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ABSTRACT 
During the formative stage of the design cycle, teams 

engage in a variety of tasks to arrive at a design, including 
selecting among design alternatives. A key notion in design 
alternative selection is that of "preference" in which a designer 
assigns priorities to a set of design choices. This paper presents 
a preliminary approach for extracting a projection of 
aggregated design team preferences from design team 
discussion. This approach further takes into consideration how 
the design preferences of a team can evolve over time as the 
team changes its priorities based on new design information. 
Two initial models are given for representing the most probable 
and preferred design alternative from the transcriptions of 
design team discussion, and for predicting how preferences 
might change from one time interval to the next. These models 
are applied to an illustrative, real-world case example.  
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INTRODUCTION 
One way of thinking about the early stages of design is as a 

process of generating and selecting solutions to meet 
requirements. During design selection, multiple criteria may be 
considered, and if any of these criteria are at odds, decision 
makers may need to make trade-offs among several design 
alternatives. The process of making trade-offs involves 
evaluation and comparison of design alternatives. Methods for 
formalizing design trade-offs include utility theory originally 
developed by von Neumann and Morgenstern [1-6] and the 
Method of Imprecision (MoI) developed by Otto, Antonsson, 

and Wood [7, 8]. Both of these methods are based on the 
designers’ preferences for multiple criteria of a set of design 
alternatives. A key notion in design alternative selection is that 
of "preference" in which a designer assigns priorities to a set of 
design choices. This paper examines three aspects of 
preferences in design teams: design preference extraction from 
a group and understanding preference evolution over the life of 
a project, and presents a case example to illustrate its 
approaches. In theory, the method described in this paper may 
be applied to any selection problem in which all design 
alternatives are known a priori. It is envisioned that the method 
will be of value in real world engineering design situations 
where it is important to have to understand a design team’s 
preferences.  

Preference Extraction 
In formal design approaches, accurately modeling the 

strength of preferences is very important in the design decision 
making process. One common way to determine a designer’s 
preference is to explicitly ask them via surveys or 
questionnaires. The lottery method [9] is a classical way to 
elicit preferences in a quantitative way in which alternatives are 
preferentially scaled from 0 to 1 based on a questionnaire. In 
order to ensure the consistency among the preferences, pair-
wise comparisons are made to determine the relative 
performance of the alternatives in terms of each individual 
criterion. This approach is often used in the Analytical 
Hierarchy Process (AHP) [10] as a decision making support 
tool. Other quantitative pair-wise comparison approaches 
include: Wang [11], who employs a fuzzy preference 
relationship to discriminate three preference models for design 
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evaluation, and Li and Jin [12] who apply this fuzzy preference 
relationship to select alternatives. All of these methods rely on 
directly asking designers for their preferences, or assuming 
some value for them.   

Another, lower overhead approach is to extract preferences 
from a designer’s actions. Collaborative filtering [13] is based 
on the assumption that individuals with similar profiles 
gravitate to the same choices. Collaborative filtering has been 
used in many commercial applications, particularly in sales and 
marketing. However, collaborative filtering requires a relatively 
large number of individual opinions to be effective, more than 
is typically on a small design team.  

This paper proposes a new approach to extract preferences 
from the transcribed discussion of design teams. It assumes that 
designers’ preferences are somewhat related to what designers 
discuss during the design process, and this kind of relationship 
can be modeled in probabilistic ways. 

