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Abstract: In this paper an algorithm for evaluating the long-term
(seasonal, annual) values of transmission rights is described. The
algorithm is based on simulating the probable line flows ahead of
time using probabilistic optimal power flow (POPF). An efficient
Monte Carlo approach, which computes the value of transmission
links and line-flow probability distributions based on a given load
duration curve and public knowledge of power plant characteristics
is developed by linearizing OPF solutions at different system load
levels. This knowledge is used by a system provider to establish
likely value of transmission rights characterized by different levels
of firmness. If a system provider is to post this information publicly,
system users could estimate the value of the transmission rights to
themselves.

The second part of the algorithm is intended to facilitate ISOs
in deciding between not serving system users who own transmission
rights of certain firmness and curtailing short-term transactions in
case there is congestion. The developed algorithm facilitates effi-
cient relief of network congestion in short-term operations without
violating prior obligations in long-term transmission right markets.

Keywords: Transmission Rights, Probabilistic Optimal Power
Flow, Transmission Congestion Management, Priority Insurance
Service.

I. INTRODUCTION

Most of the newly formed Independent System Opera-
tors (ISOs), such as Pennsylvania-New Jersey-Maryland
(PIM), California (CAISO), and New England (ISO-NE),
are required to offer some type of long-term transmission
rights to the users willing to pay for future use of the
grid. Current industry concerns are if these rights should
be solely financial or they must be physical and firm. As
the rules regarding these concerns evolve, it is essential
to develop computer-based tools to assist ISOs in imple-
menting these rights as an integral part of transmission
system operations and planning.

A definition of the values of transmission rights is not
straightforward. Many diverse mechanisms have been
proposed to price these rights based on their market val-
ues. For instance, in some of the energy markets currently
in operation, the prices for transmission rights are deter-
mined through auction processes depending upon what
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system users offer in their bids for purchasing these
rights. Not surprisingly, strategic behaviors and conver-
gence problems are the most often quoted issues associ-
ated with this type of pricing scheme. It is suggested in
this paper that a transmission service provider should be
an active decision maker in this auction process as well.
It is essential that the provider’s decisions be based on re-
alistic estimates of how many rights are likely to be avail-
able and of the price at which these rights should be sold.
The proposed algorithm is a basic tool to a transmission
provider for this purpose.

In this paper, a theoretical setup for implementing
physical transmission rights is presented. A transmission
provider needs to respond to the market participants re-
questing the network use for some future period of time
(sypically season or year ahead). This is additional to
the responsibility to manage daily, or hourly requests for
access. Customers are obligated to obtain the transmis-
sion rights before implementing their long-term bilateral
contracts. The approach taken is adopted from the re-
cently proposed priority-based pricing scheme. Estima-
tion of the values and availabilities of transmission rights
between certain nodes in the transmission network for the
future season is defined in terms of the probability of the
occurrence of system congestion.

This paper is organized as follows: First, Section II
introduces a method for predicting long-term system con-
ditions using a probabilistic optimal power flow-based ap-
proach as an essential tool for long-term transmission pro-
vision. The probabilistic information obtained from this
tool could help a transmission provider estimate the value
and the availability of these transmission rights. Next,
in Section III, we show how this probabilistic informa-
tion could be used to design the menus for selling priority
insurance service of different firmness for obtaining the
transmission rights. Once the menus are in place, it be-
comes necessary to make short-term decisions concerning
the tradeoff between denying new short-term requests for
using the transmission network or paying back the owners
of long-term rights for not being served. In Section IV, a
dynamic programming-based formulation for an efficient
relief of network congestion in real-time operations with-
qut violating prior obligations in long-term transmission
right markets is presented.
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1I. TooL FOR PROJECTING LONG-TERM VALUES OF
TRANSMISSION SERVICES

To begin with, a new algorithm which helps both mar-
ket participants and transmission right sellers to evaluate
long-term (seasonal, annual) value of transmission paths
is developed. The proposed approach simulates the op-
eration of the electricity market under competition via
probabilistic optimal power flow (POPF).

