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ABSTRACT

The optimal maintenance scheduling of systems with de-
grading components is highly coupled with the design of the sys-
tem and various uncertainties associated with the system, includ-
ing the operating conditions, the interaction of different degra-
dation profiles of various system components, and the ability to
measure and predict degradation using prognostics and health
management (PHM) technologies. Due to this complexity, de-
signers need to understand the correlations and feedback be-
tween the design variables and lifecycle parameters to make op-
timal decisions. A framework is proposed for the high level in-
tegration of design, component degradation, and maintenance
decisions. The framework includes constructing screening mod-
els for rapid design evaluation, defining a multi-objective ro-
bust optimization problem, and using sensitivity studies to com-
pare trade-offs between different design and maintenance strate-
gies. A case example of power plant condenser is used to il-
lustrate the proposed framework and advise how designers can
make informed comparisons between different design concepts
and maintenance strategies under highly uncertain lifecycle con-
ditions.

*Address all correspondence to this author, mcyang @mit.edu.

INTRODUCTION

Increasing global competitiveness and limited engineering
resources have pushed engineering firms to design higher effi-
ciency and more reliable engineering systems in a more cost ef-
fective manner. Furthermore, the performance of complex en-
gineering systems, such as aerospace systems, power and water
plants, must be considered over the system’s lifetime, including
maintenance and reliability issues. This paper draws on two ar-
eas of work, design optimization and maintenance optimization,
to address maintenance in complex systems starting from the de-
sign stage.

To effectively address competing objectives in a design, one
approach is Multidisciplinary Design Optimization (MDO) with
consideration of relevant aspects of the system lifecycle from
design manufacture, operation to final disposal at the end of
life [1,2]. This integrated design optimization approach is made
possible because of advancements in optimization techniques,
especially gradient-free algorithms capable of handling a large
number of design parameters [3—-5]. MDO has been applied ex-
tensively in the area of aerospace systems [6], engine design [7],
and manufacturing engineering [8].

This work also draws on maintenance strategies. Through-
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out the system lifecycle, components will degrade over time,
such as the aging of batteries and wearing out of bearings, that
can affect system performance. Therefore complex engineer-
ing systems often demand significant resources for maintenance
[9, 10]. Traditional maintenance strategies are generally catego-
rized into corrective maintenance and preventive maintenance.
In corrective maintenance, maintenance is only performed when
system performance drops to an unacceptable level (ie, failure
of individual component), which often results in inconvenient
and costly downtimes to service the system. In preventive main-
tenance, maintenance tasks are scheduled at regular intervals
to eliminate or minimize system downtime due to unexpected
failures, but usually results in unnecessarily high maintenance
costs [11]. The importance of more efficient maintenance strate-
gies has recently been emphasized to achieve higher system ef-
ficiency and savings in life cycle cost. The emergence of prog-
nostics and health management (PHM), which is the process of
diagnosing health conditions based on sensory signals and mod-
eling/prediction of remaining useful life, has led to condition
based maintenance (CBM) approaches. The optimal configura-
tion of CBM involves finding a threshold health condition value
that both maximize the system availability and minimize lifetime
maintenance cost [9]. A body of research literature is available
in the fields of electronic components [12], civil infrastructure
systems [13, 14], airplane maintenance [15], and battery tech-
nologies [16].

Despite substantial research in design optimization and
maintenance strategy optimization, there has been very little
work that focuses on the integrated optimization of design with
maintenance. In many different engineering components there is
a strong correlation between the physical properties and degra-
dation, and thus design decisions become coupled to the main-
tenance decisions, and the traditional approach of designing the
system and developing the maintenance strategy separately may
not produce a global optimal design. However, integration of
maintenance in the design stage can be challenging. The cou-
pling between design decisions and maintenance strategies may
not be clearly understood in many systems. And more impor-
tantly, the degradation and maintenance processes can include
high levels of uncertainty, and thus significantly hamper the ef-
fectiveness of traditional design methodologies [17].

