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ecently we have witnessed sweeping changes in the organi-
zation of the electric power industry. This has had a pro-
found effect on the industry’s system operations and
planning rules and has created a need to revisit its modeling,
decision-making, and control principles.
»,  Historically, the decision and control of large-scale elec-
tric power systems has developed as the system interconnection has
grown, not always following systematic control design principles capable
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of ensuring a prespecified performance for the specified
range of variations of system inputs and system topology.
The reasons for this are many, ranging from system com-
plexity through lack of incentives to employing the most ef-
fective technology. Competition generally brings oppor-
tunities for technology advances. With this in mind, we par-
ticularly stress decision and control criteria and their po-
tential value in the evolving industry.

A brief review in the next section of present operating
principles indicates that major decision making is an open-
loop activity based on the anticipated system demand and
equipment conditions. This is enhanced by the ingenious,
simple, automatic generation control (AGC) method for bal-

.ancing each control area’s generation and demand for the
scheduled exchange with the neighboring control areas, re-
sulting in negligible stationary frequency deviations. In addi-
tion, each large generator is equipped with decentralized
proportional-integral- derivative (PID) controllers (governor
and excitation system) for local frequency and voltage stabi-
lization to its stationary value. The tuning of these control-
lers has been system specific and has worked quite well in
response to small deviations in load demand. Several serious
problems have occurred over large portions of the power
system interconnection, however, under certain unexpected
large equipment outages, leading to further sequential sys-
tem disintegration and the infamous blackouts. To prevent
this from happening in the future, the current industry prac-
tice has become to operate suboptimally under normal con-
ditions (with all equipment functioning as planned) to have
sufficient control (primarily generation) when something
major happens unexpectedly so as not to affect electricity us-
ers. This is the wellknown (n-1) reliability criterion. Al-
though not the most efficient, this criterion has been
followed faithfully by the current industry. The systematic
control of large power systems in response to major faults is
effectively nonexistent; instead, methods used are ex-
pert-system based and somewhat specific to different parts
of the interconnection. They are, by rule, not automated, and
the inclusion of a human decision maker is critical.

This article begins by assessing principles of operation
by decision and control for today's fully regulated industry.
Following this summary, several major ongoing changes are
interpreted from a systems point of view. It turns out that
major challenges-economic, policy, and technical-arein -
herently systems problems. To illustrate this claim, new de-
cision-making problems essential to having a successful
generation business in a competitive industry are defined in
the section “Decision Making in the Newly Evolving Genera-
tion Business.” This section is very detailed and describes
the challenge created by introducing profit-based and risk
management issues in the context of under the highly uncer-
tain, often volatile, market price of electricity. Following
that, the modified objectives of and decision making by fu-
ture power delivery companies are described; this problem
is complex because of its dependence on the type of owner-
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ship and regulatory expectations set upon the future trans-
mission system provider. The discussion shows how these
regulatory issues directly impact the hierarchies and com-
plexity of the related dynamic systems problem.

Moreover, the so-called load serving entities (LSEs) or
energy service providers (ESPs) will be critical to the tech-
nologies potentially useful to specific customers. The idea
of differentiated power quality served at different prices so-
that the users see direct benefits can only be implemented
by carefully defining the performance objectives of the LSEs
and ESPs and then designing everything else around the
need to meet the specifications. This concept is qualita-
tively different from the top-down thinking in the regulated
industry characterized by uniform power quality service
and average cost.

Power System Operation by Decision
and Control in the Regulated Industry
To briefly review the decision and control approaches in the
regulated industry, we consider two types of electric power
system architectures: 1) isolated systems comprising a sin-
gle utility (control area) and 2) an interconnection consisting
of several horizontally structured subsystems (utilities, con-
trol areas) electrically interconnected via tie-lines. These two
designs are conceptually different because a single utility
case is characterized by two-level decision and control de-
signs, one being a component level and the other the entire
system, whereas in the case of an interconnection consisting
of several control areas, the general structure has three lev-
els: component, control area (subsystem), and the intercon-
nection. We start with the simpler case.

Single Control Area Case

The main objective of the integrated utility is to plan enough
generation and to design a sufficiently strong delivery sys-
tem to meet its total load demand at the lowest average cost
possible. This general problem of controlling system inputs
could be posed as a single dynamic decision-making prob-
lem [1], {2]. To do this, consider an electric power system
with n nodes whose net generation/demand is controllable
and the remaining 1, nodes whose power injections are un-
certain load demands. A coordinated operations and plan-
ning problem is a combined problem of short-term
scheduling of power generated P, and investment in new
generation I¢ and transmission I] to balance load devia-
tions ranging from hourly through seasonal and long term,
and to do this at the lowest total cost, while observing oper-
ating and control capacity constraints. A possible mathe-
matical formulation is as follows [2]:
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subject to equations defining rates of investment
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Here K] () stands for the amount of installed transmis-
sion capacity for line £ K () is the amount of installed gen-
eration capacity at node # CJ(K',IT,t) is the cost of
investmentinline £ C{ (K[ 17 1) is the cost of investment in
generation at node #; F(¢) is the power generation produc-
tion at node /, at time & P°(f) = [B(£)--- P(D)]; ¢,(0) is the
cost of this production, excluding capacity costs; F,() is
the uncertain (uncontrolled) load demand at node jat time £
B0 =[B,(0) P, (D) F,(P°(0), P,(0) represents the
power flow on transmission line /as a function of generation
and demand system inputs; p{¢t) is the spot electricity market
price at time £ and p is a discount rate. Note that (6) could be
interpreted two different ways: either as a mismatch of me-
chanical power outputs and the load consumed at time ¢ [9]
or as the mismatch between the expected demand the next
hour and the power generation bids this hour [7]. The equa-
tion does not imply a mismatch between the electric power
injected and the power taken out of the system, which always
balance. We clarify this because it is a potential cause of con-
fusion. Lagrangian coefficients in this optimization problem
arep, () associated with the inequality constraint of (4), and
o,(t) with the inequality constraint of (5).

The problem defined in (1)-(6) is a very complex optimiza-
tion problem in which decisions range from very long term
(generation and transmission capacity expansion) to shorter
term scheduling of the available generation P° for the antici-
pated demand P,. The optimization is subject to control lim-
its on generation (P, / =1,...,n) as well as to output variable
constraints (line power flows F/™) and transmission net-
work, load-flow-type constraints requiring that the electrical
power injected into each power system bus balances instan-
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taneously with the electrical power flows from the bus to the
rest of the system. This basic online scheduling of generation
to meet forecasted load demand is generally based on optimi-
zation tools available in major utility control centers, such as
unit commitment for turning units on and off and secu-
rity-constrained economic dispatch {3} for changing the
power output of the units that are on to follow anticipated
load demand variations. This process takes place every 5-15
minutes in many control centers. The system estimators are
critical in preparing system data [4].

