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Abstract: Many researchers use unit fixed effects regression models as their default methods for causal inference with
longitudinal data. We show that the ability of these models to adjust for unobserved time-invariant confounders comes at
the expense of dynamic causal relationships, which are permitted under an alternative selection-on-observables approach.
Using the nonparametric directed acyclic graph, we highlight two key causal identification assumptions of unit fixed effects
models: Past treatments do not directly influence current outcome, and past outcomes do not affect current treatment.
Furthermore, we introduce a new nonparametric matching framework that elucidates how various unit fixed effects
models implicitly compare treated and control observations to draw causal inference. By establishing the equivalence
between matching and weighted unit fixed effects estimators, this framework enables a diverse set of identification strategies
to adjust for unobservables in the absence of dynamic causal relationships between treatment and outcome variables. We
illustrate the proposed methodology through its application to the estimation of GATT membership effects on dyadic trade
volume.

Replication Materials: The data, code, and any additional materials required to replicate all analyses in this arti-
cle are available on the American Journal of Political Science Dataverse within the Harvard Dataverse Network, at:
https://doi.org/10.7910/DVN/YUM3K8.

Unit fixed effects regression models are widely
used for causal inference with longitudinal or
panel data in the social sciences (e.g., Angrist

and Pischke 2009). Many researchers use these models to
adjust for unobserved, unit-specific and time-invariant
confounders when estimating causal effects from obser-
vational data. In spite of this widespread practice, much
methodological discussion of unit fixed effects models in
political science has taken place from model-based per-
spectives (often assuming linearity), with little attention
to the causal identification assumptions (e.g., Beck 2001;
Bell and Jones 2015; Clark and Linzer 2015; Wilson and
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Butler 2007). In contrast, our work builds upon a small
literature on the use of linear fixed effects models for
causal inference with longitudinal data in econometrics
and statistics (e.g., Arkhangelsky and Imbens 2018; Sobel
2006; Wooldridge 2005a).

Specifically, we show that the ability of unit fixed
effects regression models to adjust for unobserved time-
invariant confounders comes at the expense of dynamic
causal relationships between treatment and outcome vari-
ables, which are allowed to exist under an alternative
selection-on-observables approach (e.g., Robins, Hernán,
and Brumback 2000). Our analysis highlights two key
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causal identification assumptions that are required un-
der fixed effects models and yet are often overlooked by
applied researchers: (1) past treatments do not directly
influence current outcome, and (2) past outcomes do
not affect current treatment. Unlike most of the exist-
ing discussions of unit fixed effects regression models
that assume linearity, we use the directed acyclic graph
(DAG) framework (Pearl 2009) that can represent a wide
class of nonparametric structural equation models, en-
compassing linear and other unit fixed effects models as
special cases.

In addition, we propose a new analytical frame-
work that directly connects unit fixed effects models to
matching methods (e.g., Ho et al. 2007; Rubin 2006;
Stuart 2010). The framework makes explicit how coun-
terfactual outcomes are estimated under unit fixed ef-
fects regression models. A simple but important insight
is that the comparison of treated and control observa-
tions must occur within the same unit and across time
periods in order to adjust for unobserved, unit-specific
and time-invariant confounders. We establish this fact by
proving the equivalence between within-unit matching
estimators and weighted linear unit fixed effects regres-
sion estimators. In particular, the result implies that
the counterfactual outcome for a treated observation
in a given time period is estimated using the observed
outcomes of different time periods of the same unit.
Since such a comparison is valid only when no causal
dynamics exist, this finding underscores the important
limitation of linear regression models with unit fixed
effects.

Although linear unit fixed effects models must
assume the absence of causal dynamics to adjust for
unobserved time-invariant confounders, we further
improve these models by relaxing the linearity assump-
tion. Our matching framework incorporates a diverse
set of identification strategies to address unobservables
under the assumption that the treatment and outcome
variables do not influence each other over time. We also
derive the weighted linear unit fixed effects regression
estimator that is equivalent to a within-unit matching
estimator. This equivalence allows us to construct
simple model-based standard errors instead of more
complex and computationally intensive standard errors
proposed in the literature (e.g., Abadie and Imbens 2006,
2012; Otsu and Rai 2017). In addition, we can use the
model-based specification test to assess the appropri-
ateness of the linearity assumption in unit fixed effects
regression models (White 1980a). Our theoretical results
also extend the weighted regression results available in
the literature for causal inference with cross-section
data to longitudinal studies (e.g., Aronow and Samii

2015; Humphreys 2009; Solon, Haider, and Wooldridge
2015). The proposed methodology is freely available
as an R package, wfe: Weighted Linear Fixed
Effects Estimators for Causal Inference,
at the Comprehensive R Archive Network (https://cran.r-
project.org/package=wfe).

Finally, we illustrate the proposed methodology by
applying it to the controversy regarding the causal effects
of General Agreement on Tariffs and Trade (GATT) mem-
bership on dyadic trade (Rose 2004; Tomz, Goldstein, and
Rivers 2007). Despite the substantive disagreement, there
exists a remarkable methodological consensus among re-
searchers in the literature, all of whom endorse the use of
linear fixed effects regression models. We critically exam-
ine the causal identification assumptions of the models
used in previous studies and also consider an alterna-
tive identification strategy. We show that the empirical
conclusions are highly dependent on the choice of causal
identification assumptions.

Due to space constraints, this article does not study
linear regression models with unit and time fixed effects
(i.e., two-way linear fixed effects models). Imai, Kim, and
Wang (2018) further extend our matching framework to
these models. The two-way linear fixed effects models
are closely related to the difference-in-differences (DiD)
identification strategy. The DiD estimator is based on
the comparison of treated and control units within the
same time period under the assumption of parallel time
trend between the treated and control units. Formally,
Imai, Kim, and Wang (2018) show that a class of match-
ing estimators, which apply the DiD estimator after ad-
justing for treatment history and confounders, is equiv-
alent to the weighted two-way linear fixed effects mod-
els and derives the exact formula for regression weights.
Thus, unlike linear regression models with unit fixed ef-
fects, two-way fixed effects models can allow for causal
dynamics under the additional assumption of parallel
trend.

Causal Identification Assumptions

We study the causal identification assumptions of regres-
sion models with unit fixed effects. While we begin our
discussion by describing the basic linear regression model
with unit fixed effects, our analysis is conducted under a
more general, nonparametric setting based on the di-
rected acyclic graphs (DAGs) and potential outcomes
frameworks (Imbens and Rubin 2015; Pearl 2009). We
show that the ability of unit fixed effects models to ad-
just for unobserved time-invariant confounders comes
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at the expense of dynamic causal relationships between
treatment and outcome variables.

The Linear Unit Fixed Effects Regression
Model

Throughout this article, for the sake of simplicity, we
assume a balanced longitudinal data set of N units and
T time periods with no missing data. We also assume
a simple random sampling of units from a population
with T fixed. For each unit i at time t, we observe the
outcome variable Yit and the binary treatment variable
Xit ∈ {0, 1}. The most basic linear regression model with
unit fixed effects is based on the following specification:

Yit = �i + �Xit + �i t, (1)

for each i = 1, 2, . . . , N and t = 1, 2, . . . , T , where �i is
a fixed but unknown intercept for unit i and �i t is a dis-
turbance term for unit i at time t with E(�i t) = 0. In this
model, the unit fixed effect �i captures a vector of unob-
served time-invariant confounders in a flexible manner.
That is, we define each fixed effect as �i = h(Ui ), where
Ui represents a vector of unobserved time-invariant con-
founders and h(·) is an arbitrary and unknown function.

Typically, the strict exogeneity of the disturbance
term �i t is assumed to identify �. Formally, this assump-
tion can be written as

E(�i t | Xi , �i ) = 0, (2)

for each i = 1, 2, . . . , N, and t = 1, 2, . . . , T , where Xi

is a T × 1 vector of treatment variables for unit i . Since �i

can be any function of Ui , this assumption is equivalent
to E(�i t | Xi , Ui ) = 0.

We refer to this model based on Equations 1 and 2 as
LIN − FE. The least squares estimate of � is obtained by
regressing the deviation of the outcome variable from its
mean on the deviation of the treatment variable from its
mean:

�̂LIN−FE = argmin
�

N∑
i=1

T∑
t=1

{
(Yit − Y i )

− �(Xit − Xi )
}2

, (3)

where Xi = ∑T
t=1 Xit/T and Y i = ∑T

t=1 Yit/T . If the
data are generated according to LIN − FE, then �̂LIN−FE

is unbiased for �.
The parameter � is interpreted as the average con-

temporaneous effect of Xit on Yit . Formally, let Yit(x)
represent the potential outcome for unit i at time t under
the treatment status Xit = x for x = 0, 1, where the ob-
served outcome equals Yit = Yit(Xit). Equation 3 shows
that units with no variation in the treatment variable

do not contribute to the estimation of �. Thus, under
LIN − FE, the causal estimand is the following average
treatment effect among the units with some variation in
the treatment status:

� = E(Yit(1) − Yit(0) | Ci = 1), (4)

where Ci = 1{0 <
∑T

t=1 Xit < T}. Under LIN − FE,
this quantity is represented by � (i.e., � = �), because
of the assumed linearity for potential outcomes, that is,
Yit(x) = �i + �x + �i t .

Nonparametric Causal Identification
Analysis

To understand the fundamental causal assumptions of
unit fixed effects models, we conduct a nonparametric
identification analysis that avoids any parametric restric-
tion. Specifically, we relax the linearity assumption of
LIN − FE (i.e., Equation 1). We also generalize mean in-
dependence (i.e., Equation 2) to statistical independence.
The resulting model is the following nonparametric fixed
effects model (NP − FE).

Assumption 1 (Nonparametric Fixed Effects Model). For
each i = 1, 2, . . . , N and t = 1, 2, . . . , T,

Yit = g (Xit, Ui , �i t) and (5)

�i t ⊥⊥ {Xi , Ui }, (6)

where g (·) can be any function.

Note that NP − FE includes LIN − FE as a special
case.1 Unlike LIN − FE, NP − FE does not assume a
functional form and enables all effects to vary across
observations.

We examine causal assumptions of NP − FE
using the directed acyclic graphs (DAGs). Pearl (2009)
shows that a DAG can formally represent a nonpara-
metric structural equation model (NPSEM), avoiding
functional-form and distributional assumptions while
enabling general forms of effect heterogeneity.2 The
DAG in Figure 1 graphically represents the NPSEM that
corresponds to NP − FE. For simplicity, the DAG only
describes the causal relationships for three time periods,
but we assume that the same relationships apply to all time

1Although mean independence does not necessarily imply statis-
tical independence, in most cases researchers have no substantive
justification to assume the former rather than the latter. Under the
assumption of statistical independence, LIN − FE is a special case
of NP − FE.