Group Preference Aggregation 
Designer preferences are often considered for a whole team 

rather than the individual member alone, and several 
approaches exist to aggregate group preferences. Arrow’s 
Theorem [14, 15] demonstrates that there is no guarantee of 
consistency in a group. It is reasonable that the team members 
may have different preferences, and it is more important to 
consider the group preference rather than the individual 
preferences for the group design. Keeney uses cardinal utility 
functions to accumulate group preferences [16], while Bask and 
Saaty [17] apply Analytical Hierarchy Process and pair-wise 
approach to aggregate the group preferences, assuming each 
group member’s opinion is equally important. Jabeur, Martel et 
al.[18], and See and Lewis [19] go one step further and assume 
unequal weights on the preferences of the group members, 
although this sometimes requires prior knowledge of weighting 
factors, such as a member’s technical expertise. This paper 
takes a different approach that does not require prior knowledge 
of an individual’s background or ways to formulate unequal 
weights. Instead, the preferences of a team are considered from 
the point of view of group discussion, and group preferences 
are extracted directly from the text analysis of a single 
transcript of the design team’s discussion. The approach 
described in this paper represents group preference without 
aggregation of the individual preferences of a group. Instead, 
the group preferences are extracted from the discussion as if the 
group is a single entity.   

Design Preference Evolution 
Much past research in modeling design preferences has 

focused on representing preferences at a single point in time. In 
practice, these trade-offs may be iterative as teams better 
understand their objectives and criteria, as requirements and 
constraints change, or as teams gain new information about 
their design, so the cumulative preference of the design team 
may change over time. Consequently, the design process can be 
described from the perspective of preference evolution. 

Several researchers have examined the design process  
over time through surveys [20], coding of design journals [21], 
“story telling” [22], word frequencies and information certainty 
analysis [23]. This study describes the design process in terms 
of the preference evolution which is extracted from the analysis 
of the designers’ transcribed discussion. 

METHODOLOGY 
The basic method is as follows:  
1. Word occurrences of all design alternatives in the 

transcript of designers’ discussion are collected. The collection 
of the word occurrences is called utterance data. In this step, the 
variations of the specific terms to represent the same alternative 
are also determined and collected.  

2. A preference transition model is built to describe the 
relationship between preferences of two consecutive time 
intervals, along with an utterance-preference model to describe 
the relationship between what designers say and what designers 
prefer in the same time interval. The parameters of the two 
models are unknown. 

3. Reasonable initial values are arbitrarily assigned to the 
parameters of these two models. 

4. Both models are applied to the transcriptions to predict 
preferences. The preference data will be used to describe the 
evolution of preferences over the design process. 

5. The parameters of these two models are updated using 
the Expectation-Maximum (EM) algorithm [24] on the 
predicted preference data and the given utterance data. 

6. Steps 4 and 5 are repeated until there is convergence. 
Parameters converge because the EM algorithm is guaranteed 
to improve Probability of the occurrences of the utterance data 
at each iteration [25]. 

Assumptions 
This study makes five simplifying assumptions as follows: 
Assumption 1: It is assumed that the group discussion is a 

reasonable reflection of group preference. During the design 
process, what designers say to each other generally corresponds 
with what they think. This is also an implicit assumption of 
protocol studies of designers [26]. 

Assumption 2: It is assumed that all major design 
alternatives for a concept selection problem are largely known a 
priori. While this is probably not true for many early stage 
design problems, it is a reasonable assumption for a large-scale 
system re-design problem because they generally limit the 
number of design alternatives under consideration to ones that 
have been used in the past.  

Assumption 3: It is assumed that an entire discussion can 
be divided into several time intervals during which the 
designers’ preference are unchanged. The change of the 
preferences can only occur between consecutive time intervals.  

Assumption 4: It is assumed that designers tend to talk 
more about the design alternative they choose. Within the same 
interval, how often designers mention (utter) the alternatives 
depends on what they think. The relationship between what is 
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thought and said is probabilistic in the sense that the more an 
alternative is preferred in the discussion, the more likely this 
alternative will be uttered by the design team as a whole.  

Assumption 5: It is assumed that what designers think in 
current time interval is affected by what they thought in the 
previous time interval. This relationship can also be represented 
in probabilistic way. 