This problem formulation is not actively used for dy-
namic decision making in the regulated industry. Instead, it
is assumed that the problem can be decomposed into a
shorter term scheduling of B(¢) and a long-term investment
problem. The conditions under which this is valid have
never been studied. They could be explored by formulating
this problem as a singularly perturbed stochastic control
problem [2] and using techniques developed in [5] and [6]
to establish sufficient conditions for a meaningful separa-
tion of the single complex problem into investment and
scheduling subproblems.

Short-Term Generation Scheduling
Assuming that network and generation are known over the
entire time horizon, a zeroth order control subproblem be-
comes a decision-making process about which units to turn
on and off and how to adjust the power generated. In this
case, network topology and design K] (), as well as the ca-
pacity of generation plants K° (1), are given. Assuming, fur-
thermore, that the daily spot market is at its moving
equilibrium [each day there is enough generation to meet
load demand and power is sold at the optimum clearing
price p(t)], ashort-term optimization problembecomes [2]

k,l
min EI Y S (PIKT,), a[km)l

Ty k=0 /=1
Q)]
subject to the constraints
I=n+n,
3 H(F[kT,]- B[KT,]) s K[[nT;]
= ®
P{kT,] s K/[nT;] ©

and

A0 it o 2005, RLin))
(19

This formulation follows from the full problem (1)-(6), as-
suming decoupling of the long-term investment deci-
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sion-making problem evolving each season sample T; and
the short-term generation scheduling each hour T, (this
rate is representative of the new hourly spot markets). H,
above is the I ith element of the so-called distribution factor
matrix Hthat relates the vector of transmission line flows F
to the vector of power injections P into all nodes, so that
F=HP. If the load is assumed uncertain, even this short-term
scheduling problem requires dynamic programming tools
[3]. Assuming the load is known for the next hour (or esti-
mated [3], [4]), however, this stochastic control problem
becomes a deterministic optimization problem subject to
physical constraints. At the optimum, assuming the load is
known, the nodal price p,(¢) is related to the locational price

_ p(t) = dc,()/ dP(1) at different network buses I (spatial as-

pects) as [8]

p(O = p(t)—zl‘, Hyp, (0). -
I=1

We consider two types of electric
power system architectures: 1)
isolated systems comprising a single
utility and 2) an interconnection
consisting of several horizontally
structured subsystems electrically

interconnected via tie-lines.

Theterm z :: H, p,, where Lis the total number of trans-
mission lines, reflects locational differences in optimal elec-
tricity prices caused by the active transmission
“congestion” [see (8) above]. These formulas provide the
basis for the so-called nodal or location-based marginal cost
(LBMC) transmission pricing, or spot pricing [8].

Primary Control for Stabilization

The net real-time mismatch between generation produced
and the demand consumed at each instant ¢results in gener-
ally small system-wide stationary frequency deviations. Dif
ferent systems regulate these stationary deviations in
frequency in different ways; single control area systems with
much flexible generation (such as hydro systems in Northern
Europe) are capable of correcting for the cumulative fre-
quency deviations by manually changing the set point values
of the generation-turbine-governor units when so-called time
error (proportional to the integral of frequency deviations)
exceeds a certain acceptable threshold, without necessarily
automating the process. In multiarea systems, such as the
one in the United States, this regulation is a system-wide
scheme, and it is described later in this section.
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Finally, the fastest frequency variations around the val-
ues resulting after AGC has acted each 7, seconds are stabi-
lized by the local controllers, the governor and excitation
systems in particular. At present, these controllers are en-
tirely decentralized, constant-gain output controllers. It can
be shown that the dynamics of any power plant j, no matter
how complex, can be modeled as

2,00 = F(x,(0.0,00.3,(0) a2

where x,(¢), u,(#), and y,(t) are local states, primary control,
and local output vectors, respectively. A local continuous
primary control u,(f) (governors and excitation systems) is
typically designed to stabilize a local error signal

elt) =y ()-ylkt ). (13

With a local controller of this form, the
closed-loop local dynamics of a typical
power plant connected to bus itakes on a
general form

X!(l) =f}(X,(f),y,[kt,],y,(t)). (14)

Typical controllers of this type are governors
and excitation systems on power plants. If a
local controller is of the switching type, one
obtains instead a closed-loop model de-
fined as as in (12) with a local control law

u[(k+1)7) = u,lk] - dr( k), (15)

where d, is a control increment at each step k, acting only at
discrete times kr, k=1,.., where r,() is arelay-type function.
Capacitor/inductor switching and on-load tap-changing
transformers are typically used for load voltage control
[10]. (Generally there is no explicit relation between t, the
timing at which primary controllers are switched, and the
rate at which the set-point values of these controllers are
changed at each control area level, t.)

In summary, in the single-control area system, one can
identify two levels of generation control: an online sys-
tem-wide generation scheduling level for meeting total an-
ticipated demand and a very fast stabilization level at each
individual generator (component). These two levels are im-
plemented by physically changing the set points of the gov-
ernors and excitation systems at a rate 7, and in real-time
stabilizing the fastest deviations, so that the frequency and
voltage of each generator are kept close to their set point
values [11]. Observe that the separation of the two control
levels has been driven by the temporal separation of load
demand deviations evolving at significantly different rates,
one anticipated for each hour T}, and the other being much
faster, real-time load dynamics.
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Multiarea Control Case

The same reasoning as when separating a single control area
into two levels allows for spatial separation of an intercon-
nected power system (consisting of several control areas
(utilities) and electrically interconnected regions) into three
control levels. This leads to the basis for hierarchical opera-
tion by decision and control within an interconnection com-
prising horizontally structured subsystems (control areas)
in support of operating and planning of the system (see Fig.
1). Clearly, these hierarchies hold only if there is not much in-
teraction between the subsystems. The main step is deciding
if the system is in the normal operating mode, which is based
onrelatively small changes and weak interactions (measured
in terms of deviations of the power flow exchanges between
the areas around their scheduled values).

The three-level control concept in the regulated U.S. in-
dustry has been based on giving autonomy to each subsys-
tem to plan and schedule generation to meet its own
(connected) load demand for some assumed tie-line flow ex-
change with its neighbors. Each subsystem, having its own
control center, then employs the short-term scheduling
methods described earlier in this article, with the only dif-
ference being that each subsystem attempts to meet
agreed-upon tie-line flow schedules with its neighbors.
These agreements have historically been bilateral, with the
parties cooperating in observing the (n~1) reliability crite-
rion for the entire interconnection. The overall (intercon-
nection, tertiary) level is not coordinated online; instead,
each subsystem has a preassigned participation in time-er-
ror correction resulting from the cumulative system-wide
frequency deviations. To avoid excessive time-error, each
subsystem (control area) is equipped with its own fully de-
centralized AGC (secondary-level control). The principles
of this scheme are ingenious and are briefly summarized
next. What is important for the purposes of this article is
that the fully decentralized AGC works perfectly only when
its tuning is done very carefully. Finally, each generator is
equipped with the primary stabilization designed the same
way as in the single control area case described earlier.

