
2 plog β2q

2

ˆ e´1.78λ

(19)

We implement two forms of data augmentation. In the first, for each observation we introduce a normal

random variable Z˚lj as is standard in latent probit models (Albert and Chib, 1993). This transforms the

likelihood into a least squares problem, as:

PrpYlj “ k|Z˚lj , θlj , τ¨, β1, β2q “
ź

1ďlďL
1ďjďJ

1
?

2π
e´

1
2 pZ

˚
lj´θljq

2

(20)

The second form of augmentation involves representing the double exponential prior for ad to maintain

conjugacy. Following Park and Casella (2008), we introduce latent variables rτl, such that:
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d¨|rτ
2
¨ „ N p0D, rDrτ q (21)

rD
rτ “ diagprτ2

1 , rτ
2
2 , ¨ ¨ ¨ , rτ

2
Dq (22)

rτ2
1 , rτ

2
2 , . . . , rτ

2
D „

ź

1ďdďD

λ2

2
e´λ

2
rτ2
d {2drτ2

d (23)

where, after integrating out rτ2
l , we are left with the LASSO prior. The proposed method differs from the

presentation in Park and Casella (2008) in that we know σ2 “ 1, by assumption.

1.2.1 Sampling from the Posterior

Next, we outline the MCMC sampler. All conditional posterior densities are conjugate normals except λ,

rτ2, β1, and β2. For a derivation of the posterior densities of λ and rτ2, see Park and Casella (2008). We

fit β1 and β2, which determine τ¨, using a Hamiltonian Monte Carlo algorithm, but first we describe the

Gibbs updates.

The updates occur in two steps. First, we place all data on the latent z scale. Second, we update all

of the remaining parameters. For the first step, we sample as:

Z˚lj |¨ „

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

T N pθlj , 1, 0,8q ; Ylj “ 1, j P Jvote

T N pθlj , 1,´8, 0q ; Ylj “ 0, j P Jvote

T N pθlj , 1, τk´1, τkq ; Ylj “ k, j P J term

N pθlj , 1q ; Ylj missing

(24)

Note that we have ignored missing values up to this point. In the Bayesian framework used here,

imputing is straightforward: the truncated normal is replaced with a standard normal, whether term or

vote data. Next, we update all of θlj except for τ¨ using a Gibbs sampler, as:

µ|¨ „ N

˜

řL
l“1

řJ
j“1 Z

˚
lj

LJ ` 1
,

1

L2J2 ` 1

¸

(25)

cl|¨ „ N

˜

řJ
j“1 Z

˚
lj

J ` 1
,

1

J2 ` 1

¸

(26)

bj |¨ „ N

˜

řL
l“1 Z

˚
lj

L` 1
,

1

L2 ` 1

¸

(27)

Z˚˚lj “ Z˚lj ´ cl ´ bj ` µ (28)

Now, we update x¨¨, a¨, v¨¨ from a scaled SVD of Z˚˚. By a scaled SVD, we mean that the left and right

singular vectors are scaled to have sample standard deviation, rather than length, one. Doing so is a

standard means of scaling the latent space, and result in a latent scale that is on the same scale as L, J
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grows.

a¨|¨ „ N
´

A´1
rXJvecpZ˚˚q, A´1

¯

where

rX “
“

vec
`

x¨1g
J
¨1

˘

: vec
`

x¨2g
J
¨2

˘

: . . . : vec
`

x¨Lg
J
¨L

˘‰

and

A “ rXJ rX ` T´1 with T “ diagpτ2
l q

(29)

x
rl rd|¨ „ N

¨

˚

˚

˝

řJ
j“1 Z

˚˚
rlj,´ rd

a
rdgjrl

c

řJ
j“1

´

a2
rd
g2
j rd
` 1

4J

¯

,
1

řJ
j“1

´

a2
rd
g2
j rd
` 1

4J

¯

˛

‹

‹

‚

(30)

g
rj rd|¨ „ N

¨

˚

˚

˝

řL
l“1 Z

˚˚

lrj,´ rd
a
rdxl rd

c

řL
l“1

´

a2
rd
x2
l rd
` 1

4L

¯

,
1

řL
l“1

´

a2
rd
x2
l rd
` 1

4L

¯

˛

‹

‹

‚

(31)

Z˚˚
lj,´ rd

“ Z˚˚lj ´
ÿ

d‰ rd

xl rdgjdad (32)

rτ2
d |¨ „ InvGauss

˜
d

λ2

a2
d

, λ2

¸

(33)

λ2|¨ „ Gamma

˜

D ` 1,
D
ÿ

d“1

rτ2
d {2` 1.78

¸

(34)

We fix throughout this and the EM implementation

β0 “ Φ´1

˜

řL
l“1

ř

jPJterm 1 pYlj “ 0q

LJ term

¸

(35)

and we sample β1, β2 using the Hamiltonian Monte Carlo method described below.