2More precisely, NP − FE implies Xit = f (Xi1, . . . , Xi,t−1,
Ui , �i t ), where �i t is an exogenous disturbance term and f (·) is
any function.
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FIGURE 1 Directed Acyclic Graph
for Regression Models
with Unit Fixed Effects
Based on Three Time
Periods

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Note: Solid circles represent observed
outcome Yit and treatment Xit variables,
whereas a gray dashed circle represents
a vector of unobserved, unit-specific and
time-invariant confounders Ui . The solid
arrows indicate the possible existence of
causal relationships, whereas the absence
of such arrows represents the lack of
causal relationships. DAGs are also as-
sumed to contain all relevant, observed
and unobserved, variables.

periods even when there are more than three time periods
(i.e., T > 3). In this DAG, the observed variables, Xit

and Yit , are represented by solid circles, whereas a dashed
gray circle represents the unobserved time-invariant con-
founders, Ui . The solid black arrows indicate the possible
existence of direct causal effects, whereas the absence of
such arrows represents the assumption of no direct causal
effect. In addition, DAGs are assumed to contain all rele-
vant, observed and unobserved, variables. Therefore, this
DAG assumes the absence of unobserved time-varying
confounders.

The DAG in Figure 1 shows that Assumption 1 of
NP − FE can be understood as the following set of state-
ments, each of which is represented by the absence of
corresponding nodes or arrows:

Assumption (a) No unobserved time-varying con-
founder exists.
Assumption (b) Past outcomes do not directly affect
current outcome.

Assumption (c) Past outcomes do not directly affect
current treatment.
Assumption (d) Past treatments do not directly
affect current outcome.

No additional arrows can be added to the DAG with-
out making it inconsistent with NP − FE. In particular,
no additional arrows that point to Xit can be included in
the DAG without violating the strict exogeneity assump-
tion of �i t under NP − FE. The existence of any such ar-
row, which must originate from past outcomes Yit ′ where
t ′ < t, would imply a possible correlation between �i t ′

and Xit .3

Next, we adopt the potential outcomes framework.
While DAGs illuminate the entire causal structure, the
potential outcomes framework clarifies the assumptions
about treatment assignment mechanisms. First, the right-
hand sides of Equations 1 and 5 include the contempo-
raneous value of the treatment but not its past values,
implying that past treatments do not directly affect cur-
rent outcome. We call this restriction the assumption of
no carryover effect,4 corresponding to Assumption (d)
described above.

Assumption 2 (No carryover effect). For each i =
1, 2, . . . , N and t = 1, 2, . . . , T, the potential outcome
is given by

Yit(Xi1, Xi2, . . . , Xi,t−1, Xit) = Yit(Xit).

To better understand the assumed treatment assign-
ment mechanism, we consider a randomized experiment
to which NP − FE is applicable. This experiment can be
described as follows: For any given unit i , we random-
ize the treatment Xi1 at time 1, and for the next time
period 2, we randomize the treatment Xi2 conditional on
the realized treatment at time 1—that is, Xi1, but without
conditioning on the previous outcome Yi1. More gener-
ally, at time t, we randomize the current treatment Xit

conditional on the past treatments Xi1, Xi2, . . . , Xi,t−1.
The critical assumptions are that there exists no unob-
served time-varying confounder (Assumption a) and that
the treatment assignment probability at time t cannot
depend on its past realized outcomes Yit ′ where t ′ < t
(Assumption c). However, the treatment assignment
probability may vary across units as a function of unob-
served time-invariant characteristics Ui . We can formalize
this treatment assignment mechanism as follows.

3This is because Yit acts as a collider on any path between �i t and
{Xi , Ui }.
4These models are based on the usual assumption of no spillover
effect that the outcome of a unit is not affected by the treatments
of other units (Rubin 1990). The assumption of no spillover effect
is made throughout this article.
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Assumption 3 (Sequential Ignorability with Unob-
served Time-Invariant Confounders.). For each i =
1, 2, . . . , N,

{Yit(1), Yit(0)}T
t=1 ⊥⊥ Xi1 | Ui ,

...

{Yit(1), Yit(0)}T
t=1 ⊥⊥ Xit ′ | Xi1, . . . , Xi,t ′−1, Ui ,

...

{Yit(1), Yit(0)}T
t=1 ⊥⊥ Xit | Xi1, . . . , Xi,T−1, Ui .

Thus, Assumption 2 corresponds to Assumption d
of NP − FE and is implied by equation 1 of LIN − FE.
In addition, Assumption 3 corresponds to Assump-
tions (a) and (c) of NP − FE and the strict exogene-
ity assumption of LIN − FE given in Equation 2 (see
Appendix A.1 for a proof).

Which Causal Identification Assumptions
Can Be Relaxed?

It is well known that the assumption of no unobserved
time-varying confounder (Assumption a) is difficult to
relax under the fixed effects models. Therefore, we con-
sider the other three identification assumptions shared
by LIN − FE and NP − FE (Assumptions b, c, and d)
in turn.

First, note that we did not mention Assumption (b)
under the potential outcomes framework. Indeed, this
assumption—past outcomes do not directly affect current
outcome—can be relaxed without compromising causal
identification. To see this, suppose that past outcomes
directly affect current outcome as in Figure 2(a). Even
under this scenario, past outcomes do not confound the
causal relationship between current treatment and cur-
rent outcome so long as we condition on past treatments
and unobserved time-invariant confounders. The reason
is that past outcomes do not directly affect current treat-
ment. Thus, there is no need to adjust for past outcomes
even when they directly affect current outcome.5 The exis-
tence of such a relationship, however, may necessitate the
adjustment of standard errors, for example, via-cluster
robust standard errors.

Next, we entertain the scenario in which past treat-
ments directly affect current outcome (i.e., relaxing As-
sumption d). Typically, applied researchers address this

5The application of the adjustment criteria (Shpitser, VanderWeele,
and Robins 2010) implies that these additional causal relationships
do not violate Assumption 3 since every noncausal path between
the treatment Xit and any outcome Yit ′ is blocked where t �= t ′.

possibility by including lagged treatment variables in
LIN − FE. Here, we consider the following model with
one time period lag:

Yit = �i + �1 Xit + �2 Xi,t−1 + �i t . (7)

The model implies that the potential outcome can be
written as a function of the contemporaneous and pre-
vious treatments, that is, Yit(Xi,t−1, Xit), rather than
the contemporaneous treatment alone, partially relaxing
Assumption 2.

The DAG in Figure 2(b) generalizes the above model
and depicts an NPSEM in which a treatment possibly
affects all future outcomes as well as current outcome.
This NPSEM is a modification of NP − FE, replacing
Equation 5 with the following alternative model for the
outcome:

Yit = g (Xi1, . . . , Xit, Ui , �i t). (8)

It can be shown that under this NPSEM, Assumption 3
still holds.6 The only difference between the DAGs in
Figures 1 and 2(b) is that in the latter, we must adjust
for the past treatments because they confound the causal
relationship between the current treatment and outcome.

In general, however, we cannot nonparametrically
adjust for all past treatments and unobserved time-
invariant confounders Ui at the same time. By nonpara-
metric adjustment, we mean that researchers match ex-
actly on confounders. To nonparametrically adjust for Ui ,
the comparison of treated and control observations must
be done across different time periods within the same
unit. The problem is that no two observations within a
unit, measured at different time periods, share the same
treatment history. Such adjustment must be done by com-
paring observations across units within the same time
period, and yet doing so makes it impossible to adjust for
unobserved time-invariant variables.

Therefore, in practice, researchers assume that only
a small number of past treatments matter. Indeed, a fre-
quent practice is to adjust for one time period lag. Under
this assumption, multiple observations within the same
unit may share the identical but partial treatment his-
tory even though they are measured at different points in
time. Under the linear regression framework, researchers
conduct a parametric adjustment by simply including a
small number of past treatments, as done in Equation 7.
However, typically the number of lagged treatments to

6The result follows from the application of the adjustment criteria
(Shpitser, VanderWeele, and Robins 2010), in which any noncausal
path between �i t and {Xi , Ui } contains a collider Yit . This result also
holds even if past outcomes affect current outcomes (i.e., without
Assumption b).
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FIGURE 2 Identification Assumptions of Regression Models with Unit
Fixed Effects

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

(a) past outcome affects current outcome

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

(b) past treatments affect current outcome

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

(c) past outcomes affect current treatment

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

(d) past outcomes affect both current outcome
and treatment

Note: Identification is not compromised when past outcomes affect current outcome
(panel a). However, the other two scenarios (panels b and c) violate the strict exogeneity
assumption. To address the possible violation of strict exogeneity shown in panel (c),
researchers often use an instrumental variable approach, shown in panel (d), in which
past outcomes affect both current outcome and treatment but Yi1 is assumed not to
directly affect Yi3.

be included is arbitrarily chosen and is rarely justified on
substantive grounds.7

Finally, we consider relaxing the assumption that past
outcomes do not directly affect current treatment (As-
sumption c). This scenario is depicted as Figure 2(c). It
is immediate that Assumption 3 is violated because the

7One exception is the setting where the treatment status changes
only once in the same direction (e.g., from the control to treatment
condition). While adjusting for the previous treatment is sufficient
in this case, there may exist a time trend in outcome, which con-
founds the causal relationship between treatment and outcome.

existence of causal relationships between past outcomes
and current treatment implies a correlation between past
disturbance terms and current treatment.8 This lack of
feedback effects over time represents another key causal
assumption required for the unit fixed effects models.

To address this issue, the model that has attracted
much attention is the following linear unit fixed effects
model with a lagged outcome variable:

Yit = �i + �Xit + �Yi,t−1 + �i t . (9)

8For example, there is an unblocked path from Xi2 to �i1 through
Yi1.
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TABLE 1 Identification Assumptions of Various Estimators

Time-Invariant Past Outcomes Affect Past Treatments Affect
Linearity Unobservables Current Treatment Current Outcome

Yit = �i + �Xit + �i t Yes Allowed Not allowed Not allowed
Yit = �i + �Xit + �Yi,t−1 + �i t Yes Allowed Allowed Not allowed
Yit = �i + �1 Xit + �2 Xi,t−1 + �i t Yes Allowed Not allowed Allowed
Yit = �i + �1 Xit + �2 Xi,t−1 + �Yi,t−1 + �i t Yes Allowed Partially allowed Partially allowed
Marginal structural models No Not allowed Allowed Allowed

Figure 2(d) presents a DAG that corresponds to this
model. The standard identification strategy commonly
employed for this model is based on instrumental vari-
ables (e.g., Arellano and Bond 1991). The results of Brito
and Pearl (2002) imply that we can identify the average
causal effect of Xi3 on Yi3 by using Xi1, Xi2, and Yi1 as
instrumental variables while conditioning on Ui and Yi2.9

However, the validity of each instrument depends on the
assumed absence of its direct causal effect on the outcome
variable (i.e., direct effects of Yi1, Xi1, and Xi2 on Yi3).
Unfortunately, in practice, these assumptions are often
made without a substantive justification.