There is limited work on the integration of design and main-
tenance optimization. Bodden et al. conducted a study that con-
siders prognostics and health management as a design variable
in air vehicle conceptual design. In this work, the redundancy
in air vehicles could be reduced with some knowledge of re-
maining useful life (RUL) [15]. Youn et al. proposed a frame-
work for resilience-driven design of complex systems which in-
tegrates PHM into the design process using a reliability-based
design optimization strategy [18]. Kurtoglu and Tumer devel-
oped a fault identification and propagation framework for evalu-
ating failure in the system in the early design stage [19]. Related

research can also be found in disciplines outside mechanical en-
gineering: Camci explored maintenance scheduling with prog-
nostic information which considered the probabilistic nature of
prognostics information and its effect on maintenance schedul-
ing [20]. Santander and Sanchez-Silva studied design and main-
tenance optimization for large infrastructure systems. By apply-
ing reliability-based optimization using a deterministic system
model, they found that inefficient maintenance policy leads the
optimization algorithm to converge to a more robust but expen-
sive design [21]. Monga and Zuo considered both maintenance
and warranty in optimal system design in their work. They com-
pared selected system configurations with different failure rate
functions, though no predictive maintenance was considered in
this study [22]. The above-mentioned work mostly focuses on
the integration of design and system reliability, but do not ex-
plicitly consider the physical degradation process, and they also
do not consider the causal relationship between design decisions
and degradation. The work done by Caputo et al. on joint eco-
nomic optimization of heat exchanger design and maintenance
policy considers the interaction between design decisions of a
heat exchanger and its degradation (fouling), but this study only
considers the traditional maintenance strategy, and does not con-
sider uncertainty associated with degradation [23]. Honda and
Antonsson proposed the notion of grayscale reliability to capture
system performance degradation and the time dependency of re-
liability. They also studied design choices and their effects on
system degradation, however, their study does not consider the
effects of maintenance to system degradation [24].

In this work, we address the current literature gap with our
proposed framework for a multidisciplinary design optimization
problem by integrating system design models with maintenance
scheduling models and capture the associated uncertainties. We
will investigate how different maintenance strategies affect the
total life cycle cost of a system, and whether different mainte-
nance concepts used in preliminary design optimization will re-
sult in different design choices. We apply this framework to a
case study design problem of a power plant condenser and eval-
uate the effect of maintenance decisions on the optimal design
choices.

APPROACH

The goal of this proposed framework is to capture design and
maintenance interactions in the early design stage and to properly
evaluate degradation uncertainties during system operation. This
framework will help designers better understand the effects of
different maintenance strategies on design decisions and improve
system life cycle cost.

The framework is intended for the conceptual/preliminary
design phase, when the system functional requirements have
been determined and the system architecture has been con-
structed, but before the detail design stage when component de-
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FIGURE 1. MULTI-DISCIPLINARY DESIGN FRAMEWORK

tails are determined. Typically, the main task of the prelimi-
nary design phase is to perform design optimization to decide
on the critical system design criteria and resources. For a multi-
disciplinary system, the optimization problem [1] is in the form
of:

min. F(Xcs,Y)
s.t. yi = Yi(xcswxivycj), l,] = 1727"'75 (1)
gk(XaY) <0

where F' is some objective such as cost or performance, y is a
vector output from the corresponding subcomponents and disci-
pline; y; is a vector output of subsystem i modeled by Y;; y;
is a vector output from other disciplines j; X is a vector design
variables including the system design variables x.; and subcom-
ponent design variables x;; s is the number of subcomponents
and disciplines, and gy is a set of constraints.

A graphical representation of the MDO problem is shown
in Figure 1. The components in the problem are all the physical
entities: for example the wings of an aircraft, or turbines in a
power plant. The disciplines describe the physical performance,
and can include structural, thermodynamic, or economic. De-
signers can make decisions on the design variables, and the dif-
ferent physical modules output the objective functions in terms
of cost and performance. This figure shows the complexity of
a typical MDO problem with many feedback couplings between
different system components shown by the small arrows indicat-
ing the interdependencies between subsystems.