1.2.2 EM Implementation of SFA

As we have derived the conditional posterior densities for all of our parameters, above, an EM implemen-

tation is straightforward. We treat the spatial locations, xld and gjd as the parameters to be estimated

and the remainder as “missing.” To begin, we initialize the votes at the inverse Mills ratio and terms after

a log transform:

θ0
lj “

$

’

’

’

’

&

’

’

’

’

%

φp0q
1´Φp0q ˆ p´1qYlj ; j P Jvote;Ylj not missing

logp1` Yljq; j P J term

0; Ylj missing

(36)

We also initialize λ “ .5; xld, gjd, ad off a scaled SV D of the double-centered θ; τd “ 1 @d.

We can now begin the EM algorithm. Note that it is implied that the right hand side of each update

below contains the most current update of estimates of all parameters and that all updates occur in turn

over l, j, d.
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1. First E-Step: Updating Z.

• Z˚lj Ð θlj `
φplowljq´φphighljq

Φphighljq´Φplowljq
were highlj and lowlj are the upper and lower truncation points

as given in 24

• µÐ
řL

l“1

řJ
j“1 Z

˚
lj

LJ`1

• cl Ð
řJ

j“1 Z
˚
lj

J`1

• bj Ð
řL

l“1 Z
˚
lj

L`1

• Z˚˚lj Ð Z˚lj ´ cl ´ bj ` µ

2. M step: Updating legislator, term, and vote locations over l, j, d:

• Calculate Z˚˚
lj,´ rd

:“ Z˚˚lj ´
ř

d‰ rd xl rdgjdad

• x
rl rd Ð

řJ
j“1 Z

˚˚
rlj,´ rd

a
rd
g
jrl

c

řJ
j“1

´

a2
rd
g2
j rd
` 1

4J

¯

• g
rj rd Ð

řL
l“1 Z

˚˚

lrj,´ rd
a

rd
x
l rd

c

řL
l“1

´

a2
rd
x2

l rd
` 1

4L

¯

3. Second E step: Updating the rest.

• aÐ A´1
rXJvec pZ˚˚q; A defined above

• rτ2
d Ð λ{ad

• λÐ L`1
řD

d“1 rτ2
d`1.78

• Numerically integrate β1, β2 to calcualte Epβ1|¨q; Epβ2|¨q using kernel

Prpβ1|¨q9
ź

jPJterm

 

Φ
`

θlj ´ τ Ylj

˘

´ Φ
`

θlj ´ τ Ylj´1

˘(

ˆ
1

β1
e´

1
2 plog β1q

2

(37)

Prpβ2|¨q9
ź

jPJterm

 

Φ
`

θlj ´ τ Ylj

˘

´ Φ
`

θlj ´ τ Ylj´1

˘(

ˆ
1

β2
e´

1
2 plog β2q

2

(38)

1.2.3 The Hamiltonian Monte Carlo Sampler

We have no closed form estimates for the conditional posterior densities of β1 and β2. To estimate these, we

implement a Hamiltonian Monte Carlo scheme adapted directly from Neal (2011). We adapt the algorithm

in one important manner: rather than taking a negative gradient step, we calculate the numerical Hessian

and take a fraction (α) of a Newton-Raphson step at each. We select α during the burnin so that the

acceptance ratio of proposed pβ1, β2q is about .4.

Specifically, let ydevpβ1, β2q denote the estimate deviance at the point pβ1, β2q. Define the numeri-

cal gradients, p∇1devpβ1, β2q and p∇2devpβ1, β2q as the estimated gradient at pβ1, β2q and p∇11devpβ1, β2q,

p∇22devpβ1, β2q, and p∇12devpβ1, β2q as the cross derivative. Next, define the empirical Hessian as:

pHpβ1, β2q “

¨

˝

p∇11devpβ1, β2q p∇12devpβ1, β2q

p∇12devpβ1, β2q p∇22devpβ1, β2q

˛

‚ (39)
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We implement the algorithm in Neal (2011) exactly, except instead taking updates of the form:

¨

˝

β1

β2

˛

‚

`

:“

¨

˝

β1

β2

˛

‚

´

´ α

¨

˝

p∇1pβ1, β2q

p∇2pβ1, β2q

˛

‚ (40)

we instead do updates of the form:

¨

˝

β1

β2

˛

‚

`

:“

¨

˝

β1

β2

˛

‚

´

´ αˆ
!

pHpβ1, β2q

)´1

¨

˝

p∇1pβ1, β2q

p∇2pβ1, β2q

˛

‚ (41)

where the Hessian is updated every third update of the parameters during the and burnin period and

afterwards fixed at the average of the last ten steps. The step length parameter α is adjust every 50

iterations to by a factor of 4/5 if the acceptance rate is below 10%, 5/4 if the acceptance rate is above

90%, and left the same otherwise during the burnin-in. After the burn-in period, the acceptance rate levels

off around 45%. We implement twenty steps in order to produce a proposal.

1.2.4 Numerical Approximation of the Deviance

Calculating the gradient and Hessian terms, and assessing the proposal, in the Hamiltonian Monte Carlo

scheme requires evaluating functions of the form lpa, bq “ logpΦpaq ´Φpbqq. Unfortunately, large values of

a and b in magnitudereturns values of 1 or 0, leaving it impossible to evaluate the logarithm.

Extrapolating from the observed values yields the linear approximation:

lpa, bq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

a

b

a2

b2

logp|a´ b|q

tlogp|a´ b|qu
2

ab

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

J

γ (42)

where
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Figure 1: Estimated Ideal Points for Ten Legislators Missing at Random. The lefthand panel
compares the censored and uncensored estimates (marked by X’s) of the preferred outcomes for the ten
randomly censored legislators on the first dimension, while the righthand panel makes the analogous
comparison for dimension two.

γ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1.82517672

0.51283415

´0.81377290

´0.02699400

´0.49642787

´0.33379312

´0.24176661

0.03776971

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(43)

We derived the values for γ from fitting a model over the range 4 ď b ă a ď 8. We get a mean absolute

error of 0.0165, or 0.08% error as a fraction of the value returned by R. We use this approximation in

order to extrapolate to values where R returns values of NA or Inf for fpa, bq.

2 Supplemental Materials

We offer tests for the internal and external validity of SFA. The leadership imputation exercise appears in

the main body as well, but we include it in here for completeness.

2.1 Internal Validity

Imputing estimates for legislators missing completely at random. First, we randomly discard

the votes cast by ten legislators selected completely at random, coding all of their votes as “missing,”,

while we maintain all of their speech data. The left and right panels of Figure 1 plot the imputed versus

fitted values (X) for the dropped legislators, for the first (left) and second (right) dimension. SFA recovers
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Figure 2: Estimated Ideology when Only Leaders Votes are Informative. The voting dimension
estimates appear in the left panel, with the censored estimates measured on the vertical (y-axis) while
the uncensored ones appear on the horizontal (x-axis). In the censored data the salience of the voting
dimension drops, so that it becomes the second dimension. The righthand panel exhibits the leadership
dimension, again the censored estimates correspond with the vertical (y-axis) and the uncensored ones
coincide with the horizontal (x-axis).

reliable first-dimension preferred outcomes well, except for some expected attenuation bias. The second

dimension ideal points are recovered almost exactly. We remind the reader that the first SFA dimension

coincides closely with the dimension that emerges from an analysis of the votes alone, and so we might

expect it to be more affected by the loss of voting data, while the accuracy of our second dimension

estimates, which are dominated by speech data, would be expected to suffer less from the censorship of

the votes.

Imputing estimates for members’ given only votes from leadership. We next offer a more

challenging test of internal validity. For this analysis, we coded all vote data except for the party leaders

and whips as missing, while maintaining all speech data. This left a vote record for less than 4% of

the Senate. We then compared the SFA ideal point estimates to the SFA estimates using everyone’s

speech, but only leaders’ votes. Essentially our exercise in censorship diminishes the importance of the

dimension related to voting. Figure 2 shows that we again recover two dimensions based on the censored

data, although their order is now reversed. Specifically, as the voting dimension becomes noisier, it falls

into second place, while the leadership dimension, the evidence for which comes almost entirely through

legislative speech, earns the higher dimension weight. The left panel of Figure 2 compares estimates for the

voting dimension, which is the second dimension estimated with the heavily censored data (plotted along

the vertical y-axis) while it corresponds with the first dimension of the uncensored estimates (graphed

relative to the horizontal x-axis). Observations are labeled by party, and leaders’ locations are in bold and

circled. As one would expect, with less than 1{25 of the voting data, recovery of the first dimension is far

from perfect, but remarkably the imputed scores correlate highly, at more than 0.85, with the estimates

9



based on the full data set. The right hand panel compares estimates for the “leadership” dimension, which

coincides with the first dimension based on the censored data, but with the second dimension based on

the uncensored data set. In contrast with the voting dimension, the censored estimates correspond closely

with their uncensored counterparts. Of course, the “leadership” dimension is driven mostly by words, and

we did not censor those.

