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Effects of Torsional Dynamics on
Nonlinear Generator Control

Eric H. Allen, Jeff W. Chapman, and Marija D. Tli¢

Abstract—The performance of a feedback-linearizing control
for excitation control of a synchronous generator is investi-
gated with respect. to unmodeled dynamics of both the turbine
generator unit and the transmission network. It is found that
certain types of dynamics that were not modeled during the
design of the control enter in a manner that does affect the
performance of the control, but that preserves the linearity of
the closed-loop system. Moreover, the control acts to decouple
the dynamics associated with the machine from the dynamics of
the transmission grid, thus preventing subsynchronous resonance
between the two subsystems when a series capacitor is used
to compensate the transmission line, The stability robustness of
the feedback-linearizing control is investigated with respect to a
structured uncertainty. The uncertainty considered corresponds
to the spring modes of the generator shaft and enters in such a
way that analysis by Kharitonov’s theorem is feasible. It is shown
that the control remains stable over a wide range of values of the
shaft parameters. A sliding control is designed and compared
to the feedback-linearizing control with respect to performance
degradation for this type of uncertainty, and it is found that,
because of the tight saturation limits on the control signal, the
sliding control offers no discernable performance advantage for
this type of structured uncertainty.

1. INTRODUCTION

ECENTLY, feedback-linearizing controls (FBLC's) have

been proposed for excitation control of synchronous
electric generators [1], [2]. These designs have shown promise
in simulations, but they require a measurement of the angular
acceleration of the generator shaft. More detailed studies of the
unmodeled dynamics are required, particularly as they impact
the performance and the stability robustness of the controller.
Two different classes of unmodeled dynamics are considered:
1) the unmodeled dynamics of the turbine-generator subsystem
and 2) the electromagnetic dynamics of the transmission grid.

The first type is typically ignored, based on a heuristic-

time-scale separation argument which can be shown to be
false through an application of singular perturbation theory.
Interestingly, however, the unmodeled shaft interaction enters
in such a way that the behavior of the feedback-linearized
system remains linear. Thus the results reported here may be
applicable to systems with a similar type of uncertainty.

The second type of unmodeled dynamics also is typically
ignored, based on time-scale separation, but must be consid-
ered to capture the important phenomenon of subsynchronous
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resonance which is a resonance of the natural modes of
the torsional subsystem with the transmission grid, Subsyn-
chronous resonance is typically associated with the use of
series capacitor compensation on.transmission lines. In 1970,
unstable subsynchronous oscillations resulted in two shaft
failures at the Mohave generating station in Nevada; this event -
illustrated the fact that the torsional dynamics of the generator
shaft may interact with oscillatory currents in the transmission
grid via the magnetic fields in the generator air gap. [3].

From a theoretical viewpoint, the paper provides an example
of a dynamical model for which it is not justifiable to neglect
higher-order dynamics, even though in this case the natural
shaft modes are over a decade faster than the nominal poles of.
the controller. This is shown using both singular perturbation
and the selective modal analysis (SMA). On the other hand,
if these dynamics are included in the design of the FBLC,
unacceptably high control amplitudes result. Because of this,
one proceeds with the design in which the shaft modes are
neglected. The impact of this on controiler performance is
shown.

The synchronous generator application also places severe
limits on the allowable magnitude of the control signal.
Therefore extensive simulations are required to verify that
the system response to control saturation is benign. The
presence of a large torsional “ripple” on the acceleration mea-
surement severely aggravates the control saturation problem.
One possible method for limiting saturation is field voltage
averaging and/or filtering of the acceleration measurement.
Results show that these methods are capable of improving
FBLC performance, but the averaging or filtering can also
cause instability.

With respect to the transmission elements, FBLC is shown
to decouple these dynamics from the torsional dynamics of -
the generator. This separation prevents the interaction that can
produce an undesired resonance.

It-is known that an FBLC is not generically robust to
uncertainty, and therefore care must be exercised in evaluating
the effects of unmodeled dynamics on the control design.
In the example of FBLC of the excitation of a synchronous
electric generator, it was found that a certain class of dynamics
(specifically, the shaft dynamics) that are customarily ignored
in the control design enter in such a way that, although the
design poles of the FBLC are shifted, the closed-loop system
remain linear. For the particular example considered, this
composite system was shown to be stable. It is important,
however, to verify that the composite system will remain
stable if the parameters of the shaft dynamics vary, since
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these parameters are not normally known with good precision.
This is a case of structured uncertainty, since the form of
the model is assumed to be known, but the parameters are
uncertain, Because the linearity of the system is preserved
for this particular case, there are several methods available
for evaluating the robustness of the controller with respect to
parameter uncertainty.

Clearly there are a multitude of uncertainties in addition
to the shaft parameters, and as noted earlier, FBLC is not
considered to be a robust methodology. Therefore it may be
desirable to use a control methodology that allows for a more
general class of uncertainty. One such control scheme is sliding
mode control. In this method, the system state is confined,
after a finite “reaching” interval, to evolve (“slide”) upon a
manifold that is specified as part of the design. Typically,
the manifold is chosen such that the evolution of system
trajectories is linear. In this paper we develop a sliding control
design whose trajectories correspond to the original FBLC
design. The response of the design should then be similar
to FBLC, but the robustness to model uncertainties is well
established.

This paper is organized in the following way: The first
part examines the closed-loop system performance in the pres-
ence of unmodeled turbine/generator dynamics, neglecting the
transmission line dynamics. Once all conclusions are drawn for
this case, the problem is revisited with explicit consideration
of transmission line dynamics. Both problems are of practical
importance. Next, the robustness of the controller to variations
in the shaft parameters is examined. Finally, a sliding mode
controller is designed, and its performance in the presence of
the shaft dynamics is compared to that of FBLC.

II. DBVELOPMENT OF FBLC

The FBLC is designed for a fourth-order generator model
with state vector X, = [§ w Ej E}]T. Only three states
(6, w, By) can be feedback lmeanzed by means of a state
vector transformatlon, we may write the dynamics of these
three states in Brunovsky form with z = [(§—6,) (w—w,) aT
(11

$=w—w, ¢Y)]
v=a 2
& = p(x,) + B(x9)Eza €)]
p(xg) = _%"_o_ [D—“-)- + E,’iid <+ E,'iid +- E;iq
6z o1
- Eugms aE' By - ‘/’81;’ E’]
2HT’ [EI + (wd zd)zdl A
81 Oa .
[E,’, BE, +Ey 52 2 ] ' @
Blx,) = E % +E. 2 )
v 2HT’ "9E, T T48E, " ?