In sum, three key causal identification assumptions
are required for LIN − FE and its nonparametric gen-
eralization NP − FE. The assumption of no unobserved
time-varying confounder is well appreciated by applied
researchers. However, many fail to recognize two addi-
tional assumptions required for the unit fixed effects re-
gression models: Past treatments do not affect current
outcome and past outcomes do not affect current treat-
ment. The former can be partially relaxed by assuming
that only a small number of lagged treatment variables
affect the outcome. The use of instrumental variables
is a popular approach to relax the latter assumption,
but under this approach we must instead assume that
some lagged outcome variables do not directly affect
current outcome. Unfortunately, researchers rarely jus-
tify these alternative identification strategies on substan-
tive grounds.

Finally, although this article focuses upon models
with time-invariant unobservables, we emphasize a key
trade-off between causal dynamics and time-invariant
unobservables. An alternative selection-on-observable
approach allows for the existence of such dynamic causal
relationships even though it assumes the absence of
time-invariant unobservables (see Robins, Hernán, and

9If Xi1 and Xi2 directly affect Yi3, then only Yi1 can serve as a valid
instrument. If past outcomes do not affect current outcome, then
we can use both Yi1 and Yi2 as instruments.

Brumback 2000).10 The key decision for applied re-
searchers is then whether, in a given substantive prob-
lem, they believe causal dynamics is more important than
time-invariant unobserved confounders.

Table 1 summarizes the identification assumptions
of various estimators considered in this section. The
standard linear regression model with unit fixed effects
allows for the existence of time-invariant unobservables
but does not allow causal dynamics. By including lagged
outcome and treatment variables, one can allow either
past outcomes to affect current treatment or past treat-
ments to affect current outcome. However, allowing both
types of causal dynamics requires an instrumental vari-
able approach, in which past outcomes, after a certain
number of lags, are assumed not to directly affect current
outcome. Finally, the selection-on-observable approach
based on marginal structural models can nonparamet-
rically identify causal effects in the presence of causal
dynamics, but this is done under the assumption of no
time-invariant unobservables.

Adjusting for Observed Time-Varying
Confounders

Finally, we consider the adjustment of observed time-
varying confounders under fixed effects regression
models. Since fixed effects models can only adjust for
unobserved confounders that are time-invariant, applied
researchers often measure a vector of observed time-
varying confounders Zi t to improve the credibility of
assumptions.11 We show here that the main conclusion
of the above identification analysis remains unchanged
even if we include these additional observed time-varying
confounders as covariates of the fixed effects regression

10See Blackwell (2013) and Blackwell and Glynn (2018) for recent
articles that introduce relevant modeling techniques under the as-
sumption of selection-on-observables to political science.

11Note that Zi t is assumed to be causally prior to the current treat-
ment Xit .
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FIGURE 3 Directed Acyclic Graph for
Regression Models with Unit
Fixed Effects and Observed
Time-Varying Confounders
Based on Three Time Periods

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Zi1 Zi2 Zi3

Ui

models. In fact, in this case, we must make an addi-
tional assumption that there exists no dynamic causal
relationship between outcome and these time-varying
confounders, leading to potentially even less credible
causal identification in many applications.

Consider the following NP − FE, which now in-
cludes observed time-varying confounders Zi t .

Assumption 4. (NONPARAMETRIC FIXED EFFECTS MODEL

WITH OBSERVED TIME-VARYING CONFOUNDERS). For each
i = 1, 2, . . . , N and t = 1, 2, . . . , T,

Yit = g (Xi1, . . . , Xit, Ui , Zi1, . . . , Zit, �i t) and (10)

�i t ⊥⊥ {Xi , Zi , Ui }, (11)

where Zi = (Zi1 Zi2 . . . Zi t).

Figure 3 presents a DAG that corresponds to a non-
parametric structural equation model consistent with this
NP − FE. The difference between the DAGs shown in
Figures 1 and 3 is the addition of Zi t , which directly af-
fects the contemporaneous outcome Yit , the current and
future treatments {Xit, Xi,t+1, . . . , Xit}, and their own
future values {Zi,t+1, . . . , Zi t}. Moreover, the unobserved
time-invariant confounders Ui can directly affect these
observed time-varying confounders. Under this model,
only the contemporaneous time-varying confounders Zi t

and the unobserved time-invariant confounders Ui con-
found the contemporaneous causal relationship between
Xit and Yit . Neither past treatments nor past time-varying

confounders need to be adjusted because they do not di-
rectly affect current outcome Yit .

Now, suppose that the observed time-varying con-
founders Zi t directly affect future and current outcomes
Yit ′ where t ′ ≥ t. In this case, we need to adjust for the
past values of the observed time-varying confounders as
well as their contemporaneous values. This can be done
by including the relevant lagged confounding variables,
(that is, Zi t ′ with t ′ < t, in fixed effects regression mod-
els. However, for the same reason as the one explained in
the last subsection, it is impossible to nonparametrically
adjust for the entire sequence of past time-varying con-
founders and unobserved time-invariant confounders Ui

at the same time. While the nonparametric adjustment of
Ui requires the comparison of observations across differ-
ent time periods within each unit, no two observations
measured at different points in time share an identical
history of time-varying confounders.

Furthermore, similar to the case of NP − FE with-
out time-varying confounders, the average contempora-
neous treatment effect of Xit on Yit becomes uniden-
tifiable if the outcome Yit affects future treatments Xit ′

either directly or indirectly through Zi t ′ where t ′ > t. This
is because the existence of a causal relationship between
Yit and Zi t ′ implies a correlation between �i t and Zi t ′ ,
thereby violating Assumption 4. In the previous subsec-
tion, we pointed out the difficulty of assuming the lack of
causal relationships between past outcomes and current
treatment. In many applications, we expect feedback ef-
fects to occur over time between outcome and treatment
variables. For the same reason, assuming the absence of
causal effects of past outcomes on current time-varying
confounders may not be realistic.

The above discussion implies that researchers face
the same key trade-off regardless of whether time-
varying confounders are present. To adjust for unob-
served time-invariant confounders, researchers must as-
sume the absence of dynamic causal relationships among
the outcome, treatment, and observed time-varying con-
founders. In contrast, the selection-on-observables ap-
proach can relax these assumptions so long as there ex-
ists no unobserved time-invariant confounder. Under this
alternative approach, past treatments can directly affect
current outcome, and past outcomes can either directly or
indirectly affect current treatment (through time-varying
confounders).

In the next section, we propose a within-unit match-
ing estimator, which relaxes the common assumption of
linearity among unit fixed effects estimators discussed
in this section. Although the fundamental trade-off be-
tween causal dynamics and time-invariant unobservables
is unavoidable, relaxing the functional form assumption
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of linear regression models with unit fixed effects enables
more robust inference when the identification assump-
tions are met.

A New Matching Framework

Causal inference is all about the question of how to
credibly estimate the counterfactual outcomes through
the comparison of treated and control observations. For
a treated observation, we observe the outcome under the
treatment condition but must infer its counterfactual
outcome under the control condition using the observed
outcomes of control observations. Matching is a class
of nonparametric methods in which we solve this
fundamental problem of causal inference by finding
a set of control observations similar to each treated
observation (e.g., Ho et al. 2007; Rubin 2006; Stuart
2010).

In this section, we propose a new matching frame-
work to shed new light on the causal identification
assumptions of unit fixed effects regression models.
Like the DAGs introduced above, this new matching
framework is completely nonparametric. In the following
subsection, we show that relaxing the linearity assump-
tion is key to consistently estimating the causal quantity
of interest defined in Equation 4. Moreover, the proposed
framework elucidates how various unit fixed effects
models adjust for time-invariant unobservables. Specif-
ically, the subsequent section shows that causal inference
based on unit fixed effects regression models relies upon
within-unit comparison where a treated observation is
matched with the control observations of the same unit
at different time periods. We then establish this fact by
proving that a within-unit matching estimator is equiv-
alent to a weighted linear unit fixed effects regression
model.

Consistent with the earlier analysis, such over-time
comparison is valid only in the absence of causal dy-
namics. However, the proposed nonparametric match-
ing framework can serve as an important foundation
for simultaneously relaxing the linearity assumption and
enabling a variety of identification strategies based on
within-unit comparison in the presence of unobservable
unit-specific heterogeneity.

The Within-Unit Matching Estimator

Despite its popularity, LIN − FE does not consistently
estimate the average treatment effect (ATE) defined in

Equation 4 even when Assumptions 2 and 3 are satis-
fied. This is because LIN − FE additionally requires the
linearity assumption. Indeed, the linear unit fixed effects
regression estimator given in Equation 3 converges to
a weighted average of unit-specific ATEs in which the
weights are proportional to the within-unit variance of
the treatment assignment variable. This result is restated
here as a proposition.

Proposition 1 (Inconsistency of the Linear Fixed Ef-
fects Regression Estimator [Chernozhukov et al. 2013,
Theorem 1]). Suppose E(Y 2

i t) < ∞ and E(Ci S2
i ) > 0

where S2
i = ∑T

t=1(Xit − Xi )2/(T − 1). Under Assump-
tions 2 and 3 as well as simple random sampling of units
with T fixed, the linear fixed effects regression estimator
given in Equation 3 is inconsistent for the average treat-
ment effect � defined in Equation 4:

�̂LIN−FE
p−→

E

{
Ci

(∑T
t=1 Xit Yit∑T

t=1 Xit
−

∑T
t=1(1−Xit )Yit∑T

t=1 1−Xit

)
S2

i

}
E(Ci S2

i )
�= �.

Thus, in general, under Assumptions 2 and 3, the
linear unit fixed effects estimator fails to consistently es-
timate the ATE unless either the within-unit ATE or the
within-unit proportion of treated observations is con-
stant across units. This result also applies to the use
of LIN − FE in a cross-sectional context. For example,
LIN − FE is often used to analyze stratified randomized
experiments (Duflo, Glennerster, and Kremer 2007). Even
in this case, if the proportion of treated observations and
the ATE vary across strata, then the resulting least squares
estimator will be inconsistent.