Automatic Generation Control

The remaining generation-demand imbalance created by
unpredictable, typically smaller and faster, load demand
variations as well as the inertia of turbine-generator-gover-
nor units not capable of producing the scheduled electrical
output instantaneously has been controlled in an auto-
mated way by means of AGC. This very simple, powerful
concept is based on the fact that in stationary operation,
power system frequency is observable at each location and
reflects the total system generation-demand imbalance. Un-
til recently, the accepted industry standard has been to rely
on AGC, which is effectively a decentralized output control
scheme. The ACE of each area /is the output variable of in-
terest defined as
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kel = Fl ke ] —108 210
ACE'lke) = F'lkv ) ~10B' =2 9

where @ is the deviation of system frequency from its nomi-
nal value (60 Hz), F’ [kt ] is the deviation of net power flow
from the area I and B' is known as the area bias, which is
chosen as close as possible to the so-called natural re-
sponse of the areaf’.

Assuming the system is at equilibrium, the basic power
to frequency static characteristicis -

PG
L.y
Y an

The principle of entirely decentralized AGC in which each .
subsystem (control area) regulates its own ACE' relies on
the fact that if the frequency bias B' is chosen to be close to
the natural response of the areaB’, then each area will effec-
tively balance its own generation-demand and the entire in-
terconnection will be balanced. When the system is
presented with a load demand change F,[kt ], however, it
can be shown that the stationary frequency changes driven
by this disturbance can be modeled as [9]

Blk)
108" +B*)" (18)

B + B¥
of(k+1)t,] = (B,:Bk)m[kcs] -

The main observation here is that the system frequency de-
pends on the sum of the subsystem biases (B' + B*). This is
the foundation for so-called dynamic scheduling in today’s
industry, in which power plants from one area can partici-
pate in frequency regulation of the other area. This no lon-
ger implies, however, that each area balances its own
supply and demand.

Note that the regional automatic voltage control (AVC) in
several European countries is based on principles similar to
AGC, except that a single frequency measurement is re-
placed by a set of so-called pilot-point load voltages [12]. No
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Figure 1. Generalized structure of decision making and financial
Sflows.
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such automation is in place in the U.S. interconnection. An
important observation for comparison with the control
problems in the changing industry is that tuning of the fre-
quency bias (and the corresponding control gain in the
AVC) is difficult; as the operating conditions vary, the natu-
ral response of each subsystem changes. For this reason, it
is practically impossible to guarantee a prespecified quality
of system frequency.

Moreover, when the ACE(¢) is tuned as described above,
entirely decentralized AGC regulates deviations of tie-line
flows back to their scheduled values and brings system fre-
quency very close to its nominal value under the stationary
conditions. Consequently, at present there is no even mini-
mal closed-loop tertiary-level coordination; instead, a cu-
mulative frequency error is corrected for by each area
participating in eliminating so-called time error (frequency
is used to keep track of time).

Under deregulation, we assume

producers act in their own
self-interest.

Open Problems in the Regulated Industry
Several important assumptions underlie the operations by
decision and controlin today’s industry. First, a decision is
made concerning the “mode” of operation. The famous
classification introduced by Dy-Liacco [13] and modified
by Carlsen and Fink [14] implies a clear-cut separation be-
tween normal and abnormal operations, in a deterministic
sense. Several researchers have worked on a probabilistic
notion of a system’s ability to serve load under equipment
outages. The analytic tools for posing the problem this way
and, particularly, for solving it using stochastic optimiza-
tion tools for a typical large-scale power system are non-
existent. Consequently, the industry has adopted a conser-
vative preventive mode of operation in which, for example,
generation scheduling is done in a way that ensures suffi-
cient reserve and time to supply load demand in case of any
single equipment outage, without relying much on second-
ary control during the outage. This turns out to be ex-
tremely costly, and it requires a standby generation reserve
on the order of the largest power plant on the system.
This situation is further complicated by potential tran-
sient stabilization problems in response to certain large out-
ages. Despite a significant theoretical development in the
area of nonlinear control design for power systems [15],
none of the primary controllers in real-life operations employ
this development. This is unfortunate because nonlinear
controllers are potentially capable of stabilizing system dy-
namics in response to outages that are currently considered
critical [16]. Chapter 12 of [15] presents a detailed assess-
ment of open questions concerning the design of primary
controllers for stabilizing power systems under stress.
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Some of the specific problems described in [15] are:

+ Problems related to using a linear system design for
controlling nonlinear dynamics.

* Problems caused by inaccurate state variable mea-
surements; consequently, output feedback rather
than full state feedback is implemented on the system.

+ Problems caused by a lack of coordination of pri-
mary controllers. A pragmatic approach to the pri-
mary control of power systems has been based on
decentralization. i

It is critical to assess the performance of a particular de-
sign while keeping in mind that these issues are qualitatively
different in nature and that potential problems should be re-
lated to the correct causes. The reasons for introducing sup-
plemental generator control in the form of power system
stabilizers (PSSs), for example, can be attributed to the first
two causes listed. The problem of coordination of primary
controllers (excitation systems, PSS, and active
control devices such as FACTS) primarily relates to
the effectiveness of purely decentralized control de-
signs in large-scale electric power systems.

The emphasis of this article is on tertiary- and
secondary-level control problems, primarily be-
cause many believe that these functions could be-
come market based and would require
development of frameworks for guaranteed technical per-
formance in an environment driven by profit/benefit maxi-
mization and risk management. Thus it is important to
reiterate that the regulated industry uses a preventive
mode approach at the scheduling (and investment) level, in-
stead of multistage decision making under uncertainties for
optimizing whichever criteria are in place. The result is eco-
nomic inefficiency, critically caused by observing the (n-1)
reliability criterion unconditionally.

Although the (n-1) security criterion is still the industry
practice, there has been significant research work done re-’
cently toward relaxing it. A relaxed criterion would allow
the system to operate under conditions where adequate
system controls can eliminate problems caused by contin-
gencies. In the next section, we assess organizational
changes underlying the new industry and their impact on
the evolving decision-making and control paradigms.

The Changing Industry
Although current operating and planning industry practice
has been based on the well-understood spatial and tempo-
ral hierarchies (at least in normal operation), the industry is
undergoing fundamental structural changes that require
new decision and control methods.

The following is an incomplete list of these changes, as

viewed from a systems perspective: )

* A functional and/or corporate separation of power
generation, delivery, and load-serving entities is un-
der way (this is nonuniform, state-dependent within
the U.S. interconnection). This organizational change
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implies, in turn, distributed decisions for supply and
demand scheduling, as well as for power delivery.