Upon applying the following signal to the field voltage
aTz - P(xg‘)
B(xg)

where a = [ao @1 a2)7, these dynamics of the generator will
be linear, according to [1]

- Byg = (6)

§=w~w, ¢ o ()]
w=ao ' 8)
& = ag(8 ~ 6,) + ar(w — wo) + azan. ®
The FBLC was tested with all three poles at —5; to achieve.

this, one sets a9 = —~125, a3 = —75, and ag = —15. This
choice of pole locations is approximately one decade below
the slowest unmodeled dynamics in the system.,

As noted in Section I, Efq has maximum and ‘minimum
saturation limits. If the calculated Eyq from the controller
exceeds these limits, the actual field voltage remains at the
limit value. For this paper, Eyq is constrained between O-
and 6.16 pu. The use of a smaller range for Efq was also
investigated, but no qualitative change in the results was
observed. :

III. EFFECTS OF UNMODELED DYNAMICS OF THE GENERATOR
When considering the torsional dynamlcs, the model as-

sumes the form

1]-B 220

X1] 7 |An A (xa)
Notice that the shaft subsystem, represented by the vector x,
is linéar, and the combined system remains linear even in the
presence of the additional dynamics. This situation holds for
the example in this paper, although it is not generally true for
all types of unmodeled dynamics.

FBLC design, intended to produce (7)-~(9), actually results
in (10). Consequently, there is a significant change in. the
quality of the system response. The closed-loop pole placement
differs from the original design. The field voltage saturates
frequently, since x; is strongly coupled to z3. The damping
of x; is much greater, however, in the combined model than
the natural damping of the isolated shaft model.

This is an unusual example because the coupling between
z and x; is strong; i.e., [|A12|| and [JAa1]| are greater than or
equal 10 ||A11|| and ||Agz||. Therefore, the standard singular
perturbations argument does not hold for this model; x; ‘are not
“faster” variables than z (4], Applying SMA- to this problem
yields the same conclusion [5]. Note that SMA was used in [7]
on a system with subsynchronous resonance; however, in that
example, the shaft states were retained in the reduced-order
model.

FBLC requires a measurement of z3, which is greatly
affected by x, resulting»in‘conlrol saturation, Several ap-
proaches to handling the saturation problem are considered.
One possibility is averaging the control input u; however,
straightforward averaging of u does not assure stability. The
same problem occurs. if low-pass filtering of 23 is used,
although in some cases this technique is able to significantly
reduce saturation and improve FBLC performance. Another

(10)
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Fig. 1. The torsional spring-mass model.

approach is to modify p(z) and 8(z) to include the effects of
x1. Unfortunately, this method increases the control saturation
and further degrades the performance.

If no modifications are made to FBLC, then good pole
placement is achieved for z, even in the presence of x;.
The only drawback is that rail-to-rail control switching at the
frequency of the shaft modes (usually 10 to 50 Hz) is observed.
In the small disturbance case, the performance of FBLC with
respect to the dynamics of z is not seriously degraded despite
the fact that }|A12]j is large.

IV. MODEL OF GENERATOR/SHAFT T(JRB;NE

Fig. 1 shows a typical shaft in a power generator. The
generator, turbine, and shaft are commonly modeled as a series
of rotating masses connected by torsional springs. Each mass
also experiences damping torques. The inertia constants of the
two turbines will be denoted as Hy and Hy, while the generator
constant will be referred to as H,. The shaft model is then
taken as a sixth-order linear system [5] [8]

2H, d*§ - &

_Jf——dt—;_ = Py~ Dlu"— - K12u o 2 (1D

2H, d26, b9 — &1 b2 — 6

T =P2u"D2u";;"K12u s - Kaeu - -
(12)

2H, d%6 We - §

oo = ~Peu = Dy — Ko™ = (13)

where §; and w; = §; represent, respectively, the angle and
speed of mass 4. Notice that § = §, and w = w, are the
common states that couple the shaft and the generator,

A. Sample Torsional Shaft Model

‘The parameters for the example model in this paper are the
same as used in [5] -

= (.3474s K2, = 201585~ Dy, = 0.08869
Hy =19927s Kpep, = 4021951 Dy, =0.5521  (14)
H, = 1.160s Dg, = 0.3131.

The eigenvalues of the shaft system, given the shaft parameters
above, appear in Table L. In this case, the shaft modes are at
24.07 and 31.28 Hz. This places the shaft modes well within
the typical range of 10-50 Hz {8}. -

V. THE COMBINED GENERATOR AND SHAFT MODEL

The feedback linearizing controller derivation was based on
a fourth-order generator model. This model assumes that

. w . .
w=om [Pm D‘—d: ~ Eliqg - E",z,,} (15)

WS W =
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TABLE 1
EIOENVALUES AND FREQUENCIES OF THE TORSIONAL STATE-SPACE SHAFT MODEL

Number(s) |  Eigenvalue | Frequency (Hz)

1,2 <0.07 £ 719654 31.28

34 -0.07 % j151.24 24.07
5 0.00 < -
6 -0.14 -

where H = Hy + H; + H, represents the combined rotational
inertia of the turbines and generator, and P,, is the mechanical
power from the turbines which is treated as a constant, When
tofsional dynamics are included, however, the equation for w
is taken from (13)

[K 2euT 6 6

- K; 2eu

Wo

- D,,% - Elig - E;i,,] (16)

o

given that Po, = Ejig + Ejig. If we differentiate (16),
following the same procedure used in [1} and [2], we find that

& = py(xg) + Be(xg)Ega an

where
w
Pt(xg) = _E‘E‘ [ Kﬂeu + K?su + -Deuai

+ Elig + Bliig + Ejig - a; =L B~ E, Oia E’]

"BE’ 49E;
e 2H T’ s (B + (T = 23)id]
B Bi
[E{, a};/ +E, a;"d' +zq] (18)
Bulx,) = ~ gl gl (19)
w 2H T’ “BE; " “YoE; "

Thus, when the feedback signal defined in (6) is applied (i.e.,
when the control based on the simpler model is used), the
generator-shaft system is still linearized, although & picks up
some extra terms

. H
&= —alz -

H,

2H

Wo

[""Kﬁeu + K&eu

+ D2 - Dfi]. (20)
Wo W

Three generator states, §, w, a and the four shaft states,
81, w1, 82, wo, form a seventh-order linear system when FBLC
is used. The eigenvalues of this system, given the same con-
troller and shaft parameters as before, are shown in Table IL.
Notice that the torsional modes are still present at 24 and 31
Hz, but the damping of these modes has improved signifi-
cantly. Additionally, the poles which were nominally located
at —5 have shifted, giving rise to a strongly damped conjugate
pair of 0.17 Hz.

Note that the real part of the eigenvalues of Table II are
all of the same order of magnitude. This suggests that time-
scale separation does not hold for the generator and shaft
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TABLE I
EIGENVALUES AND FREQUENCIES OF THE SHAFT/GENERATOR
MopEL WITH FEEDBACK LINEARIZING CONTROL

Number(s) |  Eigenvalue ' | Frequency (Hz)
1 -6.99 -
2,3 —-4.12 £ j1.04 0.1662
4,5 -2.69 + j195.55 31.12
6,7 —12.52 £ j150.52 23.96
o8 Mo;o;"\ollmoul Torsional Dynamios
0.08F . e
i,
g
~0.06/
«0.1
018 08, 1 1.8 2 .5 3 EX3 4 45

2.
ime (s)

Fig. 2. Response of § — &, to-a 0.5 § fault without torsional modeling.