Historically, optimal power flow (OPF) analysis has
been used as an efficient tool in power systems plan-
ning and operations. As the power industry is being
deregulated, the importance of OPF has increased sig-
nificantly because of its ability to estimate market equi-
librium and calculate so-called locational-based marginal
prices (LBMPs) [1], [2]. Recall that traditional OPF
is a static optimization problem assuming load demand
P, = [Py, -+, Pr,,] to be known, solving for the op-
timal dispatch of available generation resources Pg =
[PEy - P,

Ng
P =argminS (P 1
% argrglanC( c,) (1)

subject to the load flow constraints. After the optimal
generation dispatch, Py, is obtained, the corresponding
transmission line flows, F}, and nodal prices, p; can also
be obtained as byproducts of the OPF calculation.
Traditional OPF is applied based on a snapshot of time!
and it does not give any information regarding the degree
of importance or likelihood of each violation. In actual
operating practice, total electricity demand always devi-
ates away from these snapshot conditions in a random
fashion. Several efforts have been made over years to ob-
tain a probabilistic-based load flow solution [3], {4], [5],

[6].
A. Two-stage Approach for Monte Carlo Simulations

In this paper, we introduce a two-stage, Monte Carlo-
based method to efficiently solve probabilistic optimal
power flow (POPF) (7], [8]: At the first stage, a set of
discrete load patterns that represent nominal system load
conditions at different load levels is used. Detailed OPF
solutions are computed based on these nominal load pat-
terns and these OPF solutions give a rough approximation
of generation probability distributions. At stage two, ran-
dom deviations from these nominal patterns are taken into
account. By using incremental linearized OPF equations,
a large number of simulation samples can be obtained ef-
ficiently.

Basic Assumptions

When applying Monte Carlo methods to large power
systems, an immediate problem is the difficulty of con-
structing probability density functions. Because of me-

1i.e., for calculating optimal generation dispatches for average or
extreme loading conditions only.
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Fig. 1. The load duration curve constructed from NEPOOL total load
data of 1997.
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Fig. 2. Membership functions representing the loads of peak load,
normal, and off peak.

tering problems, electricity demands at individual load
buses are usually not measured; only the total system
demand is recorded. Historical total load data for differ-
ent systems are public information [9]. Utility companies
could use this information to construct the so-called load
duration curve? such as that shown in Figure 1.

In order to overcome this problem, we assume that
there exists a nominal load pattern, which describes how
total system demand is distributed at individual load
buses, e.q., peak-load pattern, off-peak pattern etc. A
nominal pattern can also be interpreted as the mean value
of the random load around a specific load level. Of course,
there are deviations from the nominal pattern at these
load buses. The actual system loads are the sum of nom-
inal patterns and zero-mean random perturbations at in-
dividual load buses. To further simplify the problem, it is
assumed that congestion is caused solely by the nominal
patterns and not by the random deviations.

Stage One: Coarse Computations

First, we identify several basic load patterns in the sys-
tem, for instance, peak-load pattern, normal-load pattern
and off-peak pattern, and ranges of system load levels for
which these patterns are most likely to occur. Based on
these, a fuzzy set representing the typical load patterns
at different system load levels and their membership func-
tions n are obtained [10], [11]. As shown in Figure 2, if
the total system load is larger than P! it follows peak
load distribution; if system load falls between P2 and
PBI it follows the normal load distribution; and if sys-
tem load is less than P!, off-peak load pattern is used

21t is basically a cumulative distribution function, For example,
the values read from the Y-axis of Figure 1 indicate the probabilities
of demand at L exceeding corresponding X-axis value., e.q., 45%
probability of load exceeding 14000MW.
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Fig. 3. Discretized load duration curve.

to depict the load distribution. The load pattern between
Pl P2l or Pl Pl can also be obtained by combining
the two adjacent patterns weighted by their membership
functions.

Next, we discretize the system load every hMW starting
from PMW, i.e., P{°*(k) = P? +kh, Figure 3. Thus, the
typical patterns of different load levels is computed by
using the following equation:

ploP)
[OP] L oGPl + n(P
17 Py

[N]
P
P[[lkl - ont(k) (n[N] L

PK
17 pliM]

17piPK

2
and the probability of each discrete load pattern occur-
rence is

P'rob{ch] }

Prob{P{ + kh < Pi* < P§ + (k + 1)h}
GPI'.M (Pg + (k + 1)h) - GPZ"" (Pg + kh)

il

P+ (k+1)h
/ fpsoe(Pr)YAPL ®)
PY+kh

Next, we compute OPF solutions for each load level.
Based on the corresponding probabilities calculated in
(3), the cumulative distribution curves for these OPF so-
lutions can be constructed.