Notation 
N: total number of alternatives in the studied design 

selection problem 
T: total number of time intervals over the whole design 

process 
i, j: the index to represent different time intervals in the 

design process  
m, n, k: the index to represent different alternatives in the 

studied design selection problem 
r: the index to represent the different iterations of the 

calculation process 
ma : the mth  alternative of of the studied design selection 

problem in the design process 
A: the set of all alternatives, i.e. A={ 1 2, ,..., Na a a } 
iπ : the alternative which designers prefer to all other 

alternatives in Time Interval i, i.e., the most-preferred 
alternative in Time Interval i 

iε : the alternative which designers utter at sometime 
during Time Interval i of the design process 

iσ : the sequence of the utterances of design alternatives in 
Time Interval i. e.g., if in Time Interval 2, the design 
alternatives are uttered as 2 2 1 1 1 2 3 1 1 3, , , , , , , , ,a a a a a a a a a a  in the 
designers’ transcribed discussion , then 2σ  = 
{ 2 2 1 1 1 2 3 1 1 3, , , , , , , , ,a a a a a a a a a a  } 

P( i maπ = ) : the probability that designers prefer 
Alternative ma  to all other alternatives (i.e., Alternative ma  is 
most preferred) in Time Interval i. If the preference value of 
Alternative ma  in Time Interval i is represented by ( )i maµ  on 
a scale from zero to one, then i maπ =  is equivalent to 

( ) ( )   1i m i na a for all n Nµ µ≥ ≤ ≤  
P( i maπ = | j naπ = ) : the probability that designers 

prefer Alternative ma  to all other alternatives in Time Interval i, 
given that designers prefer Alternative na  to all other 
alternatives in Time Interval j  

P( i maε = ) : the probability that Alternative ma  is uttered 
in Time Interval i 

P( i maε = | j naπ = ) : the probability that Alternative ma  
is uttered in Time Interval i given the condition that Alternative 
na  is preferred the most in Time Interval j 

Utterance Data Collection 
In this preliminary study, the alternatives are represented 

by nouns or noun phrases in the discussion. The appearance of 

any noun of interest or direct variation of it is considered an 
occurrence of a design alternative. For example, if a product 
design team were considering power sources for a consumer 
electronics product, the design alternative might be “NiCad 
battery”, and “Nickel Cadmium battery” would also be 
considered an instance of the same term. The best way to 
represent a design alternative linguistically is still an ongoing 
and unresolved area of research [27].  

In addition, because the discussions were largely at a high, 
system level, discussion did not go too far down in hierarchical 
detail, and a major simplifying assumption was made that all 
discussions about a design alternative did not need to go down 
or up levels of meaning. The weightings of the uttered 
alternatives can be determined from the frequencies of the 
uttered alternatives [23], the lexically related words [28, 29], 
and the appraisals [30] of the alternatives in the discussion. 

Preference Transition Model 
This model relates the design team’s preference in the 

current time interval to that in the next time interval. Individual 
designers may have different preferences, but in this model, 
only the accumulative group preferences are considered.  

In one time interval, it is assumed that there is an 
alternative which the team prefers the most, called the most-
preferred alternative, and the remaining alternatives are the 
less-preferred alternatives. In the case when several preferences 
equally “most preferred”, any one can be chosen arbitrarily as 
the most-preferred one and the others are regarded as less-
preferred. The probability of one alternative to be most-
preferred is the most-preferred probability of this alternative. 
From one interval time to the next consecutive time interval, 
the most-preferred alternative is either kept the same or 
changed to a different one. The transition relationship depends 
on the preference strengths of the most-preferred alternative 
and the less-preferred alternatives. In this study, a simple 
relationship is used that all less-preferred alternative in the 
current time interval are equally likely to become the most-
preferred alternative in the next time interval. In mathematical 
terms, the model can be expressed as in Equation (1). 