Model With Torslonsl Dynamics

X ] 1.5 2 2.8 3 £ 4 48
. e (8)

Fig. 3. Response of § — 6, to a 0.5 s fault with torsional modeling. The
torsional dynamics affect the response of 4, although & still returns to
equilibrium within a reasonable time.

dynamics. This can be rigorously confirmed by using selective
modal analysis to calculate the participation factors [4], [6].
Therefore, both sets of dynamics must be retained when
analyzing FBLC performance in the presence of torsional
oscillations on the shaft.

VI. FIELD VOLTAGE SATURATION

Figs. 2-7 illustrate the impact of the shaft dynamics on
an FBLC-equipped machine. A sixth-order generator model
similar to [9] is used for these simulations and all others in
this paper, The large swings in Ey4 primarily result from the
high-frequency oscillations present in the shaft acceleration
measurement. Notice in Fig. 5 that the amplitude of the high-
frequency oscillations in w is about 6 rad/s®> at ¢t = 0.5 s.
Since Eyq4 includes the acceleration measurement multiplied

Modet Without Tarsional Dynamios

[ 1 16 0 2.6 3 3.6 4 45
ume (s}

Fig. 4. Response of & to a 0.5 s fault without torsional modeling. .

Madel With Torsional Oynamics

2.8 E s 4 XN
time (o)

Fig. 5. Response of w to a 0.5 s fault with torsional modeling. The shaft
oscillations form a large portion of the acceleration measurement.

Mode) Witheut Torslonal Oynamics

o8 1 1.8 2 2.6 3 s 4 48
time (s) .

Fig. 6. Response of Egg to 2 0.5 s fault without torsional modeling, Erq
only saturates briefly following a disturbance.

by az/B(x,), these oscillations produce swings with an ap-
proximate amplitude of 12 pu in Eyq which is more than
sufficient to saturate Eyzq at both limits [5].

VII. AVERAGING OF THE CONTROL INPUT

One way to mitigate the saturation problem is to subject the
control input to 2 moving average. Mathematlcally, this means
that the field voltage becomes

¢ To o
Ejq = / wd,
t~To

21
B(xg) @b
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Modsl With Torslonal Dynamics

2.8
time {8)

Fig. 7. Response of K74 to a 0.5 s fault with torsional modeling. Clearly, the
torsional dynamics cause Eyg to saturate for an extended period following
the disturbance.

For this paper, the averaging is done over one period of the.

60 Hz base frequency, so that Tp = 1/60 s.

A. Linear Model of the System with Field Voltage Averaging

Averaging the feedback signal results in a nonlinear system.
An approximate linear model can be developed, however,
to represent the effects of filtering. First, recall that the
original system has three low-frequency modes and four with
frequencies in the torsional range. Recall that each mode in a
linear system evolves independently. If the mode is not excited
by initial conditions, then it will vanish for all time, regardless
of the behavior of other modes. Our linear model of the system
‘with control averaging will also consist of seven modes which
act independently.
Second, notice that averaging is a low-pass operation.
It is observed in simulations that the torsional oscillations
are of significant amplitude only in the acceleration (z3);
therefore, we assume that all quantities in (21), except 23, are
unaffected by the averaging. The transfer function H,(jw) of
the averaging process is
(o) = L[] = gmiwTo
H,(jw) = o [1-e ] (22)
Next, we observe that 23 = « includes components from
all seven modes. We approximate the averaging of o as the
multiplication of each modal component of a by a constant
which is equal to the transfer function of the integrator
evaluated at the frequency of that mode. This approximation
is reasonable since [6]
n
a(t) =) wix(0)e**[0010000]v; @3
i=1
where w and v are left and right eigenvectors, respectively,
of the matrix A. A is the seventh-order system matrix from

(10). Using the notation
Ai =0 + Jwi 4

we can write

n
ag(t) = EH,,(jw;)w,-Tx(O)e”“[OO 10000}vie?t  (25)
=1 .

129

TABLE HI .
EIGENVALUES AND FREQUENCIES OF THE LINEAR MODEL
OF AVERAGED FEEDBACK LINEARIZING CONTROL

Number(s). | Eigenvalue | Frequency (Hz)
1 -6.99 -
23 -412% j1.04 | . 0.1662
4,5 0.19 % 5j198.92 - 31.66
6,7 —2.24 + 5160.64 25.57

where oy is the averaged measurement of the acceleration.
Notice in Table II that all eigenvalues have relatively small
real parts; therefore, we treat ¢”** as a constant. Note from
(25) that the effect of the averaging of « is that the constant
ag is replaced by agH,(jw;). We denote by A,,; the matrix
A with aj replaced by azH, (jw;).

Given the assumptions in this section, if an eigenvalue and

. eigenvector. pair of frequency w; represents a mode of A,

then it must also be a mode of the averaged FBLC system,
based on the following reasoning: If the initial condition x(0)
of the averaged FBLC system is an eigenvector v, then only
mode k is excited, and X = A, x for all time. Mode k
will evolve in the same fashion as if the system were linear
with matrix A,,. The modes are implicitly defined to act
independently of each other. By finding the eigenvectors and
eigenvalues of A, for each modal frequency w; and picking
out the modes that match those of the composite system, a
matrix can be constructed to represent a linear model of the
feedback-linearized system with field-voltage averaging.

The low frequency modes presented in Table II are pre-
sumed to be unaffected by the averaging and are incorporated
directly into the linear model. An iterative scheme is used
to find the remaining modes. We select an initial guess for
w; from the eigenvalues of A, the matrix for the nonaveraged
system. Then we calculate A, obtain a new value for w; from
the eigenvalues of A, and iterate until convergence. There
is no proof that this algorithm actually does converge, but
the frequencies are observed to experience only small shifts
as w; changes, and for this example, three to six iterations
are sufficient to provide an accurate estimate for w;. Finally,
the eigenvalue of A,, that has imaginary part w; and its
corresponding eigenvector are added to the linear model, along -
with their conjugates.

B. Results of Field Voltage Averaging

Calculation of the linear model with field-voltage averaging
produces an unstable mode, as shown in Table Ill. This is
confirmed by simulation, as shown in Fig. 8. The averaging
introduces phase shifts of —76.7° and ~95.0° at the torsional
frequencies, and these phase shifts cause the instability. This
will be examined further in the next section.