Stage Two: Refined Computations

The objective of refined computations is to improve
coarse solutions to a better approximation by including
perturbations at each discrete load pattern level, First,
we generate a set of zero-mean random deviation, AP,
around a nominal pattern, P£k] and use this to compute
the incremental changes of OPF solutions. It can be
shown that if generation cost curves are approximated
by quadratic functions (i.e., linear marginal cost curves)
under the assumption made above, the incremental OPF
solution is simply a linear function of load deviations [8],
ie.,

AP = VHAD, (4)

The matrices V¥ can be obtained when computing kth
coarse solution. Therefore, a refined solution is

Pg =P+ vIHAP, (5)
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Fig. 4. A 5-bus system
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Fig. 6. PFuzzy membership function of the occurrence of the two basic
load patterns at different load levels.

Since refining computations are just linear transforma-
tions, it is possible to handle a large number of simulation
points. By combining coarse and refined solutions, we can
approximate the continuous load distribution functions
within a reasonable computing time.

B. A Numerical Ezample

To illustrate the idea of the two-stage approach, we
have simulated a simple 5-bus system with three genera-
tors and two loads shown in Figure 4.3 Next, we assume
the estimated distribution of the total system demand for
the next season to be normal with a 1000MW mean and a
200MW variance exhibiting two basic load patterns: (1)
peak-load pattern, Ly 60% and Ls 40% of total demand,
and (2) off-peak load pattern, Ly 50% and L5 50% of total
demand. The fuzzy membership function for the occur-
rence of the two basic load patterns at different load levels
13 shown in Figure 6.

In this example, we assume that there are two inexpen-
sive generators, G; and G2, with a generator marginal

3The detailed system data and large system simulations can be
found in [8].
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Fig. 7. Probability distributions of three generator outputs.
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Fig. 8. Probability distributions of six transmission line flows (line
G2-Ly4 is the one constrained).

cost function, 8c(Po) 0.1Pz + 10, and one expensive

8Pc
generator G3 with a marginal cost function, _8_;1%)_ =

0.2P; + 20. Also, we assume that a transmission line
G2 — L4 is the one most likely to be congested and its
maximum capacity is F3.2%, = 350MW.

At a coarse-computation stage, we discretize the to-
tal system load every 50MW starting from 500MW to
1500MW. We use (2) and (3) to find the typical patterns
corresponding to the discretized load levels and the prob-
ability of the occurrence of each load pattern. Next, we
generate a set of zero-mean random deviations for Ly and
L5 around each load pattern. These random load devia-
tions could be any type distributions and also could be in-
dependent or correlated. In this case, random deviations
are assumed to be independent and normally distributed
with a 2% variance around the nominal values.

Figures 7, 8, and 9 show the probability distributions of
all generator outputs, transmission line flows, and nodal
prices respectively. As illustrated in Figure 7, generation
of G is limited by the transmission flow constraint. Fig-
ure 8 shows that the probability of the system being con-
gested is around 32%. Furthermore, the constraint causes
the nodal price at L4 to reach as high as 200$/MW, while
the nodal price at G2 is always the lowest.

Next, we take the differences of the nodal prices to eval-
uate the value of each transmission path. Figure 10 shows
the probability distributions of the values of six possible
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Fig. 10. Probability distributions of nodal price differences for different
node-to-node transactions.

node-to-node transactions. The result shows that these
transmission paths have non-zero values only when sys-
tem is congested. As expected, the link between G5 and
L4 is the most valuable one. However, an interesting fact
is that the link between G; and Lg has the lowest value
even though it is the most distant path in the system.

C. Uncertain Generator Cost Curves

In the previous derivations, we assumed that all cost
functions of generators are given. However, in a com-
petitive energy market, a generator cost curve is usually
confidential. It is possible, however, to estimate the cost
curve of a generator using public knowledge concerning
the generation technology, the fuel used, the current fuel
prices, etc.; still, estimation errors are unavoidable. As
shown in Figure 11, by applying fuzzy theory, an uncer-
tain marginal cost curve can be characterized by its up-
per and lower bounds and a most likely band. Therefore,
given any possible nodal price, there will be a correspond-
ing uncertain generation output with the same distribu-
tion shape, Figure 11. This way, the uncertain cost curves
are mapped into uncertain generation.

Assume that the membership function of uncertain
generation and the corresponding probability function
bave the same shape. In other words, 7; = 7; implies
Ji» = fj. Next, we use PF'™ to indicate the uncertain gen-
eration output deviating from its nominal value PZ°™,
ie., Po = P3°™ + Pg". By inspection, the probability
distribution of PE™ can be calculated by the following
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formula, Figure 12:

. perr 4 prom
.fe’rr(Pé 'r) — 77( G G )

PUB (6)
[7%a n(Pa)dPo

Note that this kind of uncertainty results from the im-
perfect human knowledge of the marginal cost curves. In-
troducing this kind of uncertainty in the POPF compu-
tation will decrease the accuracy of the results.