To achieve our goal of integrating maintenance and design,
we propose a framework that decomposes a system into two ma-
jor divisions as shown in Figure 2. The first division is the system
design division. This division contains the forms and functions
of the system and its subcomponents and disciplines. The sec-
ond division contains everything related to system maintenance,
including the degradation profile for the different components,
and the operation of the system over its lifecycle. We assume
that the form and function of the system can be modeled de-
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FIGURE 2. PROPOSED FRAMEWORK WITH MAINTENANCE
INTEGRATION

terministically, while in the maintenance division, the compo-
nent degradations are probabilistic events over the system life-
time. Monte-Carlo simulation is needed to evaluate the life cy-
cle performance by generating random degradation profiles. The
degradation profiles are used in the multi-disciplinary model to
compute the system performances at each degradation level. The
calculated performance values are feedback to the maintenance
models for the evaluation of operational performances. Since we
assume the system multi-disciplinary model is deterministic, it
can be treated as a black box in the Monte-Carlo simulation. The
multi-disciplinary model only needs to evaluated a few times to
create a look-up table, and the Monte-Carlo lifecycle simulation
can use the look-up table instead of calling the system model to
reduce computing complexity.

Despite the reduction of computing complexities, the com-
puting requirement is still significant, and thus balancing be-
tween model fidelity and complexity is a major challenge. For
a multi-disciplinary system, domain specific models are usually
high fidelity models that have very low discrepancies with reality
but require significant computational time (on the order of hours
or days). Furthermore, high fidelity discipline-based models are
usually represented using different software tools, making the
data transfer between models complicated. Thus, high-fidelity
models will not be suitable for this study. A common approach
for model complexity reduction is to generate low-fidelity mod-
els from high fidelity models using metamodeling methods such
as Kriging or response surface method [1]. Low fidelity mod-
els can be evaluated very quickly, and is used widely in Monte-
Carlo simulations and optimization, but they can have very high
discrepancy and require the availability of high fidelity models.

A mid-fidelity model is a simplified representation of a sys-
tem, which captures the essence of the different domains by using
first order approximation of physics based models [25]. Because
they are physics-based, no special software is needed, and al-
lows simple integration of different domains and subsystems. A
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mid-fidelity model has the advantages of short simulation time
on the order of several seconds. Mid-fidelity models are com-
monly used in the early design phases to identify promising de-
sign strategies. For the purpose of this study, mid-fidelity models
are suitable for both the multi-disciplinary models and mainte-
nance models.

The steps below are followed for setting up the integrated
design and maintenance optimization problem:

1. Identify key components and their degradation modes that
contribute to system performance loss and require regular
maintenance services. Engineering systems usually have a
large number of components that degrade at varying rates
over time. Not all degrading components have equal ef-
fect on the system state or demand the same level of main-
tenance resource. When constructing the mid-fidelity sys-
tem model, it is important to focus on the critical degrading
components that have the most affect on performance and/or
demand highest maintenance cost/time to keep model com-
plexity low.

2. Determine the relationship between physical parameters and
degradation. For each of the degrading components identi-
fied, find all the available information on how the designer-
controlled parameters can affect the development of degra-
dation. For certain components, a large amount of re-
search literature dedicated to their degradation process can
be found. Alternatively, on-site data from similar projects in
the past, or the designers’ intuition can also be used to create
an approximate relation if public literature is limited.

3. Propose feasible maintenance concepts. Common mainte-
nance strategies include corrective maintenance, preventive
maintenance and condition based maintenance using prog-
nostics of future degradation. Determine the conditions
for triggering maintenance in CBM, constraints on the fre-
quency of maintenance, and also the accuracy of prognos-
tics.

4. Construct system model. Setup the domain models for the
system design with design inputs of the degrading compo-
nents defined earlier, incorporate the degradation relation-
ship, simulate for the life time operation of the system and
compute different objective functions such as life time effi-
ciency, mean time between maintenance, capital investment,
operation cost, and etc.

CASE STUDY

We will use a case example of power plant condenser de-
sign to evaluate the effects of maintenance strategies on design
choices. The condenser is needed in a steam power plant at the
exit of the low-pressure turbine to condense the exiting steam
into liquid. Condensers are shell-and-tube heat exchangers. The
steam flows through the shell side, which is usually kept at a very

low pressure to achieve higher cycle efficiency. The heat ejected
from the steam condensation is carried away by cooling water in
the tube side of the condenser.

Fouling (and scaling) is the major degradation mode of a
condenser. Fouling is the build-up of foreign materials inside the
tubes due to bio-particles and inorganic salt in the cooling water.
Fouling causes high thermal resistance in the condenser (com-
monly measured in fouling resistances with units of [M2K/KW]),
which increases the shell side pressure and ultimately reduced
plant efficiency. It is recognized as one of the biggest problems
associated with efficiency loss in power plants [26].