VIII. FILTERING OF THE ACCELERATION MEASUREMENT

Since control averaging leads to instability, we may attémpt
to remove the high-frequency content from the acceleration
measurement with a low-pass filter. In this paper, Butterworth
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Simulation of FELC with Averaging

0.8

o8 1 1.5 2 26 3
tme (o)

Fig. 8. Simulated response of E}d to a small disturbance with averaged
FBLC.

filters of several different orders are to perform the filtering.
A Butterworth filter of order V has a transfer function Hy(s)
such that [10]

Hy($)Hy(~8) = ——1

1T /o) 26)

A. Full Order Linear Model with Acceleration Filtering

' The Butterworth filter connects with the system in such a
way that the generator with torsional dynamics and acceler-
ation filtering remains linear. The filter may be represented
as a dynamic system with input « and output ay. Only
Eyq depends on the filtered acceleration measurement af;
consequently, p(x,) is a function of ay, while py(x,) is a
function of the unfiltered acceleration a. The state equation
for &, is

H
G = F(ao(zﬁ - 8o) + ay(we — wo) + azay)
o 03
;;-{ KZeu + K2eu + Deu_ - ;:'] . (27)

Combining this equation with the filter dynamics aﬁd feedback
linearized .generator/shaft model produces a linear model for
the entire system,

B. Reduced Linear Model of Acceleration Filtering

The combination of the linear Butterworth filter and the
feedback-linearized generator with tersional dynamics pro-
duces a composite system that remains linear. If the details of
the filter are ignored and only the transfer function Hy(jw)
is considered at certain frequencies of interest, however, a
seventh-order linear model of the system can be developed
using the same reasoning that was employed when studying
field voltage averaging, the only difference being that Hy (jw)
replaces H,(jw). The model developed in this fashion will be
referred to as'the reduced linear model, since the dynamics of
the filter are ignored.

* C. Results of Filtering the Acceleration Measurement

To examine the effects of measurement filtering, a first-,
second-, and fourth~order Butterworth filter was used. In all

TABLE IV
EIGENVALUBS AND FREQUENCIES OF THE REDUCED LINEAR
MODEL OF THE FEEDBACK LINEARIZING CONTROL WITH A
FIRST-ORDER BUTTERWORTH FILTER OF ACCELERATION

Number(s) |  Eigénvalue Frequency (Hz)
1 ‘ —6.99 -
2,3 -4.12+351.04 .| ° 0.1662
4,5 —0.41 & 5197.57 3144
67 | -185% 5155.96 24.82
TABLE V'

EIGENVALUES AND FREQUENCIBS OF THE LINBAR
MovsL oF FEEDBACK LINBARIZING CONTROL WITH A
FIRST-ORDER BUTTERWORTH FILTER OF ACCHLERATION

Number(s) | Eigenvalue | F\'equency (Hz)
1 ~17.36
23 -3.18 + 51,38 0. 2197
45 | ~0.41+3197.57 31.44
6,7 | -1.81%;156.00 24.83
8 -3508° | - ‘
TABLE VI

EIGENVALUES AND FREQUENCIES OF THE REDUCED LINEAR
MoDEL OF FEEDBACK LINEARIZING CONTROL WITH A
SECOND-ORDER BUTTERWORTH FILTER OF ACCELERATION

Number(s) | Eigenvalue | Frequency (Hz)
1 -6.99 Ce
2,3 ~4,12 + j1.04. 0.1662
4,5 0.22£3196.74 | © - 31.31
6,7 1.63 & 5152.80 24,32

TABLE VII
EIGENVALUES AND FREQUENCIES OF THE LINEAR
MODEL OF FEBDBACK LINEARIZING CONTROL WITH A
SECOND-ORDER BUTTERWORTH FILTER OF ACCELERATION

Eigenvalue

Number(s) | | Frequency (Hz)
1 -21.07 -
2,3 ~-3.02£ 7141 0.2247
4,6 0.22 & j196.74 31.31
6,7 1.60 + 7152.82 24.32
8,9 —~32.88 £ §31.23 4.97

cases; the cutoff frequency of the filter is 10 Hz Which is atthe -

low end of the range of shaft dynamics normally encountered.
The elgenvalues of the reduced-order model and the full linear
model for the three filter types are given in Tables IV-IX.
The reduced-order model gives excellent agreement with the

full-order model with respect to the torsional modes, but.

the low-frequency modes ‘do not match up so well. This

’
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TABLE VIII
EIGENVALUES AND FREQUENCIES OF THE REDUCED LINEAR
-MODEL OF FEEDBACK LINEARIZING CONTROL WITH A
FOURTH-ORDER BUTTERWORTH FILTER OF ACCELERATION

Number(s) | Eigenvalue | Frequency (Hz)
o1

—6.99 =
2,3 412+ 51.04 0.1662
45 ~0.09 £ 5196.59 31.29
6,7 -0.22  §151.31 24.08

TABLE IX
EIGENVALUES AND FREQUENCIES OF THE LINEAR
~ MoODEL OF FEEDBACK LINEARIZING CONTROL WITH A
FoUuRTH-ORDER BUTTERWORTH FILTER OF ACCELERATION

Number(s) |  Eigenvalue | Frequency (Hz)

1,2 ~0.09 + $196.59 31.29
3,4 ~0.22 £ j151.31 24.08
5 ~71.68 -
6,7 | —31.57 & j58.06 9.24
89 ~2.70 & j1.44 0.2287
10,11 -11.87 & j22.89 3.64

observation is best explained by noting that the real parts of
the eigenvalues of the low frequency modes indicate that these
modes decay fast enough to be affected by the filter.

Both the eigenvalues and the simulations indicate that the

first- and fourth-order filters produce stable systems, while a ’

second-order Butterworth filter results in an unstable system.
The instability occurs because the second-order filter has
a stopband phase shift of ~180° which inverts the high-
frequency field voltage components and excites the torsional
modes. Furthermore, the presence of any filter greatly reduces
the damping of the torsional modes, approaching the natural
damping in the shaft system. Eigenvalue analysis of the matrix
A, verifies these claims.

The fourth-order Butterworth filter significantly attenuates
high-frequency components of the field voltage. Simujations
of an FBLC-controlled system with fourth-order filtering of
acceleration are shown in Figs. 9-11. The response of the rotor
angle is almost identical to the simulation in Fig. 2, where
torsional dynamics are not modeled. In this case, a fourth-order
Butterworth filter results in improved performance of FBLC,
but it must be cautioned that if any unmodeled dynamics exist
near the cutoff frequency of the filter, they are very likely to
be excited since the phase shift at the frequency is —180° [5].
A more sophisticated filter design might be more robust in
this respect. :

IX. INCLUSION OF TORSIONAL
DYNAMICS IN THE CONTROLL_ED DESIGN

Another approach to modifying FBLC in the presehce of
shaft dynamics is to change the control law to include them.
Adding torsional state information to the controller, however,

(k)

Fourih order Butterworth filtering of Ascsieration

s 4 4.5

0.5 1 1.8 2 2.8
e (=)

Fig. 9. Simulated response of § — &g to a 0.5 s fault with fourth-order

Butterworth filtering of w.

Foutth order Butterworth fiering of Aacsierstion

(X3 1 1.8 2 3 38 4 48

2.8
time (s}

Fig. 10. Simulated response of « to a 0.5 s fault with fourth-order Butier-
worth filtering of w.

Fourth urder Butterworth fiering of Acceleration

0.8 1 " 2 EX] 4 48 s

2.8 3
yme (s)-

Fig. 11, Simulated respouse of Esgq to a 0.5 s fault with fousth-order
Butterworth filtering of w.

is not beneficial; in fact, because of field voltage saturation,
the performance is seriously degraded. The shaft dynamics
add enormous oscillations to p,(x,), and the given range of
the field voltage is not nearly enough to control the system,
as shown in Figs. 12-14 [5].