+ Ahorizontal structure comprising control areas (utili-
ties) as subsystems within the interconnection with
non-time-varying boundaries has been losing its basic
role under the rules of open-access service: Under re-
tail competition even relatively small customers will
have the legal right to purchase electricity from neigh-
boring utilities and not necessarily from the utility to

. which they are physically connected.

+ If system control is based on the existence of control
area boundaries, it becomes obvious that the finan-
cial and physical processes may not be well related.
The financial markets do not actively observe today’s
utility boundaries.

+ The system is generally in a stationary but constantly
changing mode driven by the electricity market price
dynamics. The nature of imbalances created by these
activities is changing, and consequently the hierarchi-
cal control based on the principle of each subsystem
balancing its own native load is not necessarily the
best way to control the system without fixed horizon-
tal structures. :

+ In the new industry there is an obvious need for de-
centralized optimization under uncertainties, mainly
caused by financial processes. This calls for the devel-
opment of powerful stochastic optimization methods
for market participants.

+ Risk-management decision making ranges from very
short through long-term time horizons, relevant for
planning and investments. Thus multistage decision
making becomes a critical tool.

+ Relations between the financial and physical pro-
cesses are often difficult to establish. In particular,
system reliability and the (n-1) criterion need new
paradigms, characterized by the ability to differenti-
ate quality of service (rate of interruptions or variable
levels of voltage variations as seen at the customer’s
end, for example) at a price.

+ Generally, many performance “standards” will be dic -
tated by the load demand itself. This is in sharp con-
trast to the current top-down standards (control area
level and the like).

+ Furthermore, although there is no coordination on-
line at the interconnection level for normal operation
in today’s industry, this may become necessary in the
new industry. This is primarily because of active
power flow rescheduling between the control areas,
which can be interpreted as a stronger connection be-
tween the subsystems within a given system {33]. To
ensure system reliability under decentralized deci-
sion making, some coordination at a system level may
be necessary.

* The problem of reliable operation under unplanned
outages will require more than voluntary coopera-
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tion; typically major technical limits are determined
by the equipment in one control area causing operat-
ing problems in other areas. The problem of conges-
tion flow control in large power systems [18] and its
coordination are basically open research problems.

+ The need to maximize profits/benefits of individual

businesses and manage risks at the same time is be-
coming a dominant industry problem. One could value
delivery service at various risk Jevels. Depending on
the type of business (risk averse versus opportunis-
tic), the decisions will be qualitatively different.

Fig. 2 presents a generalized structure of decision mak-
ing and financial (price) flows among the new entities, such
as generator operating companies (GenCos), LSEs, and re-
gional transmission organizations (RTOs [19]). As can be
seen in this figure, decisions by each business are generally
affected by their own profit/benefit maximization and risk
management, as well as by the payments made to (or re-
ceived by) the other businesses that must be internalized.
For example, a successful GenCo does its own distributed
profit maximization/risk management (as described in the
next section), and at the same time must take into account
the effect of power delivery, its price p,,q,y at a chosen pri-
ority of service, specified in terms of amount of power deliv-
ery [20] and quality (amount of power delivery interruption
P, if the service is nonfirm).

An LSE, on the other hand, maximizes its benefit in a dis-
tributed way, while at the same time paying a certain prior-
ity access price for the amount of power access P, into
the RTO.

An RTO (or any other power delivery entity) also has its
financial decision making, in addition to the technical objec-
tives. It is shown in Fig. 2 that its typical cash flows are pay-
ments received for serving GenCos at certain priority B,p,
minus the factored-in payment of the capital cost p,,. and
minus the payments to the GenCos for providing control
services such as AGC and/or AVC and minus the price of op-
erating and maintaining transmission equipment p, .

Prap

Priority A Factored Capital
Access | Payment
Payments m?t:o&M,

AGC Charges

Poriority Per Penargy Paccess

GenCo

LSE

il

NYMEX

Figure 2. Real-time transmission pricing.
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In addition to these cash flows, entities such as GenCos
and LSEs are also likely to have access to public online infor-
mation about the status of the power delivery system, such
as the presently implemented Open Access Same-time Infor-
mation System (OASIS) [21]. The most adequate type of in-
formation is briefly discussed in the section on power
delivery; as described in this section, this is subject to much
research. Business entities would also seek active informa-
tion on the energy spot markets and forward markets (the
New York Mercantile Exchange (NYMEX), for example), de-
scribed in the following section.

Decision Making in the Newly
'Evolving Generation Business
The ownership of a generator in a deregulated electricity
marketplace translates into the ability to convert one type
of commodity (oil, gas, or coal) into another commodity:
electricity. The cost of the fuel used, coupled with the effi-
clency of the generation technology, determines the cost of
producing electric power. To model the behavior of power
producers, we need to define their individual objective func-
tions. Under deregulation, we assume producers act in their
own self-interest. Specifically, they will not take action to
preserve system reliability or improve power quality unless
they are financially compensated for such a service. There-
fore, a major component of the objective function is the
profit. The profit earned for a given hour &, as a function of
market price (p,) and generator cost (C°) as a function of
output (F’), is

n,=pb "Cc(Pkc)' (19

In a marketplace, future spot prices are uncertain, and
thus the profit over a given time period of length nis a sum
of random variables

o (20)

A simple objective function would entail maximizing the
expected profit. In reality, however, this may not be applica-
ble. GenCos have limited risk tolerance. They may be willing
to accept lower expected profits in return for a decrease in
the associated financial risk. We model this preference asa
risk premium (). The objective function Jfor an independ-
ent power producer is then written as

J = Efl}- o, (21)
where o, is the standard deviation of the total profit. Next
we define the inputs, or control variables, to the optimiza-
tion process. To do so, we first need to specify the market
rules under which electricity is traded. Such markets fall
into two categories: 1) physical markets, conducted by
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pools, power exchanges (PXs), and independent system
operators (ISOs), trade commitments to produce and con-
sume power; and 2) financial markets, conducted through
commodity exchanges, trade financial contracts and deriva-
tives based on the underlying physical markets.

Physical Markets for Electricity

Physical power is traded under many different market
structures in the United States, ranging from power pools
to power exchanges to independent system operators.
Most of these market structures involve a centralized auc-
tion mechanism to allocate which generating units should
be used to meet the demand. Some areas, such as Califor-
nia, also allow bilateral trades between load and genera-
tion. In this section, we will describe the rules governing
the California Power Exchange (CalPX). Although some-
what different in structure than its Eastern U.S. counter-
parts, the CalPX still serves as a good example for
understanding the decision process facing producers in
the deregulated marketplace. A producer wishing to sell
power through the CalPX submits a bid curve to the ex-
change. The bid curve describes the willingness of the pro-
ducer to deliver power as a function of market price. For
example, a producer may be willing to supply a total of 50
MW if the price is $20/MWh and may offer to supply a total
of 100 MW if the price increases to $30/MWh. Bid curves
are supplied on a day-ahead basis, and a different bid curve
may be specified for each of the 24 operating hours. Spe-
cifically, a supplier wishing to produce power tomorrow
must submit all 24 bid curves by 7:00 a.m. today. The PX
gathers all the bids from power producers and similar bids
from consumers. The bids are used to compile aggregate
supply and demand curves for each hour. The intersection
of the supply and demand curves determines the market
clearing price (MCP). All supply bids with a price less than
the MCP are accepted and the bidders are paid the clearing
price. Similarly all demand bids with price higher than the
MCP are accepted, and the bidders are charged the clear-
ing price. This ensures that demand and supply commit-
ments match perfectly, as well as that the PX remains
revenue neutral.