 

i+1 n i m

p  
P( =a | =a )= 1-p     

N-1

when n m

when n m
π π

 = ≠
              (1) 

 
where 0 1p≤ ≤  is an hidden parameter, which means the 
probability that the most-preferred alternative is kept 
unchanged from one time interval to the next consecutive one. 
The bigger p is, the more consistent the preferences are over the 
design process; and the smaller p is, the more frequently the 
preferences are changed. 

Utterance-Preference Model 
This model relates the team’s preference to the utterances 

of the alternatives in the same time interval. In other words, it 
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tries to approximate what designers think with what designers 
say.  

An alternative can be uttered in the discussion transcript in 
two ways, positive or negative. When an utterance of an 
alternative has no negative words (e.g. “no,” “not,” “hardly”) 
nearby in the transcript, then this utterance of the alternative is 
regarded as positive, otherwise negative. To simplify things, 
negative utterances are ignored and only positive utterances are 
considered. The influence of negative utterances will be 
considered in the further research. Similarly, this utterance-
preference relationship should also be a function of the 
preference strengths of the most-preferred alternative and the 
less-preferred alternatives. This study uses a simple model that 
the less-preferred alternatives are equally likely to be uttered by 
designers in the same time interval. In equation form: 

 

i n i m

q  
P( =a | =a )= 1-q    n 

N-1

when n m

when m
ε π

 = ≠
              (2) 

 
where 0 1q≤ ≤  is an hidden parameter, which means the 
probability that the most-preferred alternative is to be uttered 
positively in the discussion. In the protocol studies of designers 
[31], it is assumed that what designers say generally 
corresponds with what they think. In this study, it is assumed 

that designers say what they think in most cases. i.e., 1-qq
N-1

>  

. It denotes that the reasonable value range for q is 
1 1q
N
< ≤ . 

Preference Calculation 
The preferences of the design alternatives in the design 

process may change over time during the discussion of the 
design team. One of the objectives in this paper is to extract the 
preference evolution over the whole process. Although the 
preference value of each alternative cannot be acquired from 
the method proposed in this paper, the probability of each 
design alternative to be most-preferred can be calculated.  

The challenge: given the utterance data about the design 
alternatives and the most-preferred probabilities of the design 
alternatives in the current time interval, what are the most-
preferred probabilities of the design alternatives in the next 
time interval? 

By Law of total probability,  
 

1 2 1( | , , ,..., )i k i i iP aπ σ σ σ σ− −=  = 
1 1 1 1 1 2 1

1
( | , ,..., ,  ) ( | , ,..., )i k i i i m i m i i

m N
P a a P aπ σ σ σ π π σ σ σ− − − − −

≤ ≤
= = =∑  

                 (3) 
By Bayes Theorem,  
 

1 1 1( | , ,..., ,  )i k i i i mP a aπ σ σ σ π− −= =  = 

1 1 1 1 1 1

1 1 1 1 1 1
1

( | , ,..., , ) ( | ,..., , )
( | , ,..., ,  ) ( | ,..., , )
i i K i i m i K i i m

i i n i i m i n i i m
n N

P a a P a a
P a a P a a
σ π σ σ π π σ σ π

σ π σ σ π π σ σ π
− − − −

− − − −
≤ ≤

= = = =
= = = =∑

                 (4)  
Equation (4) can be simplified into Equation (5) because 

the utterance data in the current time interval are independent 
of the utterances in the historical time intervals while given the 
preference in the current time interval, and the preference in the 
current time interval is independent of the utterance data in the 
historical time intervals while given the preference in the latest 
previous time interval. 
 

1 1 1( | , ,..., ,  )i k i i i mP a aπ σ σ σ π− −= =  = 
1

1
1

( | ) ( | )
( | ) ( | )
i i k i k i m

i i n i n i m
n N

P a P a a
P a P a a
σ π π π

σ π π π
−

−
≤ ≤

= = =
= = =∑

                 (5) 

 
Substituting Equation (5) back into Equation (3) gives the 

following two equations ((6) and (7)).  
 