X. UNMODELED. DYNAMICS OF THE
TRANSMISSION SYSTEM

In addition to unmodeled dynamics of the device, we now
include dynamics of the transmission elements that were pre-
viously neglected. The state vector of these system dynamics
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FBLC with Torsional Madeling in Controlise
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Fig. 12. Simulated response of & — 6o to a 0.5 s fault with FBLC that
accounts for torsional oscillations.

FBLGC with Torsienal Modaling in Convroller
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Fig. 13. Simulated response of w to a 0.5 s fault with FBLC that accounts
for torsional oscitlations.

#B1.C with Torsional Modeling In Controller

Fig. 14. Simulated response of Egg to a 0.5 s fault with FBLC that accounts
for torsional oscitlations,

will be x; and the system equations become

‘Z z
x| =fl |*x. (28)
Xo X2

Note that we no longer assume linearity of the complete
system. To perform eigenvalue analysis, we linearize (28)
around the equilibrium point. If a more conventional linear
controller is used, the linearized closed-loop dynamics are of

the form }
Az Ay A An][A4s
Ax; | = [Ag A Ags | |4x; (29)
Axy Aar Agp Ags| [Ax,

where the A indicates a small deviation of a state vector from _
equilibrium. ¢
On the other hand, if exact FBLC is employed the lin-

‘earized closed-loop dynamics of the complete system are of a

v

(partially) decoupled form

Az An Ap 0 ][4z
Axy | = |Az1 A 0 | |4x | 30)
Ax, Az1 As A [Axe :

We begin to have potential instabilities in (29) in modes
which respond to both x; and x,. If the control input is not
constraitted, however, no instabilities occur in (30). The effects
of saturation limit the stabilizing ability of FBLC; however,
in most practical tests with saturation, FBLC was still able to
prevent instability from developing. B

X1. EFFECTS OF FEEDBACK LINEARIZING .
CONTROL ON SUBSYNCHRONOUS RESONANCE

We saw earlier that feedback linearizing control increases
the damping of the shaft modes. We now wish to investigate
the effect that increased damping has on subsynchronous
resonance, since the torsional dynamics play a plvotal role,
in this phenomenon,

A. Model of the Network

To analyze subsynchronous resonance, it is necessary to -
develop a model for the network dynamics to be added to the -
generator and shaft models in Sections IV and V. Following
[11], the following time-varying phasor model is used.to -
capture the electromagnetic dynamics of the transmission grid;

Ve = Zrig (31)
N A ,
V= L_dT +2Z1L (32)
Ic= c'fd—vtg +YoVe. (33)

Normally, the voltage and current phasors are assumed to
vary slowly with time, so the time derivatives are ignored.
Subsynchronous currents appear in phasor notation with a
time-varying component, however. For exagple, time domain -
and phasof representations of a 30 Hz subsynchronous current
take the following forms: .

#(t) = 5cos 60xt «» [ = 5¢~760m G4

since i(t) = R(le?*ot), where w, = 120x. Therefore, the

-_tlme derivatives in (32) and (33) cannot be neglected. -

The network we consider is shown in Fig..15. It consists ofa
generator, a transmission line, a series capacitor, and an infinite
bus. The transmission line resistance and reactance includes
generator resistance and transient reactance, so that the states
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Fig. 15. Network for subsynchronous resonance simulation.

E}, and Ej can be treated as the voltage at the generator bus
after an appropnate coordinate transform. The voltage and
current at bus 3 (the connection between the transmission line
and the series capacitor) will be the state variables for the
network. Note that we neglect shunt capacitance. The current
is therefore the same throughout the network.

Since the current through the transmission line inductance
is simply /3, we may write

n-th= b, (p o ixyp,

The capacitor voltage is equal to Vs — Vo, where V2 =
Wa + jW, represents the infinite bus voltage. This leads to
the following equation:

dVs
Iy=0=2 : 2 4 jwoC (Vs = Wy ~ jW,). (36)

d

Equations (35) and (36) can be used to define two complex-
valued or four real-valued states. Denoting fs = Ia3 + jlga
and Va = Vg + 7Vas, we have the following state equations
for a single transmission line with capacitive compensation:

fis=ZWVar - Vis - Rla + X1 T)
jqa = ";—;[Vql - an - RIqa + de:,] (38)
. 1 .

Vas = 5143 + wo(Ves = W) 39
. 1 :

Vq3 = —,Iqa + Wo(vda - Wd)- (40)

C

B. Sample. Network Parameters

As before, parameter values from typical examples are se-
lected to perform simulations of the system. For the transmis-
sion line, R = 0.058526 and X = 0.89497; this corresponds
to the admittance used in earlier simulations. V2, the infinite
bus voltage, was chosen so that V3 maintained an equilibrium
value of 0.9164 + j0.20473, regardless of the capacitance
selected; this was done so that the system would maintain
the same equilibrium point for a variety of capacitor values.
With these network constraints, the generator maintains the
same equilibrium as in previous simulations.

C. Simulation Results

Once the models are determined, simulations are straight-
forward, A slight perturbation of the line current was used as
a disturbance.

First, a constant excitation voltage was used to demon-
strate the natural dynamics of the system. The simulator
includes a routine to numerically derive a linearized state-
space representation of a system at any given operating point.

a5
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TABLE X
EIGENVALUES AND FREQUENCIES OF THE LINEARIZED
SYSTEM FOR THREE EXAMPLE SERIES CAPACITOR VALUES

Compensation Eigenvalue Frequency (Hz)

2.96% —0.90  j441.1 70.20
-8.95+ 3126 |« 49.75
-0.058 + j196.6 | ©  31.29
~0.051 £ j151.6 24.13

~34.84 -

-30.90 -
-0.459 £ j6.71 1.07

-4.88

-0.328 ~
23.0% —10.41£ ;557.4 88.71
-7.95% j196.1 31.21
0.808 + j196.5 31.27
0.061 + 5152.2 24.22

~35.87 -

-32.25 -
-0.644 £ j7.65 1.22

- -0.356 -

-5.03 -
35.9% -10.55 £ j602.7 95.92
S -0.053 + j196.4 31.26
-9.35 £ j151.7 24.15
3.85 % j151.5 24.11

-36.79 -

-33.60 -
~0.832 + j8.40 1.34

-0.378 -

-5.14 -

The resulting eigenvalues of the linearized model for three
selected capacifance values are shown in Table X. With
a large capacitor in series with the transmission’ line, the
system remains stable, At 23.0% compensation, however, the
subsynchronous frequency drops to about 31.3 Hz and interacts
with a torsional mode at that frequency, causing instability.
At 35.9% compensation, the subsynchronous currents interact
with the torsional mode at 24 Hz, again leading to instability. A
simulation of the system with 23.0% compensation is shown in
Fig. 16, illustrating the unstable subsynchronous oscillations.