We consider a nonparametric matching estimator
that eliminates this bias. The key insight from an ear-
lier discussion is that under Assumptions 2 and 3, even
though a set of time-invariant confounders Ui is not ob-
served, we can nonparametrically adjust for them by com-
paring the treated and control observations measured at
different time periods within the same unit. This within-
unit comparison motivates the following matching esti-
mator, which computes the difference of means between
the treated and control observations within each unit and
then averages it across units:

�̂ = 1∑N
i=1 Ci

N∑
i=1

Ci

(∑T
t=1 XitYit∑T

t=1 Xit

−
∑T

t=1(1 − Xit)Yit∑T
t=1(1 − Xit)

)
. (12)

This matching estimator is attractive because unlike the
estimator in Equation 3, it does not require the linearity
assumption. Under Assumptions 2 and 3, this within-unit
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matching estimator is consistent for the ATE defined in
Equation 4.

Proposition 2 (Consistency of the Within-Unit Match-
ing Estimator). Under the same set of assumptions as in
Proposition 1, the within-unit matching estimator defined
in Equation 12 is consistent for the average treatment effect
defined in Equation 4.

Proof is in Appendix A.2.
To further generalize this idea, we make the connec-

tion to matching methods more explicit by defining a
matched set Mi t for each observation (i, t) as a group of
other observations that are matched with it. For example,
under the estimator proposed above, a treated (control)
observation is matched with all control (treated) obser-
vations within the same unit, and hence the matched set
is given by

Mi t = {(i ′, t ′) : i ′ = i, Xi ′t ′ = 1 − Xit}. (13)

Thus far, we have focused on the average treat-
ment effect as a parameter of interest given that re-
searchers often interpret the parameter � of LIN − FE
as the average contemporaneous treatment effect of
Xit on Yit . However, our matching framework can ac-
comodate various identification strategies for different
causal quantities of interest using different matched
sets. That is, given any matched set Mi t , we can de-
fine the corresponding within-unit matching estimator �̂

as

�̂ = 1∑N
i=1

∑T
t=1 Dit

N∑
i=1

T∑
t=1

Dit(Ŷi t(1) − Ŷi t(0)),

(14)

where Yit(x) is observed when Xit = x and is estimated
using the average of outcomes among the units of its
matched set when Xit = 1 − x :

Ŷi t(x) =
⎧⎨
⎩

Yit if Xit = x

1
|Mi t |

∑
(i ′,t ′)∈Mi t

Yi ′t ′ if Xit = 1 − x.
(15)

Note that |Mi t | represents the number of observa-
tions in the matched set and that Dit indicates whether
the matched set Mi t contains at least one observa-
tion, that is, Dit = 1{|Mi t | > 0}. In the case of the
matched set defined in Equation 13, we have Dit = Ci for
any t.

Identification Strategies Based on
Within-Unit Comparison

The framework described above can accommodate di-
verse matching estimators through their corresponding
matched setsMi t . Here, we illustrate the generality of the
proposed framework. First, we show how to incorporate
time-varying confounders Zi t by matching observations
within each unit based on the values of Zi t . For example,
the within-unit nearest neighbor matching leads to the
following matched set:

Mi t = {(i ′, t ′) : i ′ = i,

Xi ′t ′ = 1 − Xit,D(Zi t, Zi ′t ′) = J i t}, (16)

where D(·, ·) is a distance measure (e.g., Mahalanobis
distance), and

J i t = min
(i,t ′)∈Mi t

D(Zi t, Zi t ′) (17)

represents the minimum distance between the time-
varying confounders of this observation and another ob-
servation from the same unit whose treatment status is
opposite. With this definition of matched set, we can con-
struct the within-unit nearest neighbor matching estima-
tor using Equation 14. The argument of Proposition 2
suggests that this within-unit nearest neighbor matching
estimator is consistent for the ATE so long as matching
on Zi t eliminates the confounding bias.

Second, we consider the before-and-after (BA) design
in which each average potential outcome is assumed to
have no time trend over a short time period. Since the
BA design also requires the assumption of no carryover
effect, the BA design may be most useful when for a
given unit the change in the treatment status happens
only once. Under the BA design, we simply compare the
outcome right before and immediately after a change in
the treatment status. Formally, the assumption of no time
trend can be written as the following:

Assumption 5 (Before-and-After Design). For i =
1, 2, . . . , N and t = 2, . . . , T,

E(Yit(x) − Yi,t−1(x) | Xit �= Xi,t−1) = 0,

where x ∈ {0, 1}.
Under Assumptions 2 and 5, the average difference

in outcome between before and after a change in the
treatment status is a valid estimate of the local ATE, that
is, E(Yit(1) − Yit(0) | Xit �= Xi,t−1).

To implement the BA design within our framework,
we restrict the matched set and compare the observations
within two subsequent time periods that have opposite
treatment status. Formally, the resulting matched set can
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be written as

Mi t = {(i ′, t ′) : i ′ = i, t ′ = t − 1, Xi ′t ′ = 1 − Xit}. (18)

It is straightforward to show that this matching estima-
tor is equivalent to the following first-difference (FD)
estimator:

�̂FD = argmin
�

N∑
i=1

T∑
t=2

{
(Yit − Yi,t−1)

− �(Xit − Xi,t−1)
}2

. (19)

In standard econometrics textbooks, the FD estimator
defined in Equation 19 is presented as an alternative esti-
mation method for the LIN − FE estimator. For example,
Wooldridge (2010) writes, “We emphasize that the model
and the interpretation of � are exactly as in [the linear
fixed effects model]. What differs is our method for es-
timating �” (279; italics original). However, as can be
seen from the above discussion, the difference lies in the
identification assumption and the population for which
the ATE is identified. Both the LIN − FE and FD estima-
tors match observations within the same unit. However,
the FD estimator matches observations only from sub-
sequent time periods, whereas the LIN − FE estimator
matches observations from all time periods regardless of
the treatment status.

There exists an important limitation of the BA de-
sign. Although Assumption 5 is written in terms of time
trend of potential outcomes, the assumption is violated
if past outcomes affect current treatment. Since the first-
difference estimator can be thought of as a special case
of linear unit fixed effects regression estimators, the crit-
ical assumption of no dynamic causal relationships be-
tween the outcome and treatment variables remains rel-
evant under the BA design. Consider a scenario where
the treatment variable Xit is set to 1 when the lagged
outcome Yi,t−1 takes a value greater than its mean. In
this case, even if the treatment effect is 0, the out-
come difference between the two periods, Yit − Yi,t−1,
is likely to be negative because of the so-called “regres-
sion toward the mean” phenomenon. James (1973) de-
rives an expression for this bias under the normality
assumption.

Finally, we can generalize the BA design so that we
use a larger number of lags to estimate the counterfactual
outcome. If we let L represent the number of lags, then
the matched set becomes

Mi t = {(i ′, t ′) : i ′ = i, t ′ ∈ {t − 1, . . . , t − L },
Xi ′t ′ = 1 − Xit}. (20)

Furthermore, the causal quantity of interest can also be
generalized to a longer-term average treatment effect, that

is,

E{Yi,t+F (1) − Yi,t+F (0) | Xit �= Xi,t−1}, (21)

where F is a non-negative integer representing the num-
ber of leads. Under this setting, we estimate the potential
outcome under Xit = x at time t + F using the following
matching estimator:

�̂ = 1∑N
i=1

∑T−F
t=L+1 Dit

N∑
i=1

T−F∑
t=L+1

Dit( ̂Yi,t+F (1) − ̂Yi,t+F (0)), (22)

where

̂Yi,t+F (x) =
⎧⎨
⎩

Yi,t+F if Xit = 1 − Xi,t−1 = x

1
|Mi t |

∑
(i ′,t ′)∈Mi t

Yi ′t ′ if Xit = 1 − x
,

Dit =
⎧⎨
⎩

1 if Xit = 1 − Xi,t−1

0 otherwise.
(23)

Estimation, Inference, and Specification
Test

As the main analytical result of this article, we show that
any within-unit matching estimator can be written as
a weighted linear regression estimator with unit fixed
effects. The following theorem establishes this result and
shows how to compute regression weights for a given
matched set (see Gibbons, Suárez Serrato, and Urbancic
2017; Solon, Haider, and Wooldridge 2015 for related
results).

Theorem 1 (Within-Unit Matching Estimator as a
Weighted Unit Fixed Effects Estimator). Any within-
unit matching estimator �̂ defined by a matched set Mi t

equals the weighted linear fixed effects estimator, which can
be computed as

�̂WFE = argmin
�

N∑
i=1

T∑
t=1

Wit

{
(Yit − Y

∗
i )

− �(Xit − X
∗
i )
}2

, (24)

where X
∗
i = ∑T

t=1 Wit Xit/
∑T

t=1 Wit , Y
∗
i = ∑T

t=1 Wit

Yit/
∑T

t=1 Wit , and the weights are given by

Wit = Dit

N∑
i ′=1

T∑
t ′=1

wi ′t ′
i t , where
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wi ′t ′
i t =

⎧⎪⎨
⎪⎩

1 if (i, t) = (i ′, t ′)

1/|Mi ′t ′ | if (i, t) ∈ Mi ′t ′

0 otherwise.

(25)

Proof is in Appendix A.3. In this theorem, wi ′t ′
i t rep-

resents the amount of contribution or “matching weight”
of observation (i, t) for the estimation of treatment ef-
fect of observation (i ′, t ′). For any observation (i, t), its
regression weight is given by the sum of the matching
weights across all observations.

For example, it can be shown that when the matched
set is given by Equation 13, the regression weights equal
to the inverse of the propensity score computed within
each unit. Thus, along with Proposition 2, this im-
plies that if the data-generating process is given by the
linear unit fixed effects model defined in Equation 1
with Assumptions 2 and 3, then the weighted linear
unit fixed effects regression estimator with weights in-
versely proportional to the propensity score is consis-
tent for the average treatment effect �. We note that
this weighted linear fixed effects estimator is numeri-
cally equivalent to the sample weighted treatment ef-
fect estimator of Wooldridge (2005b), which was fur-
ther studied by Gibbons, Suárez Serrato, and Urbancic
(2017).