11I. PRIORITY INSURANCE SERVICE FOR LONG-TERM
TRANSACTION RIGHTS

Next, the idea of priority insurance contracts intro-
duced by Wilson, Chao and Peck, [12], [13], [14] is ap-
plied for selling transmission rights for long-term bilateral
transactions. The feature of this type of pricing scheme
is that it specifies an order in which customers requir-
ing transmission services are served. Therefore, in our
setup, instead of giving a single price for a node-to-node
transmission right, a price menu that lists a set of prices
corresponding to different levels of firmness is provided.
A customer is obligated to obtain a transmission right via
selecting an insurance level before implementing the long-
term bilateral transaction. Then, the customer indirectly
reveals the value of its bilateral transaction to the ISO
during the self-selecting process. This information helps
the ISO manage congestion more economically.
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A. Optimal Menu Design

Variable p,, is used here as the index of different pri-
ority levels. Each p; ; value requests random nodal price
difference between buses ¢ and j under different load and
generation conditions; namely, it represents the random
value of a transmission path. The definition of p, , is:

Hay =Py — Di (7)

where p, is the nodal price at bus 1.

The value of a transmission path varies with the system
congestion condition, which is dependent on uncertain
loading, generation market and network outages. The
value of each node-to-node transmission path y; ; is mod-
eled as a random variable with certain probability density
distribution f, ;(u;,,). The way to obtain these probabil-
ity density functions is to apply the probability optimal
power flow (POPF) technique described in the previous
section.

A price menu, M, ;, for the priority insurance service
for long-term transmission rights corresponding to a path
from bus ¢ to bus j consists of the following three compo-
nents:

o Rij(th,): The probability of the bilateral transac-

tion being implemented.

o P;;(pi,): The price for network users to subscribe
to level u, ; transmission service.

o T; i{t,;): The insurance payment to a network user
when the subscribed level y; , service can not be im-
plemented due to system congestion.

If a customer selects a priority level IL?,J, the associated
marginal willingness-to-pay, from a menu, then he ex-
pects the insured transaction to be implemented when
the random spot transmission value g, , falls in the re-
gion Q; ; (p.?yj) ={pij: p; < u?yj} and to be interrupted
when the spot transmission value falls in €, ;(4?,), the
complement region of €;,(u?,). In other words, if the
spot value of transmission is higher than the profit made
by implementing the bilateral transaction, the grid user
is willing to be curtailed rather than pay for access.

Therefore, the probability of implementation with re-
spect to priority level ;L?‘_,, can be derived as follows:

Rij(ul,) = Prob{m, <pu,}

ul,
/_ Fii(ts,5) a1, (8)
= G (P'(i),j)

vhere G(u;,,) is the cumulative distribution function of
the random variable y; ,. Note that R;, is nondecreasing
in pi,, since G{i, ;) is nondecreasing, i.e.,

If I‘I‘{,] S /1'{,5 then ’R’i,J (p‘{,]) —<- Rt.] (u{,ly) (9)

Next, consider the insurance payment Z; ;. This pay-
raent is designed to partially or fully compensate the
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losses of customers when their insured contracts are in-
terrupted. Therefore, when a customer chooses ﬂ?,J as a
desired level of priority, the insurance payment is

(10)

where « is the percentage of loss recovery, i.e., & = 100%,
90%, or 80% etc. Here we consider the fully insured cases.
Thus, equation (10) becomes

L,J(l»‘?,j) = lj'g,j (11)

Therefore, the expected total charge for a system
user to require transmission right is P;;(pi,) — (1 —
Ri,(pi;)) L (t,,). For proper menu design, the in-
cremental expected charge should equal the incremental
gain/losses incurred when a customer selects higher /lower
priority [12], i.e.,

Ii;j (#’1.0,]) = au?,]

ul,
a,j ARG 5 (f11,5)
o0

(12)
This yields the price for obtaining level }I.?'J transmission
rights

Pusl) = |

Pus (1) (1R (2T ) = [

o

" AR, () (1= Ry (12, )T 5 (12,

(13)

Note that if a customer signs up for a 100% firm transmis-

sion service, the price for the corresponding transmission
rights is

P, =

/ ﬂz,]d(Ri,j (//'1.,]) (14)

S(P«z,])

The customer is willing to pay the expected spot trans-
mission price.

i

(15)

B. A Numerical Example

In this example, we use the same 5-bus system shown in
Figure 4. Assuming that the random load condition fol-
lows the same distribution as in the POPF example above,
we use the results of the probabilistic optimal power flow
calculation as the starting point.