Next, the effect of FBLC on a system prone to subsyn-
chronous resonance is examined. The results of a test run with
FBLC poles at -5 and 23.0% series compensation are shown
in Figs: 17 and 18. Even though the series capacitance is at a
critical value, FBLC does stabilize the system, Note that the
field voltage reacts at a high frequency during the transient.
Although these results seem quite surprising, the placement of
the poles at —5 causes the generator to act as a low pass filter
and damp out high-frequency mechanical components which
would otherwise interact with the magnetic fields produced in
the air gap by subsynchronous currents. The large, fast swings
in Eyq shown in Fig. 18 are generally undesirable. To reduce
these swings, a fourth-order Butterworth filter was added to

" the acceleration measurement to reduce the swings while still
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‘Fig. 16. Line current (real part of phasor) of a system experiencing subsyn-
chronous resonance.

FELO, Poles at ~B: C = 0.0128 F
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' e

Fig. 17, Line current (real part of phasor) of a system with 23.0% compen-
sation and FBLC. )

—

FBLC, Poles a1 ~6: C « 0.0139 F

% w1 8 @ 38 3 38 4 48

tis)

Fig. 18. Field voltage of a system with 23.0% compensation and FBLC.

providing the control necessary to stabilize the system. The
results of the acceleration filtering method with poles placed
at —5 are shown in Figs. 19 and 20. These results are very
surprising, since we might expect that the high frequency
oscillations in the field voitage are too small to stabilize the
subsynchronous modes. The simulations reveal, however, that
the torsional modes do not grow.

XIL ROBUST STABILITY OF A SYSTEM

Robust stability with respect to parametric uncertainty of
the shaft model wiil be defined and analyzed in terms of the

FBLC with Acosleration Fittering: C = 0.0120 ¥

o 0.8 1 [E3 2 2.6 E) a8 4 48
tima (s) .

Fig. 19. Line current (real part of phasor) of a system with 23.0% compeﬁ-
sation and FBLC with fourth-order Butterworth acceleration filtering. -

° [X] 1 1.5 2 3 3.8 4 48
um- ) .

Fig. 20. Field voltage of a system with 23. 0% compel'lsauon and FBLC with
fourth-order Butterworth acceleration filteting.

roots of the uncertain polynomial

+ a1(q)s + ao(q)
41)

where the coefficients a;(q) are real functxons of uncertain-
quantities q = [g1 g2...qm]7 and ¢ < ¢ < ¢ The
polynomial p(s, q) is robustly stable if and only if all roots
of p(s,q) = O are in the left half plane for all q € Q,
where Q denotes the set of all possible uncertainty vectors
q. The polynomial we will be analyzing is the charactenstlc
polynomial of the system in (10) i

A ] )

Aa /)

Throughout this paper, it is assumed that a,;(q) # 0 for all
q € Q. This condition is equivalent to statirig that p(s, q) has
invariant degree, meaning that the number of roots is the same
for all q. It can be shown that (42) has invariant degree.

The manner in which the uncertain quantities g; appear.
in the polynomial coefficients is known as the uncertainty
structure. If each ¢; appears in only one coefficient, the
polynamial has an independent uncertainty structute, If at least
one g; appears in more than one coefficient, but every term
of every coefficient has at most one uncertain quantity, the
uncertainty structure is affine linear. If there are terms which

P(8, Q) = an(Q)s" + an_1(Q)s™ ™ + -

An

o, a) = det (s - [ A @)
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contain products of different g;, but there are no powers of any
¢ greater than one, the structure is multilinear. An uncertainty
structure with higher powers of at least one ¢; is polynomic.
The uncertainty structure for the torsional shaft/generator
system with FBLC is a multilinear structure.

A. Kharitonov’s Theorem

Perhaps the most well known and simplest tool for robust
stability analysis is Kharitonov’s Theorem. Kharitonov’s The-
orem is a conclusive test for the stability of an independent
uncertainty structure. Such a polynomial may be written as

P(3, Q) = a8 + gn-18"""+ -+ Q8+ qo 43)

where, as before, ¢ < g; < ¢;7. Kharitonov's theorem asserts
that p(s, q) = O is robustly stable if and only if the four
Kharitonov polynomials are stable [12).

This theorem provides a simple, conclusive test for robust
stability. By calculating the roots of four polynomials, we
have information about an entire set of polynomials, It is well
known, however, that the required independent uncertainty
structure rarely occurs in practice. It is possible to apply
Kharitonov’s Theorem to any uncertainty structure by finding
the uncertainty range of each coefficient; this technique is
called overbounding [12]. Since the coefficients are not free
to vary independently, however, the results of overbounding
are conservative. If Kharitonov’s Theorem concludes stability
for the overbounded structure, then the original structure is
robustly stable; however, the converse is not true. If the test
fails, other techniques are required to determine whether the
system is robustly stable.

B. Value Set and the Zero Exclusion Condition

For any generalized uncertainty structure, robust stability
may be determined by means of the value set. The value set
at a given frequency w, is defined as the region covered by
p(jwo, q) for all q € Q. For specialized uncertainty structures,
the value set has a distinct shape which will be discussed later
[12}.

The value set is used to conclusively determine robust
stability of p(s, q) through the Zero Exclusion Condition, This
condition states that p(s, q) is robustly stable if and only if
at least one member of p(s, q) is stable, and the value set
p{jw, q) does not inciude the point zero at any frequency
w, where 0 € w £ oo. The proof of the Zero Exclusion
Condition is based on the following argument: If p(s, q) is
robustly stable, then the roots of p(s, q) = 0 must always be
in the left half plane, and p(jw, q) can never be zero, since jw
is on the imaginary axis. Furthermore, if p(s, q) is not robustly
stable, then for some q. € Q and qy, € Q, p(s, q,) is stable
while p(s, qy) is not. As q travels on a path from q, to qy, at
least one root of p(s, q) travels from the left half plane to the
right half plane; for some q* on the path, that root crosses the
imaginary axis at jw*, and therefore p(jw*, q*) = 0. Note that
because the coefficients of p(s, q) are assumed to be real, it is
sufficient to check the positive imaginary axis, since imaginary
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roots occur in conjugate pairs. A formal proof may be found
in [12]). :

C. The Structure of the Value Set

To apply to Zero Exclusion Condition, the boundaries
of the value set for the full range of w must be known
or approximate. The Zero Exclusion Condition is the basis
for the proof of Kharitonov’s Theorem which applies to
the independent uncertainty structure. The value set for an
independent uncertainty structure is a rectangle. To see this,
note from (43)

p(wo, q) = (g0 — qawd + quwf = )
+i(qwo — qawd +-+1). (44)

Because of the independence of the coefficients, the real
and imaginary parts of the polynomial may be maximized
independently, hence the shape of the values set is a rectangle
for any w. It can be shown that the Zero Exclusion Condition
for the Kharitonov rectangle is satisfied if and only if the four
Kharitonov polynomials are stable [12].

If the uncertainty structure is affine linear, the value set will
be a convex polygon, For multilinear uncertainty structures,
the value set no longer has a well-defined shape. An upper
bound for the value set of a multilinear structure may be
determined, however, using the Mapping Theorem [12]. First,
it is necessary to calculate p(jw, g) for all of the extrema of
q. The extrema are the points where each ¢; is at either its
minimum or maximum value, Notice that () has the shape
of a box; the extrema correspond to the corners of the box.
Furthermore, the number of extrema is equal to 2™, where m
is the number of uncertainties,

Next, the value set p(jw, q) is included within the convex
hull of the extrema. The convex hull of a set is the intersection
of all convex sets containing it. If the uncertainty structure is
affine linear, then the convex hull of the extrema is the value
set.