When 2i ≥ , 

1 2 1( | , , ,..., )i k i i iP aπ σ σ σ σ− −=  = 
1

1 1 2 1
11

1

( | ) ( | )
( | , ,..., )

( | ) ( | )
i i k i k i m

i m i i
i i n i n i mm N

n N

P a P a a
P a

P a P a a
σ π π π π σ σ σ

σ π π π
−

− − −
−≤ ≤

≤ ≤

= = = =
= = =∑ ∑

                (6) 
 

When 1i = ,  
1 1( | )kP aπ σ=  = 

1 1 1 0
0

1 1 01
1

( | ) ( | )
( )

( | ) ( | )
k k m

m
n i n mm N

n N

P a P a a
P a

P a P a a
σ π π π π

σ π π π≤ ≤
≤ ≤

= = = =
= = =∑ ∑

                  (7) 
 
Suppose the design alternatives are uttered iw  times in the 

ith time interval, as (1) (2) (3) ( ), , ,..., iw
i i i ia a a a , which are all in 

Alternative Set A. Assume that the utterances of alternatives in 
one time interval strongly depend on designers’ preference, and 
the utterances of design alternatives are indifferent of each 
other given the strong dependence on preferences, then 

 

( | )i i kP aσ π =  = ( )

1
( | )

iw
u

i i ki
u
P a aε π

=
= =∏              (8) 

 
Equations (6), (7) and (8) recursively calculate the 

preference in the next time interval from the preference in the 
current time interval. In order to make the recursion work, two 
pieces of information should be given. 

 
1. The initial most-preferred probabilities of all 

alternatives before the first time interval.  
2. The parameters of Preference Transition Model and 

Utterance-Preference Model. i.e. Parameters p and q. 
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The first one can be resolved by doing surveys on 
designers before the start of the design process, or by collecting 
the preference information from the previous design process, or 
by analysis of the previous preferences of alternatives for 
design of similar products. In this study, all alternatives are 
initiated with uniform alternative distribution, which gives an 
unbiased starting point. i.e., 
 

 
0

1( )kP a
N

π = =
, 1,2,...,k N=           (9) 

 
This equation means that before the discussion of the 

design process, all alternatives have the equal probabilities to 
be most preferred.  

Regarding the parameters of two key models, they are not 
as easy to acquire as the initial most-preferred probabilities of 
alternatives. In this paper, an EM algorithm is applied to 
searching the parameters of Preference Transition Model and 
Utterance-Preference Model. 

Estimation of Hidden Parameters 
If Preference Transition Model and Utterance-Preference 

Model are known, it is feasible to calculate the most-preferred 
probabilities for each design alternative in each time interval 
and then to plot the preference evolution over the whole design 
process. But the problem is that initially the parameters of these 
two models are unknown. In this situation, utterance data are 
observable but preference data are unobservable, and the 
models are incomplete because of the hidden parameters. An 
Expectation-Maximization (EM) algorithm [24] is often used in 
statistics for finding maximum likelihood estimates of 
parameters in probabilistic models, where the model depends 
on unobserved hidden variables. In this study, it can be applied 
to seek the values of the two hidden parameters of the two 
models. 

An EM algorithm has two steps, the E-step and the M-step. 
The E-step estimates the unobservable data. It can be 
accomplished by Equations (6) and (7). The M-Step computes 
the maximum likelihood estimates of the parameters by 
maximizing the expected likelihood found on the E step. In this 
study, it corresponds to estimating the values of p and q which 
make the utterance sample of  the design alternatives occur in 
the discussion with the maximal likelihood.  

From Equation (1), it is known that i+1 k i kP( =a | =a )π π  is 
independent of k and i. It means that no matter what time 
interval it is in, no matter which alternative designers prefer the 
most in the previous time interval, designers have a fixed 
probability to keep the most-preferred alternative unchanged.  