Financial Markets

Fueled by the physical markets, several financial ex-
changes have emerged, allowing participants to trade fi-
nancial contracts and derivatives based on electricity
prices. Electricity contracts currently trade on NYMEX and
on the Chicago Board of Trade (CBOT). The exchanges
trade a number of standard contracts, including forwards,
futures, and simple (vanilla) options. In addition, exotic,
nonstandard options can be traded over the counter, in bi-
lateral fashion. Derivatives are traded with the electricity
spot price as the underlying asset. The spot price, how-
ever, varies greatly with the physical location on the net-
work. To get around this problem, the exchange defines a
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specific node, or bus, on the network on which the price of
power is based. Such nodes are known as hubs. The most
well-known hubs in the California system are COB (Califor-
nia Oregon Border) and Palo Verde. In the case when con-
tracts specify physical delivery of power, the party that is
long power (net supplier) is obligated to purchase trans-
mission rights from the point of injection to the hub. The
party that is short power is obligated to purchase trans-
mission rights from the hub to the point of extraction. This
type of virtual handoff of power allows a larger number of
people to trade in a single hub, thus increasing liquidity in
the market.

Market Strategies for an
Independent Power Producer
Here we will address the bidding and risk management
problem from the perspective of a small- to medium-sized
power producer that can be modeled as a price taker. For
suppliers with significant market power the decision prob-
lem becomes richer and involves game theoretic modeling
to determine optimal strategies. See [29] for a discussionon
dynamic game-based modeling of electricity markets.
Having described the structure of the markets available
to suppliers of electricity, we can now pose the optimization
problem facing an independent power producer (IPP). To
judge the performance of a strategy, we use the risk-dis-
counted expected profit
J=E{ll}~ro,. (22)
In determining the optimal strategy, the model used to
describe the generator’s variable costs and operating con-
straints has a profound effect-specifically, the inclusion
of startup and shutdown costs as well as minimum run time
and downtime for the generator. To illustrate this point, we
will first pose the problem with a simple cost function. We
later expand the model to include startup and shutdown
costs and show how this alters the optimal bidding behav-
ior of the IPP. For an in-depth discussion on the unit com-
mitment problem and the dynamic programming
algorithm, see [3] and [24]. In our simple model, the oper-
ating cost of the generator for a given hour kis alinear func-
tion of the output

Co(P)=bF+c @3)

Next we make the assumption that the producer does not
posses market power. Market power can be described as
the ability to manipulate price to increase profits. The ab-
sence of market power is implicitly included in the model by
allowing price p, to be independent of the production level
of the IPP. Our final assumption relates to the tradeoff be-
tween risk and expected profit in the objective function of
the IPP. Recall that the producer has two markets available
to trade in: physical and financial. We will assume that the
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producer attempts to maximize his profit in the physical
market and uses the financial market to manage his risk. Ap-
plying this assumption, we can pose the subproblem of de-
signing a profit-maximizing bid strategy for the day-ahead
physical market. Recall that the market rules require the
supplier to submit bids for all 24 hours at the same time. The
profit earned in hour k is given by

n=pbB - (24)

bPf -c.
This results in a profit-maximizing output level as a func-
tion of price given by

= P° if p,>b, and 0 otherwise, (25)
which is equivalent to bidding the unit’s marginal cost. Next
we recognize that in our current model of the generator,
there is no coupling between costs in consecutive time peri-
ods. Whether the unit is on or off in hour k has no impact on
the cost of running the unit in hour k+ 1. This decouples the
problem, and we can solve the 24-hour optimization by solv-
ing each hour separately. In this way, the profit-maximizing
strategy for an independent power producer with no market
power and no startup or shutdown costs is to bid its mar-
ginal cost for each hour. It is interesting to note that one
does not need to know the characteristics of the price pro-
cess to formulate the profit-maximizing bid strategy. Sub-
mitting the marginal cost as its bid ensures the supplier that
the power exchange will automatically dispatch the unit
when it is profitable to run and reject its bid when price is
below cost. As a result, the total profit is bounded from be-
low by the fixed cost ¢

n= max{—c.(p. P = b= ) }- (26)

Managing Risk

Through the Financial Markets

Having defined its profit-maximizing bid strategy, the sup-
plier faces an uncertain future revenue stream. In this sec-
tion, we show how financial contracts can be used to
manage this risk factor. One of the most common deriva-
tives used to hedge volatile positions is the European Call
Option. The buyer and seller of the option specify the under-
lying asset, in this case, the spot price of electricity at a
given hub. They also specify the quantity of power (Q), the
maturation (delivery) date (7), the strike price X, and the
premium ¢ (the purchase price of the option). The payoff
for the buyer of the option, if exercised, is the difference be-
tween the spot price of electricity and the strike price of the '
option. If the spot price is lower than the strike price, the op-
tion will not be exercised and the payoff is zero. Although
options can entail physical delivery of the underlying com-
modity, we will here consider the case where they are set-




tled financially. The cash flow (f) for the buyer of the option
can then be written as

f=max{-¢*,(p,Q- ¥Q- &)} (21)

This formula takes on the same form as the expression
for the profit of an IPP bidding its marginal cost. If we set the
quantity of power to equal the maximum output of the gen-
erator and the strike to equal the marginal cost, we arrive at
a payoff.

f= max{-CE v(pk Pnfax - bP"fﬂX - CE)}’ (28)

which is identical to that of the IPP except for the fixed cost
component. Now consider what happens when a supplier
adopts the marginal cost bidding strategy and simulta-
neously goes short on (sells) the options contract de-
scribed above. The net payoff for a given hour is

f=max{cf -c,cf-c}=c -¢ 29)

which is deterministic. The options contract is designed to
mimic the uncertain portion of the supplier’s original posi-
tion and is therefore known as areplicating portfolio. Taking
a short position in the replicating portfolio cancels out the
uncertainty and leaves the supplier with a certain payoff. To
hedge its position over a given time period (day, week, or
month), the IPP sells a series of options for each hour of the
period. The quantity and strike price are identical for all op-
tions. In reality, the expected profit from the unhedged posi-
tion may be considerably higher than the certain profit
offered by the replicating strategy. The supplier may there-
fore want to implement a partial hedge to reduce the risk to
tolerable levels. He does this by varying the quantity of op-
tions traded. Fig. 3 describes the tradeoff between risk, mea-
sured by the standard deviation of returns, and expected
profit. The hedging ratio, A, is the ratio of Qto P, .T1, is the
expected profit from the unhedged position, and I1,, is the
certain return from the fully hedged portfolio. We then add
the supplier’s objective function given by

J=E{fl}-roy,. (30)
The intersection of the objective function and the payoff

of the hedged portfolio determines the optimal hedge ratio
for the IPP.