XIII. ANALYZING THE TORSIONAL
SHAFT/GENERATOR SYSTEM

We are now prepared to apply the Zero Exclusion Condi-
tion to analyze the stability robustness of the shaft/generator
system. Since the coefficients a; are always negative (it is
clearly undesirable to place the FBLC closed-loop poles in
the right: half plane), all of the terms in each coefficient of
the characteristic polynomial are positive [5). This simplifies
the task of bounding the coefficient uncertainty, but the
multilinear uncertainty structure makes the calculation of
the ‘value set difficult, and it is therefore not possible to
conclusively establish robust stability over a wide variation
of many system parameters without an exorbitant amount of
computation.

A. Damping Parameters

We first examine the system stability when the spring
coefficients are fixed and the damping coefficients vary over
a wide range. Assume that the per unit damping terms lie
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Fig. 21, Value set for 0 < w < 20. .

within the following ranges:

' 0< Dy, 5032
0< Doy <2
0< Dey £1.2

while the other parameters-are fixed. Overbounding with

Kharitonov’s Theorem is sufficient to establish that the system
is robustly stable within these bounds. It is easily verified that

the roots of the four Kharitonov polynomials are all in the left

half plane [5].

B. Spring Constant Parameters

Next, we allow a large variation in the spring constants
K2 and Kj,,, while fixing the remaining parameters. We
set the uncertainty bounds for the spring constants as

10* < K9y, < 4 x 10°
2 % 10* < Kjeu < 8 x 104,

Unfortunately, overbounding is too conservative in this case,
making it necessary to resort to calculation of the value
set for 0 £ w < 1000. Note that it is not necessary .to
generate an infinite number of value sets in order to verify the
Zero Exclusion Condition, since the highest-order term of the
characteristic polynomial eventually dominates, assuring that
zero is not included in the value set above a certain frequency.

The value sets for 0 < w < 1000 are shown in Figs. 21-27.
For 135 < w < 265, the conveéx hull of the extreme points
does: include the zero point. To show that the value set at
these frequencies does not include zero, two convex hulls are
generated: one for 10* < K2, < (w/131)? x 104 and another
for (w/131)% X 10* < Kz < 4% 10%. The value set p(jw, q)
is contained in the union of the two smaller convex hulls:
Since the value set does not include zero at any frequency,
we conclude that the system is robustly stable to the specified
parameter variations in the spring constants.

XIV. SLIDING CONTROL

Referring to (3) and (6), uncertainties in the shaft model
produce uncertainties in p(x,)-and 8(x,), and hence a control

methodology that accounts in some way for these uncertainties’

might be more appropriate. One such method is known as

x 10" Vaiue Set: 0 «= W <u 30

NN\ \

F o . !
~0.2 ¢

0.4
-0.8)
~0.8p

- [ Y Y 0 0.2 0.4 6.- o8 ‘1

Real » 10"

Fig. 22. Valuc set for 0 € w < 20,
22" Vajue Set: 20 «= W <= 130
]
= ] ° 1 E) n s ]

Fig. 23. Value set for 20 € w < 130.

X 10" Valus 8ot 138 <o W <= 206

BT 1] s . -4 = °
Real " x10" .

Fig. 24. Value set for 135 < w < 265.

sliding control [13]. In a sliding control design, the system
states are designed to follow a desired trajectory despite
inaccuracies in the model. We choose the desired trajectory to
reflect the response of a linear system, The control is designed
so that z(t) will follow a specified trajectory, denoted as z*(t).
The tracking error is then '

Z=% 12" - . '45)

A. The Sliding' Surface . )

Sliding control gets its name because the system states
are constrained by the control to “slide” along.an n — 1-
dimens_ional surface. The surface is defined by the constraint
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Fig. 25. Value set for 135 < w < 265.
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Fig. 26. Value set for 270 < w < 1000,
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Fig. 27. Value set for 270 < w < 1000.

3(z, t) = 0, where {13]

n-1
3(z, :t) = (dt + /\) E
where A is a positive constant and n is the order of the system.
In the present case, n = 3, and therefore

(46)

s(z, t) = %1 + 20 + A5 @7
which may be written as
3(z, t) = 23 + 2% + A%4,. (48)
" If the initial -state is such that
z(0) = z*(0) 49)

LY

then the tracking problem z(t) = z*(t) or Z = 0 is equivalent
o s(z, t) = 0. This means that perfect tracking is achieved

- if (49) is satisfied and z(t) remains exactly on the surface for

all time. If z(0) # 2*(0), but s(z, t) = 0, then s forms a
differential equation in #; whose solation consists of decaying
exponentials. This means that if z(t) is on the surface for ail
time, 2z(t) approaches z* () exponentially with a time constant
of (n—1)/A. When z is on the surface, the'system is said to be
in sliding mode. The key of sliding control is that a first-order
problem in s replaces an nth-order vector problem [13].

We therefore desire that s = 0 for all time. This constraint
will be achieved if the control input u is selected so that for
8 # 0 and a positive constant 7

1d
=L g < —ls. (50)

2dt
This condition means that all system trajectories that are off of
the surface must travel toward the surface. The time to reach
the surface will be less than s(t = 0)/# [13]. Furthermore, (50)
guarantees that z(¢) will reach the surface in a finite time, if
%(0) is not on_the surface.

B. Choosing a Control Input

We can formulate a control law for the shdmg controller by
differentiating s with respect to time

§ = 83+ 20%, + M5, 51)
Substituting for the derivatives and setting é = 0
p(z) + B(Z)u — 25 + 223 + A5 = 0 (52)

where p(z) and 8(z) represent the estimated values of these

quantities that are used by the controller. Solvmg for u = u,
gives the nominal control input

_; -p(z) + 23 — 2A23 ~ /\222

¢ B(z) '

To ensure that u satisfies (50) despite the presence of uncer-

tainties in p(z) and B(z), an extra term is added to the control
input

(53)

_ =p(3) + 75 = 205 - A%y — ksgn(s)

- (54
8 9
sgn(s) is the sign function, defined as
sgn(s)= 1 s8>0
—-1s8<0. (55)

If the error |o(z) — p:(z)] < F and B~ < B(z)/B(z) < B,
then the control input will satisfy (50) if

k2 B(F+n)+ (B - |uc|. - (56)

The implementation of (54) as a control law results in a
system that tracks the desired trajectory very closely. Note,
however, that the control input in (54) is discontinuous across
the surface, Consequently, because switching does not occur at
an infinite speed, the control will chatter as s rapidly oscillates
around zero [13). In the next section, we will see how to
prevent chattering while still maintaining good performance.
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C. The Boundary Layer

"To prevent chattering, it is necessary to remove the con-
straint that s be perfectly zero; instead we will constrain
|s| £ ®. Consequently, this means that instead of trying to
remain exactly on the surface, we will remain near the surface
within a boundary layer of thickness ®. It can be shown that
if 2(0) = 2*(0) and |s| < @ for all time, then the tracking
error will be limited such that [13]

|2:(0)] < (2X)°

A"“

If z(0) # z*(0), then this bound is approached exponentially
with a time constant of (n — 1)/ if |s] < & for all time.