Here we consider the problem of designing an effective
pricing menu for selling transmission rights between nodes
2 and 4. First, we use the distribution curve of nodal price
difference between nodes 4 and 2 to obtain us4 values
corresponding to different levels of reliability, Figure 13.

Next, by using (9), (11) and (13), one can compute the
prices and insurance payments of the rights from nodes
2 to 4 with respect to different levels of reliability. The
optimal menu design is listed in Table I.

IV. HyBRID REAL-TIME CONGESTION MANAGEMENT
AS A DYNAMIC PROGRAMMING PROBLEM

Assume that priority insurance for transmission rights
is sold seasonally to long-term transmission customers and
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Fig. 13. The cumulative probability distribution curve of u2 4 and the
corresponding reliability levels.

TABLE I
THE PRICE MENU FOR TRANSACTIONS FROM BUS 2 TO BUS 4.

Priority Price Insurance
Level | (§/MWh) | (§/MWnh)
99% 15.4989 155.4658
95% 14.6582 96.3301
90% 12.7578 68.1500
85% 10.2656 46.5161
80% 7.3804 29.0937
75% 4.1895 14.6701
70% 1.3544 4.3608

; I\ MM - season

:-g Mll“::y*“‘

g

]
1T T | -
0 Th kTh T

Fig. 14. Time line of the real-time congestion management

the short-term spot market is cleared hourly. As the
transmission system becomes congested, an ISO has to
relieve the constrained situation in an efficient way based
on the energy bids in the spot market and the economic
values of each long-term bilateral transaction. In addi-
tion, since the priority insurance contracts are committed
ez ante, the ISO also has to manage this process dynam-
ically without violating the contracts over the entire sea-
son, Figure 14.

Here we choose the state variable z,{k] to represent the
number of hours remaining for bilateral transaction 7 to be
curtailed by a grid operator without violating the trans-
mission right contract. For instance, if a customer holds
tae right to a 90% firm transmission service over a season,
then there is total of 216 hours during which this service is
allowed to be interrupted. Therefore, z,{0] = 216. Let the
control variable u;[k] represent the interruption decision
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made by the ISO, i.e.,
U; [k] = { (1)

The state transition equation is simply:
zilk + 1) = zi[k] — us[k]  (z:i[k] > 0) an

Recall that if a bilateral transaction 7 is interrupted, the
transmission provider has to pay back the insurance I;(k]
to the transmission right holder. Therefore, the total in-
surance paid equals ﬁi‘{““’ u;[k]I;[k] where Nirans is the
total number of bilateral transactions. Next, let M S[k] be
the merchandise surplus of hour k¥ which indicates the con-
gestion revenue collected from the real-time spot market
2], [15]-

At each stage, we define the social welfare loss function:

if the transaction is interrupted at hour k
if the transaction is implemented at hour k
(16)

N trans
L[k] = Z ui[k]Ii[k] + MS[k](u[k],PL[k])
i=1
The objective function of the dynamic programming is to
minimize the cumulative welfare loss Lz over the N total
stages. Thus, the corresponding dynamic programming
(DP) algorithm can be formulated as [16]:

Jiny(z[N]) = Lin(z[N])
Tig(elk) = min€{Lig(alk) ulk, PLlK)

+J+1)(Figy (K], ulk], PLik]))}
k=0,1,---,N—1

(18)

(19)

(20)

Since the amount of merchandise surplus will also de-
pend on the generator bids in a spot market, a perfect
competition assumption is made in order to make the DP
problem solvable. In other words, a generator is assumed
to submit its spot energy bid based on the remained ca-
pacity that is not yet committed in the long-term bilateral
deals, and its marginal cost curve.

V. CONCLUSIONS

The need to simultaneously serve short-term market
requests and to make commitments to new entrants for
future system use is hard to meet with presently avail-
able computer methods. At present, most of the meth-
ods are either useful only for short-term optimal use of
the network, like deterministic optimal load flow, or for
long-term planning methods but not capable of optimal
scheduling in short-term operations.

In this paper, the possibility of valuing long-term
transmission services is recognized; a recently proposed
priority-based insurance service idea based on a bottom-
up auction mechanism to purchasing long-term transmis-
sion rights is posed here as a dynamic decision making
problem under uncertainties of competitive energy mar-
kets. Proposed algorithm helps an ISO relieve short-term
network congestion efficiently without violating prior obli-
gations in long-term transmission right markets.
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