The build-up of fouling resistance in a condenser usually
follows an asymptotic curve [27]. The asymptotic values of foul-
ing and the rate of build-up are highly stochastic. Over the past
fifty years much research has focused on finding the underly-
ing physics that govern fouling. The results have suggested that
the amount of fouling and the rate of fouling are proportional
to temperature, and inversely proportional to the cooling water
flow rate, assuming unchanging water quality and tube mate-
rial [28,29].

Maintenance of condenser is performed offline during a
scheduled power plant outage. Specialized scrapers are shot
through the tubes with pressurized water to physically remove
built-up foulant. Cleaning can usually be completed within 48
hours before returning the condenser to its original condition.

Model Configuration

Power Plant Models Power plant design is a multidis-
ciplinary process. The Rankine cycle is first designed by fol-
lowing thermodynamic principles, which involves the selection
of appropriate steam temperatures, pressures, number of turbine
stages and reheat cycles to satisfy the required power rating and
achieve optimal efficiency. Boiler, turbine, condenser, and the
pumping system are designed by separate teams to satisfy the
thermal requirements. For the case study, we simplified the plant
design to only include the power cycle module and the condenser
design module, and assume the other components are perfect.
Figure 3 shows the integration of system components and degra-
dation following the framework proposed in the early section.

The condenser model computes the condenser heat duty
based on inlet conditions, geometry, and fouling resistance us-
ing the log-mean-temperature-difference method [30]. The con-
denser inlet conditions are provided from the power cycle mod-
els, the geometry parameters: the number of tubes (N;) and the
tube length (L) are designer-specified, and the fouling resistance
is obtained from the fouling model. The output heat duty is used
in the power cycle model as an input.

The power cycle model is a simple Rankine cycle with a
single stage turbine. The model is based on a steam property
lookup table [31] to obtain the entropy and enthalpy values of
each cycle components, and calculates the cycle efficiency. A
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detailed description of the power plant models and the constant
parameters used can be found in the Appendix.

Fouling Trend Model The fouling resistance over time

is assumed to follow an asymptotic curve described in Equation
2:

Re(t) =Rj(1—e™) 2)

The asymptotic value R’; is shown in past studies to be a nor-
mally distributed random value that has a coefficient of variation
of roughly 20%. The mean value of R} and the time constant b
are related to the cooling water velocity v, inside the condenser
tube by the following approximations [23].

Ry =5x10%v, "% 3)
b=0.0016-v, "% 4)

The fouling trend model computes the fouling trend parameters
R;» and b based on condenser design variables, and also simulates
the fouling growth curve for the system lifecycle modeling. The
temperature effects are not considered in this study for simplicity.

Operation Model The operation model takes inputs of
one of three types of maintenance: 1) fixed interval, 2) fixed
threshold, 3) fixed threshold with prediction, and a second in-
put of either time between cleaning or threshold resistance (R )
depending on the type of maintenance selected. It should be
noted that power plants are usually shut down once a year during
the spring when energy demand is the lowest for general main-
tenance and inspection. For any maintenance strategy, it only
makes sense for the cleaning to occur during the regular sched-
uled shut down, therefore, a minimum continuous operation time

of 1 year must be satisfied. Method 1, the fixed interval method,
is straightforward: a fixed cleaning interval is specified such as
once every three years, and the condenser is cleaned following
this schedule. Method 2 is to clean the condenser when some
threshold has been reached. This is the typical strategy in indus-
try: the condenser will only be cleaned when the power plant ef-
ficiency/maximum power output is severely below the designed
efficiency/power output. In this study we will use the fouling
resistance as the threshold. Method 3 is similar to method 2 ex-
cept the health of the condenser (fouling resistance) is monitored
and future fouling value is predicted using PHM. The cleaning
decision is made if in the next year of operation, the fouling re-
sistance is predicted to rise above the threshold. In this paper we
assumed the predictive algorithm can perfectly predict the exact
future fouling resistance. The effects of prediction uncertainty is
not considered in this work.

The net outputs from fouling model and power plant models
also feed into the operation module. The outputs of the operation
module include the efficiency over entire lifetime, and the mean
time between maintenance.