Valuation

The ability to construct a portfolio of contracts in the finan-
cial market that accurately replicates the cash flow in the
physical market is significantly beyond the scope of risk
management. The issue is that for every decision process in
the physical world there exists a dual problem in the finan-
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cial world. In our case, the process of building and operating
a power plant is equivalent to purchasing and exercising
call options. Therefore, a parity in the valuation of physical
assets and the pricing of electricity options must exist. Esti-
mating the value of either the option or the physical asset
requires knowledge of the stochastic behavior of electricity
prices. To price a European call option on the price of elec-
tricity in hour k, one needs to know the probability density
function (pd) £, ( p) for the random variable p,. The value of
the option is the integral of the pdf times the payoff of the
option at each price level. Recall that the payoff is zero if p,
is below the strike (X), and is equal to p, — X otherwise. The
risk-neutral value of the call option is given by

o = _[;(Pk - X) £, (p)dp,. (31

Recall, however, that in examining the IPP’s position in
the physical market, we were interested not only in the ex-
pected profit, but also in its variance. Specifically, we con-
sidered the variance of the total cash flow over the course of
aday. Thisis equivalent to finding the variance on the payoff
from a portfolio of 24 separate call options. Calculating the
variance of this portfolio requires knowledge about the cor-
relation of electricity price at different time periods. To re-
solve this problem, we need to postulate a model for the
stochastic evolution of electricity price.

Modeling Electricity Prices

Numerous papers have been written proposing stochastic
models for electricity prices, underscoring the crucial im-
portance of such models in the planning and operations of
assets, as well as in the pricing of electricity based deriva-
tives (see [3}, {23}, and [25]-[27]). Candidate models face

Expected
Profit

Iy

Optimal Hedge Ratio

My J= E{IT}-ron

Standard Deviation

Figure 3. Determining the optimal hedge ratio for power producers.
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two conflicting performance objectives. They need to be de-
tailed enough to capture the complex behavior of electricity
markets, notably the high price volatility and the daily,
weekly, and yearly seasonality. At the same time, the model
must be simple enough to lend itself as an input to deriva-
tive valuation schemes as well as dynamic optimization of
asset operations. One of the well-studied processes that
seems to meet these requirements is the mean-reverting
process, here expressed in continuous time

g =o(np -In p)dt+ odz.
P (32)

Here p denotes the time-varying mean to which price
tends to revert at rate o. The uncertainty is driven by a
Wiener process Z. The model is attractive because the un-
certainty in price at any point in the future is lognormally
distributed. This greatly simplifies the integration required
in the option valuation process. Although, in practice, the
model is somewhat oversimplified (in reality multiple
sources of uncertainty are needed to model market reali-
ties), it serves as a good example of the types of processes
that can be applied in decision and valuation algorithms.
From the spot price process we can derive a process for the

forward curve. We define the forward price F(¢,T) to be the -

price of a forward contract at time ¢, in $/MW, for delivery at
time 7. Under the risk-neutral assumption, we can define the
forward price as the expected value of the spot price at ma-
turity

F(.1)=E{p(D}. (33)

This allows us to derive an expression for the stochastic
evolution of the forward price

gF _ e * Tz
F (34)

The link between the forward price process and the spot
price process is crucial in formulating a risk management
strategy. The mean reverting property of the spot price pre-
dicts that the effect of a spot price change on the forward
price will decay exponentially with the maturity of the for-
ward price. The relative effect of a spot market change on
the forward price at different maturities is known as the
term structure. Accurate knowledge of the term structure
allows a trader to use forward contracts to hedge spot mar-
ket risk or vice versa.

A Realistic Model for the IPP

In our first attempt at describing the decision process of a
supplier, we presented an oversimplified model of the cost
structure of the generator. The intent was to show the
strong link between valuations in the physical and financial
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markets. An actual supplier, however, faces amore complex
decision process. In expanding the cost structure to amore
realistic scenario, we show that it is still possible to offset
the risk incurred in the physical market with financial con-
tracts. In designing the new replicating strategy, however,
we require new types of derivatives and the use of dynamic
programming to value them. The form of the model used to
describe the cost of the IPP is dependent on the nature of
the unit. In this section we consider a fossil plant with signif-
icant startup and shutdown costs. Later we contrast this
with the decision making for the operator of a hydro power
unit. The two examples illustrate the profound effect of gen- ‘
eration technology on both the physical scheduling and fi-
nancial hedging of the asset. The first extension of the cost
model is to introduce a quadratic term

Co(R)= A B) + bR + ¢ 35)

The profit-maximizing output for a given price is now

pe=bzb
k7 2a (36)

This change in itself presents a problem with our repli-
cating strategy. The generation level is now alinear function
of the market price. To mimic this behavior, we would need
to purchase a series of options with linearly increasing
strike prices. The second modification to the cost structure
is the introduction of a startup cost (5) and shutdown cost
(7). The effect of introducing these costs is to link the opera-
tion of the power plant in consecutive time periods. The
cost of operating at a certain output in hour k+1 now de-
pends on whether the unit was on or off in hour k. As are-
sult, the temporal decoupling assumption we employed in
the previous case is no longer valid. To pose this problem,
we introduce the state variable x,, which is equal to zero if
the unit is off and equal to one if the unit is on. We also intro-
duce the decision variable u,. If u, is one, the unit is bid at
marginal cost for that hour, and if u,is zero, no bid is submit-
ted. We can now formulate the decision process as a dy-
namic programming problem (see [3] and [24]). The profit
for the producer in stage k is given by

Ty = "k[PA I Cc( B:c)°(l - Xk-l)s] -Q-u) et x,.,T)
&)
The IPP needs to determine the bid strategy {x, ..., X,,}
that will maximize the total expected profit over the next 24
hours. The input to the optimization is the stochastic price
process

K/ =a(p-In p)dt+ odz.
P (38)
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Replicating Strategies

Creating a replicating portfolio for the expanded IPP model
is a difficult problem. First, the volume traded in each hour
is now a function of market price. Second, the actual cost of
running the unit in a given hour is not known since it de-
pends on the state of the unit in the previous hour. There is
no way to design a perfect replicating strategy using only
simple call options. This leaves us with two possibilities.
First, we can design a strategy using exotic options (see
[22]). This may include swing options, which gives the
buyer flexibility in the quantity and timing of the exercise.
Such options contracts could be tailored to match the char-
acteristics of the unit. This still leaves open the question,
however, of how to value such an option. A second possibil-

ity is to use a set of standard options contracts to attempt to

approximate the cash flow from the generator. To accom-
plish this, one must use knowledge of the stochastic behav-
ior of the price to estimate when the unit will be running and
at what output levels. In essence, the three problems-opti -
mal bidding of the generator, pricing of the exotic option,
and finding a replicating strategy using standard op-
tions-are all equivalent. The optimal exercise scheme for
the swing option is equivalent to the optimal bid strategy of
the generator. All require us to solve the dynamic program-
ming formulation.