By the maximum likelihood [32], i+1 k i kP( =a | =a )π π  can 
be estimated as 

 
i+1 k i kP( =a | =a )π π  = 

i+1 m i m
1 1 1

i+1 n i m
1 1 1 1

C( =a , =a )

C( =a , =a )
i T m N

i T n N m N

π π

π π
≤ ≤ − ≤ ≤

≤ ≤ − ≤ ≤ ≤ ≤

∑ ∑
∑ ∑ ∑

                     (10) 

 
where i+1 n i mC( =a , =a )π π  is a fractional count that counts the 
cases that na  is most-preferred in the current time interval 
while ma  is most-preferred in the previous time interval. 

i+1 n i mC( =a , =a )π π  can be calculated as follows. 
 

i+1 n i mC( =a , =a )π π  = 

i+1 n 1 1 i m 1 1P( =a | , ,..., )P( =a | , ,..., )i i i iπ σ σ σ π σ σ σ+ −          (11) 
 
The fractional counts are fractional numbers, and they are 

not the same as the normal counting numbers, which are 
integers. But the values of fractional counts have the 
proportional relationship with the integral numbers which count 
the cases when i+1 n=aπ  and i m=aπ , so fractional counts can 
be used in Equation (10) to estimate of Parameter p. 

Similarly, from Equation (2), i k i kP( =a | =a )ε π  is 
independent of i and k. It means that in a certain time interval, 
designers have a fixed probability to utter the same alternative 
as the one they prefer the most. 

By the maximum likelihood, i k i kP( =a | =a )ε π  can be 
estimated as 

 
i k i kP( =a | =a )ε π  = 

i m i m
1 1

i n i m
1 1 1

C( =a , =a )

C( =a , =a )
i T m N

i T n N m N

ε π

ε π
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

∑ ∑
∑ ∑ ∑

           (12) 

 
where i n i mC( =a , =a )ε π  is also a fractional count, which 
counts the number of cases that na  is uttered while ma  is 
most-preferred in the same time interval. It can be calculated as 
follows. 

 
i n i mC( =a , =a )ε π  = 

i n i m 1 1C( =a )P( =a | , ,..., )i iε π σ σ σ−                    (13) 
 

where i nC( =a )ε  is the number of utterances of Alternative na  
in the time interval i.  

Equations (12) and (13) calculate q based on the samples 
of alternative utterances and preferences. When using the above 
procedure to calculate q, it should be noted that the value of q 
should be more than 1/N. 

Because the EM algorithm is guaranteed to improve the 
probability of the sample of alternative occurrences at each 
iteration, p and q will converge to values which try to maximize 
this probability [25]. These converged values can be regarded 
as the parameters for Preference Transition Model and 
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Utterance-Preference Model. The shortcoming of EM algorithm 
is that it may converge to a local optimum. Multiple initial 
estimates can be used to avoid being trapped in a local optima. 
Simulated annealing can be combine with EM algorithm to 
overcome the local optima problem [33, 34]. 

Time Intervals  
In this study, it is assumed that designers do not change 

their preferences on design alternatives in one time interval. 
Preferences can only be changed at the transitions between time 
intervals. Based on the designers’ transcribed discussion, there 
are several ways to determine time intervals.  

1. Collect all transitional words (e.g., “but”, 
“however,” “while”) in the transcript, and divide the 
transcript into varying time intervals with these 
transition words. 

2. Collect all key design alternative occurrences from 
the transcript of designers’ discussion, and time-
stamp all collected words. Big time gaps between 
the key alternative words mark the separations of 
time intervals. 

3. Set up a fixed word frequency. The process is 
divided into time intervals in which there are equal 
numbers of word utterances of key alternatives.  

4. Make a fixed time interval in which the alternative 
words are neither too many nor too few.  

Although Methods 3 and 4 are not as accurate as Methods 
1 and 2, they are more direct to implement. In this preliminary 
study, Method 4 is chosen to specify the time intervals in the 
design process. 