Theorem 1 yields several practically useful impli-
cations. First, one can efficiently compute within-unit
matching estimators even when the number of units is
large. Specifically, a weighted linear fixed effects esti-
mator can be computed by first subtracting its within-
unit weighted average from each of the variables and
then running another weighted regression using these
“weighted demeaned” variables. Second, taking advan-
tage of this equivalence, we can use various model-based
robust standard errors for within-unit matching estima-
tors (e.g., Stock and Watson 2008; White 1980a). Third, a
within-unit matching estimator is consistent for the ATE
even when LIN − FE is the true model (i.e., the linear-
ity assumption holds). This observation leads to a simple
specification test based on the difference between the un-
weighted and weighted least squares (White 1980b) where
the null hypothesis is that the linear unit fixed effects re-
gression model is correct.

Finally, Theorem 1 can be used to improve the credi-
bility of the BA design. Recall that the BA design makes the
assumption that there is no time trend (Assumption 5).
That is, the outcome from the previous time period can
be used to estimate the average counterfactual outcome in
the next time period when the treatment status changes.
In practice, however, this identification assumption may
be questionable, especially when estimating a long-term

average treatment effect defined in Equation 21. One
possibile way to address this problem is to exploit the
equivalence between matching and weighted least squares
estimators and model a time trend using observations
prior to the administration of treatment.

For example, researchers may use the following
weighted least squares estimator of the average treatment
effect in the F time periods ahead,

�̂ = argmin
�

N∑
i=1

T∑
t=1

Wit

{
(Yit − Y i )

− �(Xit − Xi ) − f� (t)
}2

, (26)

where f� (t) is a parametric time trend model (e.g.,
f� (t) = �1(t − t̄) + �2(t2 − t̄2)), with t̄ and t̄2 repre-
senting the average year, and average squared year re-
spectively,12 and Wit is the weight computed accord-
ing to Theorem 1 based on the matched set defined in
Equation 20:

Wit = Dit

N∑
i ′=1

T∑
t ′=1

wi ′t ′
i t where

wi ′t ′
i t =

⎧⎪⎨
⎪⎩

1 if (i, t) = (i ′, t ′ + F )

1/|Mi ′t ′ | if (i, t) ∈ Mi ′t ′

0 otherwise,

(27)

and Mi t is defined in Equation 20. Although the above
model assumes a common time trend across units, we
can also estimate a separate time trend for each unit if
there is a sufficient number of time periods. This is done
by replacing f� (t) with f�i (t) (e.g., f�i (t) = �i1(t − t̄) +
�i2(t2 − t̄2)). While this strategy enables flexible model-
ing of time trend, care must be taken especially for a large
value of F since we are extrapolating into the future.

An Empirical Illustration

In this section, we illustrate our proposed methodology
by estimating the effects of General Agreement on Tariffs
and Trade (GATT) membership on bilateral trade and
comparing our results with various fixed effects models.
We show that different causal assumptions can yield sub-
stantively different results, but our methodology using
the before-and-after design generally suggests that joint
GATT membership slightly increases bilateral trade vol-
ume on average.

12For an unbalanced time-series cross section data set, t̄ and t̄2 will
vary across units.
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Effects of GATT Membership on Bilateral
Trade

Does GATT membership increase international trade?
Rose (2004) finds that the answer to this question is
negative. Based on the standard gravity model applied
to dyadic trade data, his analysis yields economically
and statistically insignificant effects of GATT member-
ship (and its successor, the World Trade Organization
or WTO) on bilateral trade. This finding led to subse-
quent debates among empirical researchers as to whether
GATT actually promotes trade (e.g., Gowa and Kim 2005;
Tomz, Goldstein, and Rivers 2007; Rose 2007). In par-
ticular, Tomz, Goldstein and Rivers (2007) find a sub-
stantial positive effect of GATT/WTO on trade when a
broader definition of membership is employed. They ar-
gue that nonmember participants, such as former colonies,
de facto members, and provisional members, should also
be included in empirical analysis since they enjoy similar
“rights and obligations.”

Despite the substantive controversy regarding the ef-
fects of GATT on trade, researchers appear to have reached
a methodological consensus that the LIN − FE is the cor-
rect model to be used (Anderson and Wincoop 2003;
Feenstra 2003). In another article, Rose (2005) expresses
his belief in the usefulness of LIN − FE by stating, “In
terms of confidence, I follow the profession in placing
most confidence in the fixed effects estimators; I have
no clear ranking between country-specific and country
pair-specific effects” (10). Tomz, Goldstein, and Rivers
(2007) agree with this assessment and write, “We, too,
prefer FE estimates over OLS on both theoretical and
statistical grounds” (2013). Below, we critically examine
the assumptions of the LIN − FE in the context of this
specific application.

Data

We analyze the data set from Tomz, Goldstein, and Rivers
(2007), which updates and corrects some minor errors in
the data set used by Rose (2004). Unlike Rose (2004) and
Tomz, Goldstein, and Rivers (2007), however, we restrict
our analysis to the period between 1948 and 1994 so that
we focus on the effects of GATT and avoid conflating
them with the effects of the WTO. As shown below, this
restriction does not significantly change the conclusions
of the studies, but it leads to a conceptually cleaner anal-
ysis. This yields a dyadic data set of bilateral international
trade in which the total number of dyads is 10,289 and
the total number of (dyad-year) observations is 196,207.

We use two different definitions of GATT member-
ship: “formal membership” as used by Rose (2004) and

“participants” as adopted by Tomz, Goldstein, and Rivers
(2007). For each membership definition, we estimate its
average effects on bilateral trade. We consider the two
treatment variables: whether both countries in a dyad i
are members (formal or participants) of GATT or not
in a given year t (mix of dyads with one GATT member
and no GATT member). This analysis focuses on the reci-
procity hypothesis that GATT can impact bilateral trade
only when countries mutually agree on reducing trade
barriers (Bagwell and Staiger 1999).13

Figure 4 shows the distributions of these two treat-
ment variables across dyads (vertical axis) and over time
(horizontal axis). For any dyad, the treatment status
changes at most once in only one direction from the
control condition to the treatment condition. This ob-
servation holds true for both formal membership (left
plot) and participant status (right plot). Given this distri-
bution of treatment variables, we next consider different
identification strategies.

Models and Assumptions

We begin with the following linear regression model with
dyadic fixed effects used by Rose (2007):

log Yit = �i + �Xit + 	�Zi t + �i t, (28)

where Xit is one of the binary treatment indicators
for dyad i in year t described above, Yit is the bilat-
eral trade volume, and Zi t represents a vector of time-
varying confounders including Generalized System of
Preferences (GSP), log product real GDP, log product
real GDP per capita, regional free trade agreement, cur-
rency union, and currently colonized. As discussed ear-
lier, the advantage of this standard dyad fixed effects
model is its ability to adjust for unobserved time-invariant
confounders.

Next, we progressively improve this LIN − FE. First,
we relax the linearity assumption, which, as shown in
Proposition 1, leads to bias when there exists hetero-
geneity across dyads in treatment effect and/or treat-
ment assignment probability. Indeed, Subramanian and
Wei (2007) find substantial heterogeneity in the effects
of GATT/WTO on trade. We instead apply the proposed
nonparametric matching estimator, given by Equation 14,
which compares each treated observation with the average
outcome among all control observations within the same
unit. In the current application, this implies the within-
dyad comparison between the control observations in an

13We also conduct analyses based on alternative definitions of treat-
ment, such as whether only one country or no country in a dyad is
a member (see Appendix A.4).
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FIGURE 4 Distributions of the Treatment Variables across Dyads and over Time
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Note: This figure displays the distribution of treatment for 9,180 dyads from 1948 to 1999 based on 136 countries
whose existence and membership status were identified by Tomz, Goldstein, and Rivers (2007) during the entire
period. In the left (right) panel, the binary treatment variable is shown in dark gray if both countries in the dyad are
formal members (participants) and in light gray otherwise. In both cases, the visualization shows that the treatment
status does not revert back and forth over time because countries do not exit the institution once they join.

earlier period and the treatment observations in a later
period because the treatment status changes at most once
for any given dyad. However, this comparison is poten-
tially problematic since the data set spans a relatively large
number of years and hence some of the matched control
observations may be too far apart in time from the treated
observation to be comparable. For example, it would not
be credible if one estimated the counterfactual bilateral
trade volume in 1994 using the observed trade volume
in 1950 since various other factors have changed between
those 2 years.

Second, to improve the comparability of treated
and control observations, we employ the first-difference
estimator by restricting the matched set and compare
the observations within only two subsequent time
periods with treatment status change (see Equation 19).
Under this special case of the before-and-after design,
we require the assumption of no time trend because
the control observation immediately before the change

in treatment status is used to form an estimate of the
counterfactual outcome under the treatment condition.
Although this identification strategy is more credible, the
assumption of no time trend may be too stringent given
that trade volume in general has increased over time.
This problem is particularly pronounced if researchers
are interested in estimating the long-term effects
(see Equation 21) rather than the contemporaneous
effect.

Thus, we generalize the first-difference estimator
by including longer lagged control observations in the
matched set prior to the change in the treatment status
(see Equation 20). This allows us to parametrically adjust
for the time trend in bilateral trade volume by exploiting
the equivalence between matching and weighted fixed ef-
fects estimators. Under this general design, we can also
estimate both contemporaneous and longer-term effects
by setting various values of leads, F ≥ 0. Specifically, we
fit the following weighted fixed effects estimator with a
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TABLE 2 Estimated Contemporaneous Effects of GATT on the Logarithm of Bilateral Trade Based
on Various Dyad Fixed Effects Estimators

Dyad Fixed Effects Before-and-After Design

Membership Standard Weighted First Diff. Lag = 3 Lag = 5 Lag = 7

Formal −0.048 −0.069 0.075 −0.003 0.028 0.035
(N=196,207) (0.024) (0.022) (0.053) (0.027) (0.022) (0.020)
White’s p-value 0.000 0.004
N (nonzero weights) 196,207 110,195 6,846 8,625 12,880 17,274
Participants 0.147 0.011 0.096 0.066 0.065 0.079
(N=196,207) (0.030) (0.028) (0.029) (0.035) (0.028) (0.026)
White’s p-value 0.000 0.648
N (nonzero weights) 196,207 68,004 3,952 4,472 6,640 8,905
Covariates Year-varying dyadic covariates Quadratic time trends

Note: The “Standard” column presents the estimates based on the standard linear regression model with dyadic fixed effects given by
Equation 28. The “Weighted” column presents the estimates based on the nonparametric matching estimator given by Equation 12.
The “First Diff.” column is based on the comparison between two subsequent time periods with treatment status change. “White’s
p-value” represents the p-value from a model specification test whose null hypothesis is that the standard linear fixed effects models
are correct. Finally, the “Before-and-After Design” columns present the results based on three different lengths of lags with quadratic
time trends (Equation 29). These estimators compare the dyads of two GATT members with those consisting of either one or no GATT
member. “Formal” membership includes only formal GATT members as done in Rose (2004), whereas “Participants” includes nonmember
participants as defined in Tomz, Goldstein, and Rivers (2007). The year-varying dyadic covariates include Generalized System of Preferences,
log product real GDP, log product real GDP per capita, regional free trade agreement, currency union, and currently colonized. Robust
standard errors, allowing for the presence of heteroskedasticity, are in parentheses. The results suggest that different causal assumptions,
which imply different regression weights, can yield different results, and that the standard linear fixed effects models are likely to be
misspecified.

quadratic time trend:

�̂BA = argmin
�

N∑
i=1

T∑
t=1

Wit

{
(Yit − Y i )

− �(Xit − Xi ) − �1(t − t̄i ) − �2(t2 − t̄2
i )
}2

,

(29)

where Wit is given by Equation 25, and t̄i and t̄2
i are the

mean values of year and squared year variables, respec-
tively (unlike the estimator in Equation 26, these values
may differ across dyads because some dyads do not cover
the entire period in this application). In this application,
we chose at most F = 5 as our maximum value of this
lead variable since the identification of longer-term ef-
fects requires the extrapolation of time trends into the
future based on the observed control observations from
the past.