"Outside of the boundary layer, the control law for u is
the same as before. To achigve a boundary layer, we sunply
change the control law to

—p(z) + 75 = 20dg — \2Hy — ksat (s/@)
= (58)
B(z)
sat(s) is the saturation function, defined as
. sat(s)= 1 s>1
: -1 s< -1 ~—(59)
8 -1<s<1.

Since (50) is still satisfied for all points outside the boundary
layer, all trajectories must point towards the layer. We will
treat the boundary layer thickness & as constant, although it
can be allowed to vary with time [13].”

D. Selection of Controller Parameters

The sliding mode controller design includes several param-
eters. The parameter ) is referred to as the control bandwidth.
As shown by (57), a larger A results in'less tracking error, even
if large modeling errors are present. The maximum allowable
A is limited bowever, by the presence of high frequency
unmodeled dynamics and time delays.

The parameter 7 represents the time required for the states to
reach the surface. Note from (56) that increasing k results in an
increase in 7, reducing the reaching time. A larger k increases
the tendency and magnitude of control chattering, however,
which means that a larger ¢ will be needed; consequently,
the tracking error on the surface will be larger. The boundary
layer thickness ® is generally chosen to be as small as possible
while still preventing control chattering [13].

- E..Sliding Mode Controller Design for a Generator

We are now ready- to design a sliding control design for
the third-order generator model. Because the field voltage can
not vary infinitely, the following design is actually a hybrid
FBLC/sliding control scheme. First, we choose the desired
- trajectory to be the response of the following linear system:

z" = Az" (60)

6 1 0}
A=|0 0 1].
ayg a1 Qa2

(57

of $liding Mode

025, [ B 6 2 &8 3 36 4 48
Hme (s) .

Fig. 28.. Response of § ~ &, to a 0.5 s fault with sliding control.

This is the same system that we were trying to create using

FBLC. The trajectory may therefore be written as the following
time function: :

2*(t) = eA*z(0)

where we have chosen z*(0) = z(0) so. that the coritrol
always operates on the surface. Although the calculation of
the trajectory seems to be a formidable task, the appropriate
time functions are the solutions of the differential equation

a(3) (62)

(6D

— agZ] — a1} — agz{ = 0.

The controller parameters were selected asA=35k= : 1, and
¢ = 0.25.

To handle field voltage saturation, the following algorithm
was used. Initially, z* = 0, so that the desired trajectory is
at equilibrium and constant for all time. The controller is im- .
plemented as a discrete-time system with sampling frequency
of 100 Hz. At each time step, the controller calculates a new
value of Eyq using the sliding control -laws, If Eyg saturates
at either limit, then at the next time step, the. value of Eyq is B
calculated by the FBLC control law, ie., '

T

_ a'z—p(z)
Bre= ")
As long as the value of Eyq remains saturated, the FBLC

(63)

. control law is applied. When Eyq comes out of saturation, the:

state vector z at that time step becomes the initial state of the
desired trajectory, and sliding control is again applied to the
system. Sliding control is maintained as long as Eq does not
saturate. In this algorithm, FBLC'is used to monitor the field
voliage and determine when to restart sliding mode control[5).

F. Simulations of a Sliding Mode Control

To examine the effects of torsional dynamics on a sliding
mode controller, numerical simulations are performed. The
controller is tested by simulating the same 0.5 s faulf that
was used in earlier simulations. Plots of the simulation results
are shown in Figs. 28-34, According to the simulations, the
response of sliding mode control to torsional . oscillations
is virtually the same as that of FBLC. The uncertainty in
p¢(x,) because of torsional oscillations is clearly very large,
although because the oscillations are at a high frequency, it
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Simulation of Bliding Mode Controler

0.5 1 1.8 2 3 38 4 45
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Fig. 29. Response of w to a 0.5 s fault with sliding control.

Simulation ot Bliding Mode Controlier

Fig. 30. Response of Eyq4 to a 0.5 5 fault with sliding control.

Simulation of Sliding Mode Controfier

L 28 4 (2]

Fig. 31. Response of p¢(xg) to a 0.5 s fault with sliding control.

appears that they are averaged out by the controller and the
resulting performance is no different from FBLC. A plot of
‘we —wy is given in Fig. 35; since p¢(x,) includes the quantity
Kpeu(we — wz), where Kg., is on the order of 10%, the
spring constant terms dominate the quantity p,(x,). Since the
uncertainties in p,(x,) are so large, even large changes in the
parameters A, k and @ of the controller did not affect the
simulation results.

XV. CONCLUSIONS

This paper is concerned with the general area of the robust-
ness of FBLC design to unmodeled dynamics and parametric
uncertainties. In cases where unmodeled dynamics can not be
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SBimulsation of Bliding Mode Controlier
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Fig. 32. Response of p(x,) to a 0.5 s fault with sliding control.

Simulation of 8liding Mode Controller
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Fig. 33. Response of Bi(x,) to a 0.5 s fault with sliding control.

Simulation of SHiding Mode Controller
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Fig; 34. .Response of 3(xg) to a 0.5 s fault with sliding control.

neglected by selective modal analysis or singular perturbation
arguments, a closer study of the impact of these uncertainties
on controller performance is needed. Often counter-intuitive
results are reached. It is shown that careful analysis and design
of the specific structural model and parametric uncertainties
provides robust performance of an FBLC for a wide range
of uncertainties. The conclusions depend on the controlled
phenomenon; i.e., on the range of frequencies for which it
is relevant to have accurate design.

The controller is shown to be stable when one example-
of structured unmodeled dynamics are added; however, it is
important to know whether the controller remains stable when
the parameters of these extra dynamics vary. Since it may not
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of Sliding Mode

1 1.8 2 2.8 3 s 4 45
time (s)

Fig. 35. Plot of we — wzbfor 2 0.5 s fault, The speed difference multiplied
by K3y dominates the quantity p:(xg).

be desirable to modify FBLC to improve its performance in
the presence of shaft dynamics, it is natural to ask whether
the torsional dynamics can interact in such a way as to
cause FBLC to become unstable. The stability robustness tests
strongly suggest that the answer is no, although the proof of
this assertion for all possible combinations of shaft parameters
has not been shown. Unfortunately, the computation required
to determine stability robustness grows exponenually with the
number of uncertain parameters.

The stability robustness of the sliding mode control has
a firmer theoretical basis than that.of FBLC, although in
simulations with torsional dynamics present, sliding control
is observed to provide no improvement in performance over
FBLC. The uncertainties in the model are of large amplitude
and high frequency, and the sliding mode controller is unable
to compensate for them. Consequently, like FBLC, the low
frequency component of the field voltage is able to provide
a reasonable response, although performance is not able to
match the results obtained when torsional dynamics are not
modeled in the simulations.
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