Economics The objective of optimization is the lifecy-
cle cost of the condenser, which consists of the condenser capital
investment, the maintenance cost, and fuel cost due to lost effi-
ciency. The capital investment is assumed to be the cost of the
condenser tubes. The maintenance costs occur when the plant is
shut down to perform mechanical cleaning. We assume the cost
is dominated by the cost of scrapers, and one scraper is needed to
clean one tube. The fuel cost due to lost efficiency can be found
by calculating the average efficiency over the lifetime, and then
calculating the extra fuel required and the fuel cost. Since the
operating cost that occurs in the future is compared to the cap-
ital investment, a discount rate can be included to calculate the
present value of operating cost. It is not included in this study
for simplicity.

Model Integration For simplicity, many of the plant and
condenser design variables are kept constant, and only the con-
denser tube length, number of tube, the type of maintenance
and the fouling threshold/clean time are considered as designer-
selected variables. Other constant parameters include: lifetime
of plant is 50 years, the minimum and maximum continuous op-
erating time is 1 and 10 years respectively for the fixed threshold
and fixed interval with prediction maintenance method.

For each design, quasi-Monte-Carlo simulations are used to
simulate 500 independent runs of the lifetime of the designed
plant, the average of the lifecycle costs (LCC), mean time be-
tween maintenance (MTBM), and efficiency are computed. We
decided to use a quasi-Monte-Carlo simulation to ensure we can
obtain valid gradient information using finite difference meth-
ods. The lifecycle cost of the system and the efficiency should
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be minimized, while the MTBM should be maximized to reduce
the number of mechanical cleanings during the lifetime to reduce
the chance of tube corrosion from excessive scraping and human
error associated with opening and closing of condenser cases.

Model Evaluation The system model is evaluated using
a feasible design input. The uncertainty associated with the life-
cycle costs is obtained from the quasi-Monte-Carlo simulation
by measuring the coefficient of variation (c.0.v.) of the simula-
tion. By only considering the uncertainty in fouling, the c.o.v. of
the lifecycle cost is roughly 2%. The results of the system model
is illustrated in Table 4 in the Appendix section.

RESULTS
Design Space Exploration

The mid-fidelity model is set up in MATLAB 2011a. Full
factorial design studies are performed to understanding the de-
sign space. Three levels for each of the four input variables were
selected and shown in Table 1.

TABLE 1. Design of Experiment Variable Values
Number of Tubes 6000 9000 12000
(N)

Tube Length (L) 8 14 20

Maintenance Type fixed fixed predictive
interval threshold

Fouling Threshold  0.05 0.17 0.3

(Ryy), or

Clean Time 1 3 5

The average effects for the two condenser design variables
(M and L) are computed and plotted in Figure 4. The design
space exploration results suggest that for all types of mainte-
nance strategies, low number of tubes and long tube length tend
to result in lower lifecycle cost. It is also noted that using the pre-
dictive strategy resulted in lowest overall cost, and the fixed in-
terval method the highest overall cost. Also interesting to note is
the LCC with predictive maintenance increased with more tubes
like the other maintenance strategies, but then seem to decrease.
With more tubes, there is more surface area and therefore the
condenser can tolerate higher fouling resistance without signifi-
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TABLE 2. Table of Optimization Variables

Variable Type Unit Bounds Scale
N, Input - 5000-16000 1/10°
L Input m 5-25 1/10
Ryy Input m’K/&W  0.05-0.3 10
MTBM Objective years 1-10 -
LCC Objective $ Million 3.9-15 -

cant degradation in performance. The tradeoff of more tubes is
that flow rate through the condenser is now lower, and low flow
rate promotes fouling build-up. The DOE results suggest it may
be possible to always operate the condenser in high efficiency
region and offset the increased capital cost.

The effects of the Mean Time Between Maintenance on the
lifecycle cost is shown in Figure 5, where the design evalua-
tions with the lowest cost for each available MTBM value (non-
dominated designs) were plotted in the MTBM vs cost axes.