While this last exercise may seem a stunt, we note that in heavily whipped parliaments most legislators

vote their parties, rather than their preferences (e.g., Kellerman, 2012), yet they still give speeches. In

such settings we might use SFA to “bridge” between speeches actually given by members of a parliament

to the votes that they would have cast had they not been “whipped,” anchoring the exercise by treating

the votes of party principals as a genuine reflection of the leaders’ preferences.

2.2 External Validity

Lastly, we consider assessing SFA’s ability to recover preference estimates with external validity. So far,

we have used SFA to impute from legislative members to other members during the same session. We next

turn from imputing ideal points for legislative members to imputing ideal points for non-legislative actors,

namely newspaper editorials.1

We apply SFA to word count data from unsigned editorials published during the two years that the

112th Congress was in session in the New York Times, the Wall Street Journal, and the Washington Post,

using the same terms we employed in our analysis of the Senate. As above, we combine the word counts

of these editorials with the Senate data, treating the editorials as legislators with a missing vote record.

As the term data come from different venues, the Senate floor versus the editorial page, the exercise

is one of “out of sample prediction.” This leaves us with the question of whether the political meanings

of the terms of discourse are the same in both venues. As a first approach to this issue, we treat the

ideal points for both groups as coming from a mean-zero distribution. Results appear in Figure 3. We

orient the dimension so that the Republicans have a positive value. The densities for the Republican and

Democratic Senators are in the background, and the voting dimension legislator preferred outcomes are

plotted as hatch marks along the x-axis. The results are largely as expected. If we treat the three sets of

editorial boards as legislators who do not vote, we find the Wall Street Journal (WSJ) to the right of the

Washington Post (Wash Post) and the New York Times (NYT) to its left. The distance between the

Wall Street Journal and the Washington Post is about half the estimated distance between the New York

Times and the Post.

2.3 Descriptive Statistics

A summary of our data can be found in Table 1. The first three columns report the session of the Senate,

the number of distinct Senators who served, and the total number of votes cast. A “term” is a stemmed

unigram or bigram. We restrict our attention to frequent terms, excluding “stop words” see the text for

1We used the Factiva database to download the editorials from the three newspapers published from January 2011 to

December 2012 corresponding to the 112th Congress.
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locations and differences between the ideal points for legislators and newspapers.

details.

Total Terms Frequent Terms

Senate Senators Votes Number % Zero Number % Zero Minimum Maximum

105 100 613 2880504 97.8 3168 10.7 0 2838

106 102 670 940615 94.6 3804 13.9 0 2995

107 100 633 765696 94.6 3155 13.3 0 4993

108 100 676 813635 94.6 3384 13.5 0 3702

109 101 645 788693 94.7 3350 13.7 0 3816

110 102 658 846720 94.6 3711 15.2 0 5211

111 110 697 783331 95.0 3473 19.9 0 3494

112 101 487 572247 94.7 2532 15.1 0 2946

Table 1: Data summary by Senate. The first three columns report the session of the Senate, the
number of distinct Senators who served, and the total number of votes cast. A “term” is a stemmed
unigram or bigram. We restrict our attention to frequent terms, excluding “stop words” see the text for
details.

2.4 Selection of α based on Empirical Criteria
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Figure 4: Performance of the Empirical Criterion for Selecting α, averaged over. We
consider several model fit criteria for choosing α: our discrimination statistic, the WAIC for word
data, WAIC for vote data, and WAIC for all data. All results are scaled relative to those
from a null model, denoted by the horizontal line at 1. The criteria were evaluated at α P

t0.00, 0.09, 0.15, 0.24, 0.36, 0.50, 0.64, 0.76, 0.85, 0.91, 1.00u. The WAIC for words and for the whole data
are difficult to differentiate as they agree quite closely, given the preponderence of words in the data.
There is a stable maximum around 0.36 across years, and the criteria is reasonably concave with a well-
defined extremum.
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