A word of caution is warranted about these estima-
tors. As discussed earlier, these dyad linear fixed effects
regression models and the before-and-after designs criti-
cally assume that there exist no time-varying unobserved
confounders and that past outcomes do not confound
the causal relationship between current treatment and

outcome.14 These assumptions may be unrealistic. Stud-
ies have shown that economic interests and previous levels
of engagement in bilateral trade affect countries’ incen-
tives to join the GATT/WTO (Davis and Wilf 2017). That
is, past outcomes (i.e., bilateral trade volumes) may af-
fect current treatment (i.e., GATT membership). Further-
more, past treatments may also affect current outcome.
Atkeson and Burstein (2010) find that changes in trade
barriers, such as most favored nations (MFN) tariffs ap-
plied to GATT members, will determine forward-looking
firms’ reactions to exit, export, and product innovation,
which will in turn affect future trade volumes. For the em-
pirical analysis of this article, however, we maintain these
assumptions and focus on the aforementioned improve-
ments of the linear fixed effects regression estimator used
in the literature. In the concluding section, we briefly dis-
cuss potential extensions of the proposed methodology
to address these fundamental identification assumptions
of unit fixed effects regression estimators.

14Moreover, the model assumes no interference between units. That
is, one dyad’s treatment status does not affect the trade volumes of
other dyads. Although this assumption may also be unrealistic in
this interdependent world, relaxing it is difficult and is beyond the
scope of this article.
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FIGURE 5 Estimated Longer-Term Effects of GATT on the Logarithm
of Bilateral Trade Based on Before-and-After Design
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Note: This plot presents point estimates and 95% confidence intervals for the estimated effects
of GATT membership on bilateral trade. The quantity of interest and the matched set are given
by Equations 21 and 20, respectively. That is, we compare the average bilateral trade volume
across L ∈ {3, 5, 7} years of lags before the treatment given at year t against the bilateral trade
volume in t + F , where F ∈ {0, 1, 2, 3, 4, 5} is the years since the treatment. We also include
quadratic time trends. Overall, we find no evidence of positive effects of formal membership.
We find some evidence of positive effects of participant membership with substantively much
smaller effect sizes (e.g., 20% increase in 5 years) than the estimates from Tomz, Goldstein,
and Rivers (2007; e.g., 71.6% contemporaneous effects). Robust standard errors allowing for
the presence of heteroskedasticity are used.

Findings

We present the results based on each estimator discussed
above. Table 2 summarizes the estimated contemporane-
ous effects of GATT membership on bilateral trade vol-
ume. When we use the standard linear regression model

with dyadic fixed effects (see the “Standard” column), we
find that formal membership does not increase trade vol-
ume on average (if anything, there appears to be a negative
effect). In contrast, the estimated effect of participant
is postive and statistically significant. As expected, these
results are consistent with the original findings from
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both Rose (2004) and Tomz, Goldstein, and Rivers
(2007), who also used standard fixed effects regression
models.

However, the estimates based on the nonparametric
matching estimator allowing for heterogeneity in treat-
ment assignment and treatment effects suggest that the
effect of participant membership is much smaller and sta-
tistically indistinguishable from zero (see the “Weighted”
column). The nonparametric matching estimator uses a
much lower number of observations than the standard
dyadic fixed effects because the dyads with no treatment
status change are dropped. The standard dyadic fixed ef-
fects model still includes these observations because of
year-varying dyadic covariates.

In contrast, the analysis based on the comparison be-
tween two subsequent time periods with treatment status
change, corresponding to the “First Diff.” column, shows
that the estimated effects for both treatment variables are
positive, although the effect of formal membership is not
statistically significant. The sample size for this analysis
is further reduced because of its focus on immediately
before and after the change in treatment status. As a con-
sequence, the standard error for the estimated effect of
formal membership is substantially greater than those of
standard and weighted analyses. On the other hand, the
standard error for the estimated effect of participant does
not increase as much, suggesting that the effect is rela-
tively precisely estimated. “White p-value” represents the
p-value from a model misspecification test whose null
hypothesis is that the standard linear fixed effects mod-
els are correct (see the subsection “Estimation, Inference,
and Specification Test”). The small p-values suggest that
the standard linear fixed effects models are likely to be
misspecified.

Furthermore, we implement the before-and-after de-
sign with three different lengths of lag to adjust for the
time trends in trade volume for each dyad. Consistent
with the above analyses, we find that the estimated con-
temporaneous effect of the formal membership is not
distinguishable from zero with small point estimates, re-
gardless of the lag length. However, while the standard
error tends to be greater with fewer lags, we consistently
find positive effects of participant membership across
models with various lags. In sum, our findings suggest
that different causal assumptions can yield different re-
sults. Credible comparisons under the before-and-after
design yield a robust finding that the contemporane-
ous effect of participant is positive, whereas that of for-
mal membership is not statistically distinguishable from
zero.

Finally, we estimate the longer-term effects of the
two treatment variables given in Equation 21. Figure 5

presents the point estimates and 95% confidence inter-
vals for the estimated effects of formal membership (left
column) and participant (right column) on trade vol-
ume from the year of treatment t to year t + 5. We also
use various lengths of lag to examine the robustness of
our findings. The quadratic time trend is included in the
model to account for time trend in trade volume.

In general, we find little evidence for longer-term
effects of formal membership. Notwithstanding the
statistically significant positive effects estimated based
on 7 years of lags, the effect sizes are modest: The highest
estimate suggests an 8% percent (≈ exp(0.081) − 1)
increase in trade volume over 5 years after joining the
GATT. Similarly, we find some evidence of positive
effects of participant membership with the model with
the lag of 7 years. However, the estimated effect sizes
are substantively much smaller (e.g., maximum 20%
increase in 5 years) than the estimates reported in Tomz,
Goldstein, and Rivers (e.g., 71.6% contemporaneous
effect).

We note that the estimated effect sizes are stable across
various implementations of the before-and-after design
with different values of the lags, although a longer lag
yields smaller standard errors due to a larger sample size.
To account for the correlations across dyads when they
share a common member, we verify our findings with
the cluster-robust standard errors proposed by Aronow,
Samii, and Assenova (2015) and find that the positive ef-
fects of participant membership remain statistically sig-
nificant, although the standard errors are about 20%
larger on average. Our findings are also robust to includ-
ing/excluding time-varying covariates as well as linear
time trend (see Appendix A.5 for additional results). This
is not surprising since matching is expected to reduce
model dependence (Ho et al. 2007).

Concluding Remarks

The title of this article asks the question of when re-
searchers should use linear unit fixed effects regression
models for causal inference with longitudinal data. Ac-
cording to our analysis, the answer to this question
depends on the trade-off between unobserved time-
invariant confounders and dynamic causal relationships
between outcome and treatment variables. In particular,
if the treatment assignment mechanism critically depends
on past outcomes, then researchers are likely to be better
off investing their efforts in measuring and adjusting for
time-varying confounders rather than adjusting for un-
observed time-invariant confounders through unit fixed
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effects models under unrealistic assumptions. In such sit-
uations, methods that effectively account for dynamics
such as marginal structural models may be more appro-
priate. This conclusion also applies to the before-and-
after designs that are closely related to first-differencing
regression models.

If, on the other hand, researchers are concerned about
time-invariant confounders and are willing to assume
the absence of dynamic causal relationships, then unit
fixed effects regression models are effective tools to ad-
just for unobserved time-invariant confounders. In this
article, we propose a new matching framework that im-
proves linear unit fixed effects regression models by re-
laxing the linearity assumption. Under this framework,
we show how to incorporate various identification strate-
gies and implement them as weighted linear unit fixed
effects regression estimators. For example, we extend
the first-difference estimator to the general case of the
before-and-after design and show its equivalence to a
weighted linear regression with unit fixed effects. Our
framework also facilitates the incorporation of additional
covariates, model-based inference, and specification
tests.

Unfortunately, researchers must choose either to ad-
just for unobserved time-invariant confounders through
unit fixed effects models or to model dynamic causal
relationships between treatment and outcome under a
selection-on-observables approach. No existing method
can achieve both objectives without additional assump-
tions. In addition, because causal inference with obser-
vational data always requires unverifiable assumptions,
there is no statistical test that can tell researchers which
method is more appropriate. A primary goal of this ar-
ticle is to clarify the required assumptions of unit fixed
effects models, which are widely used in social sciences.
While we limit our discussion to the case of a binary treat-
ment, our nonparametric identification analysis based on
DAGs is applicable to the case in which the treatment is
nonbinary. Thus, researchers who are analyzing a non-
binary treatment must face the same trade-off described
here.

In this article, we show that causal inference with unit
fixed effects regression models is fundamentally based on
the within-unit comparison between the treated and con-
trol observations. The major limitation of this identifica-
tion strategy is that one must assume a certain within-
unit time trend for the average potential outcome. We
used past control observations to model this time trend,
but an alternative strategy is to use the observations from
other similar units to estimate unit-specific time trend.
Due to space limitations, we do not explore such an ap-
proach, which is closely related to two-way fixed effects

models. Imai, Kim, and Wang (2018) extend our matching
framework introduced here and generalize the difference-
in-differences identification strategy.