The graph shows that the lifecycle cost is lowest for the pre-
dictive and fixed threshold method at MTBM of around 1 years.
Above this value, longer MTBM apparently resulted in higher
cost. For the fixed interval strategy, the input variable clean time
is the MTBM value, and thus can only take on discrete values,
whereas for the fixed threshold and prediction strategy, MTBM
depends on the Ry threshold value and the fouling build-up rate.
The uncertainty of the simulation results is small (lifecycle cost
c.o.v. around 2%, MTBM c.o.v. around 5%) and not shown in
the figures.

Design Optimization

Single objective optimization was performed separately for
the three different maintenance strategies with the lifecycle cost
as the only objective. DOE has revealed that the fixed inter-
val strategy has lowest lifecycle cost (LCC) at cleaning time
(MTBM) of 1 year, thus leaving only two variables (N; and L)
for optimization, and both are continuous variables. For the fixed
threshold strategy and predictive strategy, optimization variables
include M, L, and the fouling resistance threshold Ry, all of them
continuous variables. Since all the input variables and the ob-
jective take values in significantly different order of magnitude,
scaling of the variables were needed. The variables, their bounds,
units, and scaling are shown in the Table 2.

Optimization was done using sequential-quadratic program-
ming (SQP) method as well as genetic algorithm (GA) by uti-
lizing MATLAB functions. The results of the optimization are
shown in Table 3.

Both the SQP and GA results were in the same vicinity of
the design space, with N between 6700 and 7100 and L between

=3
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h

=N

Lifecycle Cost ($ Million)
(F8 ]
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FIGURE 6. CONSTRAINED OPTIMIZATION RESULTS - COST
BREAKDOWN IN $ MILLION

12m and 14m. It was interesting to note that the optimal con-
figurations for all three maintenance methods were very similar
in the design space and resulted in similar lifecycle cost as well,
between $3.9M and $4.1M. However, the MTBM values were
different, with predictive method resulting in the longest MTBM
at around 1.5 years, fixed threshold around 1.3 years, and fixed
interval at 1 year between each maintenance.

Next, we constrained the MTBM to be greater than 2 years.
This is a realistic situation as plant operators may be interested
in keeping the number of mechanical cleanings during the plant
lifetime below a certain value to reduce excessive wear on the
condenser due to manual cleaning. A detailed break down of the
optimal configurations is shown in Figure 6.

At MTBM equal to 2 years, different maintenance strategies
resulted in significantly different lifecycle costs. The breakdown
of the costs also show that by using a predictive method, the plant
can save significantly on the efficiency costs as expected, and
also design a smaller condenser and reduce the initial capital in-
vestment.

Figure 7 shows the optimal condenser designs for different
maintenance strategies in the design space along with the con-
denser capital expenditure contour. As suggested by the graph,
the capital expenditure decreases going from fixed interval strat-
egy to fixed threshold and to predictive strategy. Since in the
model the condenser cost is directly proportional to the con-
denser heat exchanger area, this means that by selecting the ap-
propriate maintenance method, a smaller condenser can be used
and also result in better performance.

It should be noted that the implementation cost of various
maintenance strategies are not considered in the model. In real-
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TABLE 3. Table of Unconstrained Optimization Results

Sequential-Quadratic Programming

Genetic Algorithm

Design Variables Objectives Design Variables Objectives
M L Ry, LCC MTBM M L Ry, LCC MTBM
fixed Interval 6951 122 - 411 1 6671 12.6 - 412 1
fixed threshold 6869 13.2 0.105 4.00 1.33 7151 124 0.106 398 1.31
prediction 7057 125 0.165 390 1.52 6835 134 0.161 393 144
16 5 to changes in scraper prices. This is because the scraper only di-
C=> Capital Cost rectly affects the maintenance cost, which is a small portion of
1551 O fixed interval the lifecycle cost. For similar reasons, the sensitivities to material
© 0 fixed threshold 19 price and coal price are much higher and about equal in value.
E 15} ©__prediction = Only the sensitivities to coal price show any significant differ-
£ g . 2 ence between different maintenance strategies, and that using the
EEREC] 18 5 predictive maintenance strategy resulted in the least sensitivity
§ \\\ g against changes in coal price.
N \\\ © Figure 10 shows the sensitivity of the optimal condenser area
1351 S o L7 to changes in the price parameters. This shows how the optimal
' \\\ design will change in changes to maintenance related parame-
13 . : . ~ , ters. Again, there is little effect on the condenser design from
6000 6200 6400 6600 6800 7000

Number of tubes

FIGURE 7. EFFECT OF MAINTENANCE ON OPTIMAL DESIGN

ity, there will be costs associated with the sensors for monitoring
degradation, and processing elements for prognosis. Designers
must compare the reductions in lifecycle cost to the implemen-
tation cost of maintenance strategies to make sound design deci-
sion.