-Operation and Hedging for Hydro Power

In the previous section we saw. how the introduction of
startup and shutdown costs into the cost function of a plant
coupled the decision process across operating hours. For hy-
dro power with reservoir constraints, this effect is even more
profound. The operator of the plant must decide on the opti-
mal time to use the water stored in the reservoir. His decision
will be a dynamic programming type formulation, based on
the current reservoir level, the expected rate of water flow
into the reservoir, as well as projected future spot prices. The
time scale over which the optimization is solved will depend
on the size of the reservoir. The problem becomes more com-
plex if multiple reservoirs are cascaded, or if additional flow
constraints are introduced for environmental or security rea-
sons. An in-depth formulation of the multireservoir schedul-
ing problem is presented in [28]. From a risk management
perspective, the problem takes on a different form depending
on the time frame of the observer. In the short run the hydro
unit gives the operator a high level of flexibility. It can take full

_ advantage of intradaily swings in electricity prices with its

high ramping speed. On a longer time scale, however, the unit
is critically dependent on precipitation to maintain reservoir
levels. An unusually dry season may cripple the economic vi-
ability of a hydro unit. This effect is amplified by the fact that
rainfall is not a traded commodity (though this may change
as weather derivatives gain momentum). Thus the owner of
the unit has no means to effectively hedge this long-termrisk.
A closely related problem is the scheduling and hedging of
pump storage units. Similar to the hydro problem, pump
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storage introduces the additional constraint of being both a
load (in pumping mode) and a supplier of power. The pump
storage device fits nicely into our hedging scheme since it is
effectively the sum of two types of derivatives. By being both
a consumer and supplier of power, the unit seeks to exploit
the temporal, intraday, difference in the price of power. This
can be modeled as an option on the spread between on- and
off-peak power prices. Furthermore, the plant has some flexi-
bility (depending on reservoir size) to ¢arry areserve across
multiple days. This is equivalent to a swing option on power.
The exact combination of these two derivatives used to
model the plant will depend on the physical parame-
ters-reservoir size, pump efficiency and rated capacity.

Hedging with Block Forwards

An effective replicating strategy, even under the simple cost
structure, requires the purchase of individual hourly op-
tions. Although the physical markets operate on an hourly
basis, the financial markets do not. Options and futures are
sold based on 16-hour on-peak blocks and 8-hour off-peak
blocks. Contracts are further grouped into weekdays versus
weekends. A typical contract on COB electricity therefore
would be sold on a 5 x 16 (five weekdays, 16 on-peak hours)
basts. This type of averaging is used to create more liquidity
in the market. For the IPP, however, it makes the hedging
problem much harder. The supplier must now relate the
volatility of the hourly spot price to the volatility in a
16-hour block. He must then take positions in the block con-
tract to hedge the risk imposed by the startup and
shutdown costs. Such discrepancies between the physical
and financial markets put pressure on power marketers to
issue custom-made derivatives contracts to power produc-
ers. To price these contracts, and later offload the risk by
trading in the liquid standardized options and futures mar-
kets, the marketers need to develop effective pricing algo-
rithms. One of the key elements in the pricing of these
contract is the selection of accurate price models. These
models allow the user to interpolate volatilities in exotic
contracts by observing the spot markets and the liquid fi-
nancial markets. The second stage, however, is to solve the
dynamic programming problem posed for the physical mar-
kets and replicated in the financial contracts.

Decision Making by

the Power Delivery Entities

Power delivery under competition is a very difficult prob-
lem. Although the basic objective is to build enough
transmission to facilitate power delivery from the points of
supply to the points of consumption, as in the regulated in-
dustry, the objectives of transmission provision function-
ally (and often corporately) separated from the generation
production and consumption processes are subject to huge
uncertainties concerning the actual demand for transmis-
sion (the overall availability of power plants is market
driven and not easily observable by a transmission pro-
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vider). In addition, because of environmental constraints, it
has become increasingly difficult to build new transmission.
Instead, the need has increased for “smarter” transmission
capable of a direct line flow control [15]. This is particularly
important since transmission providers are not likely to al-
ways have physical control over generation. Moreover, con-
trolling transmission line power flows using both direct flow
control and generation inputs is known to cause problems
with system-wide control coordination.

The industry organization raises many basic questions
concerning electric power delivery and its control. Some of
these are listed here and briefly addressed.

Single Control Area Case

A simpler problem concerns power delivery in an electric
power system consisting of only a single control area. De-
pending on the specific energy market structure, decisions
concerning power delivery are either made by a separate
entity or are bundled with the energy market. So-called man-
datory Poolcos are equivalent to the present tight power
pools, except that cost functions are replaced by the bid
functions described earlier. A more novel case is where the
energy market is based on the decision.making described
under “Decision Making in the Newly Evolving Generation
Business,” and transmission management is carried out by
an independent system operator. Many variations are possi-
ble, in which generators and consumers can bid to partici-
pate in the so-called transmission congestion management
and be compensated competitively [30] or are allowed to
trade as long as they observe a technical constraint defined
by the ISO [31].

This is a good place to illustrate the dependence of the
type of control variables and the definition of the objective
function on the industry organization. In a mandatory
Poolco, all generation and demand bids are used to opti-
mize what amounts to the performance criterion givenin (1)
above, except that costs are replaced by the bids.

In a voluntary bidding for participating in transmission
congestion management, separate bid functions are used to
eliminate transmission limit violations, at the minimal cost.
Energy market decisions are made separately.

Finally, in a multilateral market all economic decisions
are internalized to the market decision makers and the ob-
jective of a transmission provider is to compute active tech-
nical constraints only. For a comparison of the three
approaches, see [32, chap 2].