Appendix A: Mathematical Appendix

A.1 Equivalence between
Assumptions 1 and 3

Consider the potential outcome model Yit(x) =
g (x, Ui , �i t), which is consistent with equation 5. It
is obvious that under this model, Equation 5 of As-
sumption 1 implies Assumption 3. To prove the con-
verse, we focus on the case with T = 3, as the same
argument can be repeatedly applied to the case with
T > 3.

p({Yit(1), Yit(0)}3
t=1, Xi1, Xi2, Xi3 | Ui )

= p({Yit(1), Yit(0)}3
t=1 | Xi1, Xi2, Xi3, Ui )

p(Xi1, Xi2, Xi3 | Ui )

= p({Yit(1), Yit(0)}3
t=1 | Xi1, Xi2, Ui )

p(Xi1, Xi2, Xi3 | Ui )

= p({Yit(1), Yit(0)}3
t=1 | Xi1, Ui )

p(Xi1, Xi2, Xi3 | Ui )

= p({Yit(1), Yit(0)}3
t=1 | Ui )

p(Xi1, Xi2, Xi3 | Ui ),

which shows that {Yit(1), Yit(0)}3
t=1 are conditionally in-

dependent of Xi given Ui .

A.2 Proof of Proposition 2

We begin by rewriting the within-unit matching estimator
as

�̂match = 1
1
N

∑N
i=1 Ci

· 1

N

N∑
i=1

Ci

(∑T
t=1 XitYit∑T

t=1 Xit

−
∑T

t=1(1 − Xit)Yit∑T
t=1(1 − Xit)

)
.

(30)

By law of large numbers, the first term converges in prob-
ability to 1/ Pr(Ci = 1). To derive the limit of the second
term, first note that Assumption 3 implies the following
conditional independence:

{Yit(1), Yit(0)} ⊥⊥ Xi | Ui . (31)
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The law of iterated expectation implies

E(Yit(x) | Ci = 1) = E{E(Yit(x) | Ui , Ci = 1) | Ci = 1}
(32)

for x = 0, 1. We show that the difference of means over
time within unit i estimates the inner expectation of
Equation 32 without bias because it adjusts for Ui . Con-
sider the case with x = 1.

E

(
Ci

∑T
t=1 Xit Yit∑T

t=1 Xit

)

= E

{
1∑T

t=1 Xit

T∑
t=1

XitE(Yit (1) | Xi , Ui )

∣∣∣∣ Ci = 1

}
Pr(Ci = 1)

= E

{
1∑T

t=1 Xit

T∑
t=1

XitE(Yit (1) | Ci = 1, Ui )

∣∣∣∣ Ci = 1

}
Pr(Ci = 1)

= E(Yit (1) | Ci = 1) Pr(Ci = 1),

where the second equality follows from Equation 31.
We note that �̂match can be more precisely de-
fined as 1/|I|∑i∈I{

∑T
t=1 XitYit/

∑T
t=1 Xit −∑T

t=1(1 −
Xit)Yit/

∑T
t=1(1 − Xit)} where I := {i ∈ {1, . . . , N} |

Ci = 1} to avoid the division by zero. A similar argument

can be made to show E

(
Ci

∑T
t=1(1−Xit )Yit∑T

t=1(1−Xit )

)
= E(Yit(0) |

Ci = 1) Pr(Ci = 1). Thus, the second term of Equa-
tion 30 converges to E(Yit(1) − Yit(0) | Ci = 1) Pr(Ci =
1). The result then follows from the continuous mapping
theorem. �

A.3 Proof of Theorem 1

We begin this proof by establishing two algebraic equali-
ties. First, we prove that for any constants (�∗

1 , . . . , �∗
N),

the following equality holds:
N∑

i=1

T∑
t=1

Wit (2Xit − 1)�∗
i

=
N∑

i ′=1

T∑
t ′=1

(
N∑

i=1

T∑
t=1

Ditw
i ′t ′
i t (2Xit − 1)�∗

i

)

=
N∑

i ′=1

T∑
t ′=1

(
N∑

i=1

T∑
t=1

Dit

{
Xi ′t ′w

i ′t ′
i t (2Xit − 1)�∗

i

+ (1 − Xi ′t ′ )w
i ′t ′
i t (2Xit − 1)�∗

i

})

=
N∑

i ′=1

T∑
t ′=1

Dit

⎧⎨
⎩Xi ′t ′

⎛
⎝�∗

i −
∑

(i,t)∈Mi ′ t′

1

|Mi ′t ′ | (1 − Xit )�∗
i

⎞
⎠

+(1 − Xi ′t ′ )

⎛
⎝ ∑

(i,t)∈Mi ′,t′

1

|Mi ′t ′ | Xit �
∗
i − �∗

i

⎞
⎠
⎫⎬
⎭

=
N∑

i ′=1

T∑
t ′=1

Dit

{
Xi ′t ′

(
�∗

i − �∗
i

)+ (1 − Xi ′t ′ )
(
�∗

i − �∗
i

)} = 0,

(33)

where the last equality follows from
∑

(i,t)∈Mi ′ t′
1

|Mi ′ t′ | (1 −
Xit) = 1 if Xi ′t ′ = 1, and

∑
(i,t)∈Mi ′ t′

1
|Mi ′ t′ | Xit = 1 if

Xi ′t ′ = 0.
Similarly, the second algebraic equality we prove is

the following:

N∑
i=1

T∑
t=1

Wit

=
N∑

i=1

T∑
t=1

Dit

(
N∑

i ′=1

T∑
t ′=1

wi ′t ′
i t

)

=
N∑

i ′=1

T∑
t ′=1

Dit

(
N∑

i=1

T∑
t=1

wi ′t ′
i t

)

=
N∑

i ′=1

T∑
t ′=1

Dit

(
N∑

i=1

T∑
t=1

Xi ′t ′wi ′t ′
i t + (1 − Xi ′t ′)wi ′t ′

i t

)

=
N∑

i ′=1

T∑
t ′=1

Dit

⎡
⎣Xi ′t ′

⎛
⎝1 +

∑
(i,t)∈Mi ′ t′

1

|Mi ′t ′ | (1 − Xit)

⎞
⎠

+ (1 − Xi ′t ′)

⎛
⎝1 +

∑
(i,t)∈Mi ′ t′

1

|Mi ′t ′ | Xit

⎞
⎠
⎤
⎦

=
N∑

i ′=1

T∑
t ′=1

Dit{Xi ′t ′(1 + 1) + (1 − Xi ′t ′)(1 + 1)}

= 2
N∑

i=1

T∑
t=1

Dit . (34)

Third, we show that X
∗
i = 1/2.

X
∗
i =

∑T
t=1 Wit Xit∑T

t=1 Wit

=
∑T

t=1 Dit

∑N
i ′=1

∑T
t ′=1 wi ′t ′

i t Xit∑T
t=1 Dit

∑N
i ′=1

∑T
t ′=1 wi ′t ′

i t

=
∑T

t=1 Dit

∑N
i ′=1

∑T
t ′=1

(
Xi ′t ′w

i ′t ′
i t Xit + (1 − Xi ′t ′ )wi ′t ′

i t Xit

)
∑T

t=1 Dit

∑N
i ′=1

∑T
t ′=1

(
Xi ′t ′w

i ′t ′
i t + (1 − Xi ′t ′ )wi ′t ′

i t

)
=

∑T
t=1 Dit · (1 + 0)∑T
t=1 Dit · (1 + 1)

= 1

2
,

where the fourth equality follows from the fact that (1)
wi ′t ′

i t = 1 when Xit = Xi ′t ′ and 0 otherwise, and (2) (1 −
Xi ′t ′)Xit = 0 if (i, t) ∈ Mi ′t ′ because only the years with
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opposite treatment status are in the matched set. This
implies

Xit − X
∗
i =

{
1
2 if Xit = 1

− 1
2 if Xit = 0

. (35)

Using the above algebraic equalities, we can derive
the desired result.

�̂WFE =
∑N

i=1

∑T
t=1 Wit (Xit − X

∗
i )(Yit − Y

∗
i )∑N

i=1

∑T
t=1 Wit (Xit − X

∗
i )2

= 2∑N
i=1

∑T
t=1 Dit

N∑
i=1

T∑
t=1

Wit (Xit − 1

2
)(Yit − Y

∗
i )

= 1∑N
i=1

∑T
t=1 Dit

N∑
i=1

T∑
t=1{

Wit (2Xit − 1)Yit − Wit (2Xit − 1)Y
∗
i

}

= 1∑N
i=1

∑T
t=1 Dit

N∑
i=1

T∑
t=1

Wit (2Xit − 1)Yit

= 1∑N
i=1

∑T
t=1 Dit

N∑
i=1

T∑
t=1{

Dit

(
N∑

i ′=1

T∑
t ′=1

wi ′t ′
i t

)
(2Xit − 1)Yit

}

= 1∑N
i=1

∑T
t=1 Dit

N∑
i ′=1

T∑
t ′=1[

Xi ′t ′ Dit

(
N∑

i=1

T∑
t=1

wi ′t ′
i t (2Xit − 1)Yit

)

+ (1 − Xi ′t ′ )Dit

(
N∑

i=1

T∑
t=1

wi ′t ′
i t (2Xit − 1)Yit

)]

= 1∑N
i=1

∑T
t=1 Dit

N∑
i ′=1

T∑
t ′=1⎡

⎣Xi ′t ′

⎛
⎝Dit Yit −

∑
(i,t)∈Mi ′ t′

Dit

|Mi ′t ′ | (1 − Xit )Yit

⎞
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+ (1 − Xi ′t ′ )

⎛
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(i,t)∈Mi ′ t′

Dit
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|Xit − Dit Yit

⎞
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= 1∑N
i=1

∑T
t=1 Dit

N∑
i=1

T∑
t=1

Dit (Ŷi t (1) − Ŷi t (0)) = �̂ ,

where the second equality follows from Equa-
tion 34 and 35, and the fourth equality from Equation 33.
The last equality follows from applying the definition of

Ŷi t(1) and Ŷi t(0) given in Equation 15. �
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A.4 Estimated Contemporaneous Effects of GATT Membership on Bilateral Trade
with Alternative Membership Definitions

TABLE A1 Estimated Contemporaneous Effects of GATT on the Logarithm of Bilateral Trade Based
on Alternative Membership Definitions

Dyad Fixed Effects

Comparison Membership Standard Weighted First Diff.