Sensitivity Analysis

Changes in optimal LCC to changes in the condenser design
parameters are computed by changing each design variable in-
dependently while keeping the other design variable at optimal
value, and re-run the optimization to find the fouling threshold
Ry, that minimizes LCC and satisfy the MTBM > 2 years con-
straint. The results are plotted in Figure 8.

The plots show relatively flat regions around the optimal de-
signs for all three strategies. The LCC is more sensitive in large
decreases of both variables but less sensitive to increases. This
is consistent with the notion that designers should avoid under-
sizing the condensing, because the penalty associated with effi-
ciency loss is significant.

The sensitivity to a few design parameters were computed
using finite difference, the normalized sensitivities are plotted in
Figure 9 and Figure 10.

In Figure 9, it is noted that the lifecycle cost is less sensitive

scraper price. The positive sensitivity in coal price means that if
coal price is increased from the current value, larger condensers
should be designed to compensate for the increase in efficiency
cost. The negative sensitivity in condenser material price indi-
cates that a larger condenser can be used if the material price
decreases, as expected.

CONCLUSIONS AND FUTURE WORK

In this study we have demonstrated a framework for integrat-
ing maintenance in the design stage by considering the effects of
system design parameters on the physics of component degrada-
tion. We used a case study of condenser design to evaluate the
significance of different maintenance strategies and their effects
on system design decisions. Three maintenance policies were
considered: fixed maintenance interval, maintenance based on
degradation threshold, and maintenance based on the prediction
of future degradation. The results found show that by concur-
rently optimizing both the system design variables and the main-
tenance variables, the optimal design will change with different
maintenance policies. However, depending on the values of sys-
tem parameters, the effects of maintenance policies on design
may vary in magnitude.

The proposed framework takes a system level approach by
integrating the maintenance strategies and lifecycle analysis with
the design process, and thus significantly increased the prob-
lem complexity. Efforts to reduce complexity included decou-
pling the uncertain degradation and maintenance models from

Copyright © 2013 by ASME
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the deterministic system models, using quasi-Monte-Carlo sim-
ulations, and implementing mid-fidelity physics based models.
Future research efforts should look into the effects of having mul-
tiple degrading components, which could increase the problem
complexity exponentially.

In this work we have assumed a physics based mid-fidelity
model is available to avoid the unnecessary long processing time
of high-fidelity models. In cases when a mid-fidelity model is
not available, low-fidelity models may be used with trade-offs
in model precision and uncertainty. Future work could involve
performing sensitivity analysis to determine how maintenance
strategy changes for different design conditions. This work has
neglected nonphysical conditions in systems engineering such as
human factors in operation. Nonphysical conditions could be
considered in future iterations of framework development.

The uncertainty in fouling resistance was assumed to be nor-
mally distributed with c.o.v. of 20%, however this had a very
little effect on the lifecycle cost as shown by the low uncertainty
of the lifecycle cost (c.0.v. around 2%), and therefore difficult
to draw any conclusion on whether maintenance strategies af-
fect the uncertainty in lifecycle. Future work should vary the
uncertainty factors and evaluate the robustness of different main-
tenance methods.

An important factor neglected in this study is the selection
of sensors for monitoring component degradation. The choices
of sensors would affect the overall capital cost as well as the
efficacy of the predictive maintenance strategies. Future work
should incorporate the cost of sensor technologies and the un-
certainty associated with degradation prediction. Future work
should also explore different applications of the proposed frame-

|

material price | |

coal price

. I fixed interval | |
Scfaper price [ fixed threshold
I predictive
0 0.1 0.2 0.3 0.4 0.5

Lifecycle Cost Sensitivity

FIGURE 9. LCC SENSITIVITY TO COST PARAMETERS

work in aerospace or electronic systems.
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APPENDIX