Unbundling the Power Industry

into a Transmission Service and Its Users

By formulating the dual problem to the problem defined in
(7)-(10), it becomes clear that the values p(f) andp () are
coordinating variables for dispatch of power. We will as-
sume that the energy price p(f) will result naturally from
information exchanges between generators and consum-
ers. The entire optimal control problem (7)-(10) then re-
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duces to the choice of transmission pricesp, () and capaci-
ties K] (f). It is critical to recognize that the two decisions
are mutually dependent. Thus a transmission pricing
scheme cannot ignore the investment policy, and the in-
vestmient policy should be dependent on the amount of
congestion on the grid. The main issue in this formulation
of atransmission pricing scheme as a coordinating activity
resides in the Information structure of the problem. The
question of the minimal information flow necessary for co-
ordination, under decentralized decision making by trans-
mission users, is essential. Not only is a transmission
provider unable to predict with perfect certainty the future
values of demand, but the provider does not know the cost
structure of generators. The transmission industry should
be structured in a way that enables the incorporation of
this information in the appropriate time frame. An interest-
ing question is how to achieve near-optimal decision mak-
ing by the users themselves, instead of having to depend
on the transmission provider. Fig. 4 illustrates the basic
feedback role of the signal ,(¢).

Multiarea Case

The problem of power delivery by a transmission system
affected by the financial processes, illustrated in Fig. 2,
raises many systems-type questions. To start with, each
control area is currently required to post its available trans-
fer capability (ATC) [32, chap. 2, 3]. This is perceived as nec-
essary to avoid intentional barriers to entry to those
attempting to sell or buy outside their own control areas.
This issue simply requires an estimate of the control area as
an aggregate. Moreover, because the ATC computations
typically use data about one specific control area, this im-
plies suboptimality relative to the transfer capability com-
putations obtainable at the entire interconnection level, as
well as the danger of possible reliability problems caused
by lack of coordination among the control areas when at-
tempting to compute how much each area could transfer.
These types of issues have prompted U.S. federal regulators
[19] to recommend the creation of much larger transmis-
sion-serving entities, or so-called regional transmission or-
ganizations (RTOs). Defining the natural borders for these
RTOs, their size, and other relevant criteria are clearly ques-

Pt PE(H)
Disturbance ——————¥|
Market
Transmission K (t) pi) Line Flows F(t)
Prices v
Transmission
Provider

Figure 4. Multiarea network.
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tions concerning the interplay of tertiary- and second-
ary-level scheduling processes so that power delivery is not
a major obstacle to implementing the energy trades across
large geographical areas.

Conceptually, it is possible to have two qualitatively differ-
ent approaches to ensuring coordinated transmission service:

+ Create RTOs freely and have an overall market for
scheduling power exchange between them. A ter-
tiary-level control model advocated in {11} several
years ago naturally lends itself to implementing this
idea in a systematic manner. This would result in a
minimal online coordinating mechanism, not cur-
rently in place in the regulated industry, based on par-
tial cooperation.

+ Aggregate large groups of transmission system users
into so-called congestion clusters using their relative
impact on flows in the most likely and most critical
congested lines. These clusters generally changeona
seasonal basis, and could be posted as part of the
OASIS mechanism.

This public information mechanism could play a critical
rolein inducing evolution of active transmission markets, as
described in [2]. Moreover, it is conjectured here (withouta
formal proof) that if the clusters are determined systemati-
cally, then the bottom-up processes of internalizing the pri-
ority service values by the system users could lead to
technical conditions similar to those associated with the
process of a transmission company projecting the need for

transmission demand and investing in the right places while

selling according to the priority-based service [20].

Most appealing is the idea of probabilistic multistage de-
cision making, much in the same spirit as the decision mak-
ing described for the generation business. This approach
could lead to the development of software for valuing finan-
cial transmission rights, which could be interpreted in
terms of the physical capacity of the transmission lines de-
livering power. This is a wide-open area and potentially very
lucrative as a performance-based transmission business be-
gins to develop [35].

Conclusions

We have suggested in this article that the range of open deci-
sion and control problems in the changing electric power in-
dustry is broad. Most important, the operating rules de-
termined by each particular industry structure will require
different decision-making and operating paradigms. As a
rule, the more competition among various industry entities,
the more decentralization in the decision making and the
greater the need for stochastic optimization with reduced
information. Consequently, multistage dynamic decision
making becomes a must for successful businesses.

The relations between financial and physical processes
become particularly intriguing and relevant because the
control schemes in place (automatic generation control,
most notably) are based on the premise that each subsys-
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tem (control area, utility) serves its own electricity users
only; the interconnections with neighboring subsystems
are designed primarily for exchanging help under unusually
stressful events. In the competitive industry, the existing
utility boundaries are not actively observed by the financial
trades, which often take place primarily for economic rea-
sons. As illustrated, relating financial processes and actual
physical trades of a nonstorable physical quantity such as
electric power requires careful decision making even in the
seemingly simplest case of selling electricity by a power
producer. An enormous challenge that remains is to estab-
lish meaningful paradigms on the power delivery side (char-
acterized by the vast network complexity, temporal and
spatial hierarchies, and mapping difficulties between the
present control regions and the newly evolving boundaries
of the electricity markets) in which financial and physical
processes are well understood and could form the basis for
future delivery companies. :

Moreover, although not often thought of as active deci-
sion makers, the electricity users will play a determining
role in the success of the competitive electric power indus-
try. The top-down specifications for reliability are likely to
be replaced by specifications for power quality (e.g., rate of
interruption and acceptable range of voltage variations) by
various users in response to the price of electricity. Therole
of demand elasticity may be very effective on hot summer
days when one needs a little incentive to use less air condi- .
tioning when there is a temporary shortage of electricity.
This would eliminate much of the need for unconditional
(n-1) reliability criteria and much of the standby reserve.
Society is likely to see tremendous cumulative gain by con-
serving at a price, particularly in the most developed parts
of the world.

Most exciting to us is that to push the operating para-
digm for future power systems to this new stage will require
a very careful rethinking of the problem as a large-scale dy-
namic system, driven by the typical stochastic variations in
load demand, as well as by an active response to the system
status reflected in the price of electricity. The temporal and
spatial aspects of this are overwhelming on a full-blown de-
tailed system representation. The criteria for what we once
thought of as system aggregation must be carefully under-
stood and should be based on distributed objectives of the
newly evolving businesses. The modularity question of the
newly evolving units, such as GenCos, LSEs, transmis-
sion-providing and/or operating.companies (see [19]), in
the context of their overall technical and financial objec-
tives, will require careful study from a systems point of
view. The ultimate objective is to allow for as much decen-
tralized decision making by these entities as possible, yet to
provide them with sufficient flexibility and smart technolo-
gies so that they jointly approach theoretical limits achiev-
able in a fully coordinated environment under near-
complete certainty.
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The role of systems thinking and the facilitating technol-
ogies, ranging from smart estimation and control gadgets at
the individual LSE, GenCo, and power delivery levels to the
most effective computer software for near online implemen-
tation of electricity pricing as yet another feedback scheme
on a complex system, is huge. The challenge to us could rep-
resent either a missed opportunity to put all our systems
knowledge to work, by means of today’s fast-growing infor-
mation technology tools, or a unique opportunity for a tre-
mendous success.
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