Both vs. One Formal −0.034 −0.061 0.076
(N = 175,814) (0.024) (0.022) (0.054)
White’s p-value 0.000 0.007
N (nonzero weights) 175,814 100,055 6,712
Participants 0.161 0.020 0.099
(N = 187,651) (0.030) (0.029) (0.030)
White’s p-value 0.000 0.613
N (nonzero weights) 187,651 64,152 3,900

One vs. None Formal −0.011 −0.094 0.031
(N = 109,702) (0.039) (0.039) (0.065)
White’s p-value 0.000 0.000
N (nonzero weights) 109,702 36,115 2,670
Participants 0.179 −0.034 0.053
(N = 70,298) (0.060) (0.056) (0.061)
White’s p-value 0.000 0.000
N (nonzero weights) 70,298 15,766 1,087

Covariates Year-varying covariates

Note: The “Weighted” column presents the estimates based on the nonparametric matching estimator given by Equation 12. “First Diff.” is
based on the comparison between two subsequent time periods with treatment status change. “Both vs. One” represents the comparison
between dyads of two GATT members and those consisting of only one GATT member. “One vs. None” refers to the comparison between
dyads consisting of only one GATT member and those of two non-GATT members. “Formal” membership includes only formal GATT
members as done in Rose (2004), whereas “Participants” includes nonmember participants as defined in Tomz, Goldstein, and Rivers
(2007). The covariates include Generalized System of Preferences, log product real GDP, log product real GDP per capita, regional free
trade agreement, currency union, and currently colonized. “White’s p-value” is based on the specification test with the null hypothesis that
the corresponding standard fixed effects model is correct. Robust standard errors, allowing for the presence of serial correlation as well as
heteroskedasticity (Arellano 1987; Hansen 2007), are in parentheses. The results suggest that different causal assumptions, which imply
different regression weights, can yield different results.

A.5 Before-and-After Design: Effects of GATT Membership on Trade

TABLE A2 Estimated Effects of GATT Membership on the Logarithm of Bilateral Trade Based
on Before-and-After Design

Before After Both vs. Mix Formal Membership Both vs. Mix Participants

Lag = 3 t −0.003 −0.003 0.008 0.006 0.066 0.066 0.071 0.071
(0.027) (0.028) (0.027) (0.027) (0.035) (0.035) (0.035) (0.035)

t + 1 0.008 0.008 0.021 0.015 0.127 0.127 0.128 0.120
(0.041) (0.041) (0.040) (0.040) (0.052) (0.052) (0.052) (0.052)

t + 2 0.005 0.007 0.013 0.005 0.115 0.119 0.112 0.103
(0.053) (0.053) (0.053) (0.053) (0.068) (0.068) (0.068) (0.069)

t + 3 −0.049 −0.043 −0.036 −0.045 0.095 0.096 0.076 0.054
(0.065) (0.066) (0.065) (0.065) (0.084) (0.084) (0.084) (0.084)

(Continued)
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TABLE A2 Continued

Before After Both vs. Mix Formal Membership Both vs. Mix Participants

t + 4 −0.040 −0.032 −0.021 −0.022 0.141 0.137 0.153 0.137
(0.082) (0.082) (0.082) (0.082) (0.109) (0.109) (0.108) (0.109)

t + 5 −0.043 −0.017 −0.013 −0.004 0.087 0.084 0.095 0.078
(0.092) (0.092) (0.092) (0.092) (0.126) (0.127) (0.127) (0.126)

Lag = 5 t 0.028 0.028 0.037 0.006 0.066 0.065 0.072 0.071
(0.022) (0.022) (0.021) (0.027) (0.028) (0.028) (0.028) (0.035)

t + 1 0.052 0.054 0.060 0.015 0.129 0.128 0.123 0.120
(0.028) (0.028) (0.028) (0.040) (0.036) (0.037) (0.036) (0.052)

t + 2 0.065 0.070 0.066 0.005 0.123 0.127 0.109 0.103
(0.034) (0.034) (0.033) (0.053) (0.044) (0.044) (0.044) (0.069)

t + 3 0.017 0.027 0.025 −0.045 0.096 0.098 0.076 0.054
(0.039) (0.039) (0.039) (0.065) (0.051) (0.052) (0.051) (0.084)

t + 4 0.057 0.072 0.079 −0.022 0.136 0.135 0.161 0.137
(0.047) (0.047) (0.047) (0.082) (0.063) (0.063) (0.063) (0.109)

t + 5 0.030 0.066 0.059 −0.004 0.097 0.095 0.118 0.078
(0.052) (0.053) (0.052) (0.092) (0.071) (0.072) (0.071) (0.126)

Lag = 7 t 0.033 0.035 0.049 0.006 0.079 0.079 0.088 0.071
(0.020) (0.020) (0.020) (0.027) (0.026) (0.026) (0.025) (0.035)

t + 1 0.059 0.064 0.077 0.015 0.145 0.145 0.145 0.120
(0.024) (0.024) (0.023) (0.040) (0.031) (0.031) (0.031) (0.052)

t + 2 0.073 0.083 0.085 0.005 0.148 0.153 0.142 0.103
(0.027) (0.027) (0.027) (0.053) (0.036) (0.036) (0.036) (0.069)

t + 3 0.042 0.058 0.063 −0.045 0.141 0.144 0.132 0.054
(0.031) (0.031) (0.031) (0.065) (0.041) (0.042) (0.041) (0.084)

t + 4 0.073 0.094 0.107 −0.022 0.182 0.183 0.212 0.137
(0.036) (0.036) (0.036) (0.082) (0.049) (0.049) (0.048) (0.109)

t + 5 0.037 0.081 0.077 −0.004 0.145 0.142 0.172 0.078
(0.039) (0.039) (0.039) (0.092) (0.053) (0.054) (0.053) (0.126)

Linear time trend
√ √ √ √ √ √ √ √

Quadratic time trend
√ √ √ √

Year-varying
covariates

√ √ √ √

Note: This table summarizes the estimated effects of GATT membership on bilateral trade, that is, the comparison between dyads of two
GATT members and those consisting of only one GATT member. To implement the before-and-after design, we compare the average
bilateral trade volume across lags = L ∈ {3, 5, 7} years against the bilateral trade volume in leads = F ∈ {0, 1, 2, 3, 4, 5} years since the
treated year, which yields the quantity of interest given in Equation 22. We find no evidence of short-term and long-term effects of formal
membership. Although we find some evidence of long-term positive effects of participant membership with the model with Lag = 7, the
estimated effects are about 2.6 to 7.8 times smaller than the estimate (0.56) from (Tomz, Goldstein, and Rivers 2007, p. 2012) Our findings
are robust to including linear/quadratic time trends and with/without year-varying covariates. Robust standard errors allowing for the
presence of heteroskedasticity are used.



UNIT FIXED EFFECTS MODELS FOR CAUSAL INFERENCE 23

References

Abadie, Alberto, and Guido W. Imbens. 2006. “Large Sample
Properties of Matching Estimators for Average Treatment
Effects.” Econometrica 74(1): 235–67.

Abadie, Alberto, and Guido W. Imbens. 2012. “A Martingale
Representation for Matching Estimators.” Journal of the
American Statistical Association 107(498): 833–43.

Anderson, James E., and Eric van Wincoop. 2003. “Gravity
with Gravitas: A Solution to the Border Puzzle.” American
Economic Review 93(1): 170–92.

Angrist, Joshua D., and Jörn-Steffen Pischke. 2009. Mostly
Harmless Econometrics: An Empiricist’s Companion. Prince-
ton, NJ: Princeton University Press.

Arellano, Manuel. 1987. “Computing Robust Standard Er-
rors for Within-Groups Estimators.” Oxford Bulletin of Eco-
nomics and Statistics 49(4): 431–34.

Arellano, Manuel, and Stephen Bond. 1991. “Some Tests of
Specification for Panel Data: Monte Carlo Evidence and an
Application to Employment Equations.” Review of Economic
Studies 58(2): 277–97.

Arkhangelsky, Dmitry, and Guido Imbens. 2018. The Role of
the Propensity Score in Fixed Effect Models. Technical re-
port, Stanford Graduate School of Business. https://arxiv.
org/pdf/1807.02099.pdf.

Aronow, Peter M., and Cyrus Samii. 2015. “Does Regression
Produce Representative Estimates of Causal Effects?” Amer-
ican Journal of Political Science 60(1): 250–67.

Aronow, Peter M, Cyrus Samii, and Valentina A. Assen-
ova. 2015. “Cluster–Robust Variance Estimation for Dyadic
Data.” Political Analysis 23(4): 564–77.

Atkeson, Andrew, and Ariel Tomas Burstein. 2010. “Innovation,
Firm Dynamics, and International Trade.” Journal of political
economy 118(3): 433–84.

Bagwell, Kyle, and Robert W. Staiger. 1999. “An Economic The-
ory of GATT.” American Economic Review 89(1): 215–48.

Beck, Nathaniel. 2001. “Time-Series-Cross-Section Data: What
Have We Learned in the Past Few Years?” Annual Review
Political Science 4: 271–93.

Bell, Andrew, and Kelvyn Jones. 2015. “Explaining Fixed Effects:
Random Effects Modeling of Time-Series Cross-Sectional
and Panel Data.” Political Science Research and Methods 3(1):
133–53.

Blackwell, Matthew. 2013. “A Framework for Dynamic Causal
Inference in Political Science.” American Journal of Political
Science 57(2): 504–20.

Blackwell, Matthew, and Adam Glynn. 2018. “How to Make
Causal Inferences with Time-Series Cross-Sectional Data
under Selection on Observables.” American Political Science
Review. 112(4): 1067–1082.

Brito, Carlos, and Judea Pearl. 2002. “Generalized Instrumen-
tal Variables.” In Proceedings of the 18th Conference of Un-
certainty in Artificial Intelligence, ed. Darwiche, Adnan and
Nir Friedman, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. pp. 85–93.

Chernozhukov, Victor, Iván Fernández-Val, Jinyong Hahn, and
Whitney Newey. 2013. “Average and Quantile Effects in Non-
separable Panel Models.” Econometrica 82(2): 535–80.

Clark, Tom S., and Drew A. Linzer. 2015. “Should I Use Fixed
or Random Effects?” Political Science Research and Methods
3(2): 399–408.

Davis, Christina L., and Meredith Wilf. 2017. “Joining the Club:
Accession to the GATT/WTO.” Journal of Politics 79(3): 964–
78.

Duflo, Esther, Rachel Glennerster, and Michael Kremer. 2007.
“Using Randomization in Development Economics Re-
search: A Toolkit.” Handbook of Development Economics,
ed. Schultz, T. Paul and John A. Strauss. Amsterdam, The
Netherlands, Vol. 4. Elsevier, 3895–3962.

Feenstra, Robert C. 2003. Advanced International Trade. Prince-
ton, NJ: Princeton University Press.

Gibbons, Charles E., Juan Carlos Suárez Serrato, and Michael
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