The appendix includes some of the details about the case
study power plant model that were not included in the main body
of the paper. Design requirements for the power plant include the
following: the designed maximum power output is I00MW, the
condenser will be cooled with seawater having an annual average
temperature of 25C. The fuel source is steam coal. The results
of model evaluation with a feasible design is also shown here in
Table 4

Power Cycle Model For simplicity, a simple Rankine
cycle with a single stage turbine is used. In real power plant
designs multiple turbine stages are usually used with many pre-
heaters and reheat loops to increase cycle efficiency. Since our
case study is aimed to demonstrate the effect of maintenance
on the condenser, the power cycle is kept as simple as possi-
ble with only five components: the boiler, the turbine, the con-
denser, the cooling water pump for condenser, and the feed water
pump. Design inputs for the power cycle include the tempera-
ture and pressure of the boiler exit, the rated pressure of turbine
exit (condenser shell pressure), and the rated cooling water flow
rate. The power cycle module also takes the condenser duty as
an input, which is an output from the condenser design module.
The power cycle module takes all inputs and look up the tem-
perature, pressure, enthalpy and entropy values at the inlet/exit
of each component using a steam table. If the condenser exit
condition is sub-cooled liquid, the condenser duty is higher than
required, and the cooling water flow rate is decreased below the
rated value, if the condenser exit condition contains vapor, the
condenser duty is lower than required, and the turbine exit pres-
sure is raised above the rated value. This ensures the condenser
exit is always saturated liquid for best cycle efficiency. Then
the feed water flow rate can be calculated in order to satisfy the
100MW output requirement. The output of the power cycle con-
tains the actual turbine exit (condenser shell) pressure, cooling
water flow rate, feed water flow rate, auxiliary power require-
ment (calculated from cooling water pump), and cycle efficiency.
In this model, the boiler exit pressure, temperature, and rated tur-
bine exit pressure are kept constant at 80bar, 480C, and 0.1bar
respectively.

Condenser Design Model The condenser design mod-
ule computes the condenser heat duty based on the inlet condi-
tions and geometry using the log-mean-temperature-difference
(LMTD) method. We assume the condenser is a one pass X-type
shell and tube heat exchanger, the tubes are 70-30 Copper-Nickel
alloy with 17cm ID and 19cm OD, installed in triangle arrange-
ments with tube spacing of 25cm. The tube side pressure drop
is dominated by friction loss due to tube roughness and foul-
ing build-up. Shell side pressure drop is neglected. Inputs to
the condenser design module include the length of tubes (L), the
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TABLE 4. Design Evaluation of System Model

Power Plant Model Lifecycle Model
N 7000 | Strategy fixed interval  fixed threshold prediction
L [m] 15 Interval [year] 2 - -
Ry [m?K/KW] - 0.2 0.2
Capital cost 2 MTBM - - 266 56% 171 48%
[$M] (u [year] & c.0.v.)
Condenser 6267 | Cleaning cost 0.612 0 0459 55% 0719 4.9%
area [m?] (u [$M] & c.0.v.)
Efficiency cost 199 21% 223 33% 129 13%
(u [$M] & c.0.v.)
Lifecycle cost 461 09% 469 1.6% 402 09%
(u [$M] & c.0.v.)

number of tubes (N;) the fouling resistance (Ry), and the hot/cold
side inlets temperature, pressure, and flow rate, obtained from the
output of the power cycle module. The outputs of the module in-
clude the calculated heat duty, the cooling water velocity, and the
tube side pressure drop.

Degradation Model The fouling resistance increases
over time following the asymptotic curve described in Equation
2. The fouling resistance increases the flow resistance in the
condenser tubes, resulting in more power drawn by the coolant
pump. Fouling also decreases the heat transfer coefficient of the
condenser, and thus the flow rate of the coolant need to be in-
creased. Once the maximum coolant flow rate is reached, ad-
ditional fouling will result in pressure rise in the turbine back
pressure, and severely lower the power production efficiency.

Economic Model Some of the constants used to calcu-
late the lifecycle cost is listed below: for calculating the capital
cost of the condenser, the price for heat exchanger tubes (70-
30 Copper Nickel alloy) is $20/kg. For calculating operation
cost, the scraper price is $3.5/piece. The price for steam coal
is $90/ton, the average energy density for steam coal is 25MJ/kg,
and the capacity factor of typical coal fire power plant is 0.7.
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