CASE STUDY  

Case Background 
The above methods are applied to a real-world design team 

working on the design of a large-scale system architecture 
problem in an industry setting. The design team was composed 
of approximately 15 experienced scientists and engineers of 
different disciplines working together in a collocated, highly 
concurrent setting. The team had worked together on several 
similar projects in the past. This study focuses on the audio 
recorded utterances of one member of the team, as he described 
his design decision-making process in detail to a novice 
member of his team. The project took place over three 3-hour 
sessions. This 9 hour recording was transcribed into a text 
document of approximate 28,000 words. All data was time 
coded. In the transcript, the primary team member talked nearly 
85% of the time, and four other members made up the 
remainder. In the project, the team aimed to make decisions on 
two component selection problems, and each component 
selection problem has three alternative candidates. These three 
design alternatives were known a priori because the design 
problem relied heavily on previous system designs. This is 
common design practice particularly in aerospace mission 
design [35]. For example, standard alternatives for types of 
propulsion are chemical, electric, and thermal. To achieve the 

mission goals, the designer responsible for propulsion must 
make trade-offs among the different propulsion types and, at 
the same time, consider the configuration of specific propulsion 
design. This approach to design decision-making applies to 
most other space subsystems as well. In the project described in 
this case study, designers attempted to solve two component 
selection problems, each with three alternative candidates. This 
paper focuses primarily on the first session of the first 
component selection problem.  

Data Collection and Method Implementation 
The transcript in the first session was input as the raw data 

in this paper. The utterances of the three alternatives 
(represented by a1, a2, and a3) for the first selection problem 
were collected in intervals of 10 minutes, as shown in Table 1. 

 

TABLE 1 SAMPLE DATA: UTTERANCES OF ALTERNATIVES 

   Alternative
 Interval      a1 a2 a3 

1 0 9 3 
2 2 9 7 
3 0 1 0 
4 0 4 9 
5 0 0 6 
6 1 3 0 
7 0 1 2 
8 1 0 2 
9 0 1 8 
10 0 0 1 
11 1 0 2 
12 0 0 5 

 
Initially, we can give any values to p and q if 0<p<1 and 

1/3<q<1 are met. And the values will be updated in the later 
iterations. To distinguish p and q in different iterations, let pr, qr 
be the variables of p and q in the rth iteration. In this example, 
initial values are randomly chosen as p1=0.5 and q1=0.4. And 
the initial most-preferred probabilities of the alternatives all 
equal 1/3:  
 

0 1 0 2 0 3
1( ) ( ) ( )
3

P a P a P aπ π π= = = = = =          (14) 

 
In the first time interval of the transcript, there were no 

utterances of a1, while 9 times of a2, and 3 times of a3. By 
Equation (8)  

 

1 1 1( | )P aσ π = = 1 10 9 3
1

1 1( ) ( ) ( )
2 2
q qq − − =5.3144-07              (15) 

1 1 2( | )P aσ π = = 1 10 9 3
1

1 1
( ) ( ) ( )

2 2
q q
q

− − =7.0779-06             (16) 

1 1 3( | )P aσ π = = 1 10 9 3
1

1 1( ) ( ) ( )
2 2
q q q− − =1.2597-06           (17) 
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These three values are not the normalized probabilities. 

Every value only has meanings when comparing with each 
other. 

Substituting values from (15-17) into Equation (7) gives 
 

1 1 1( | )P aπ σ= =0. 0663 

1 2 1( | )P aπ σ= =0.7798 

1 3 1( | )P aπ σ= =0. 1539 
 
The most-preferred probabilities in later time intervals can 

be calculated recursively by Equations (6) and (8). The 
probability values in different time intervals are listed in Table 
2, in the first iteration with p1=0.5 and q1=0.4. 
 

TABLE 2 MOST-PREFERRED PROBABILITIES OF DESIGN 
ALTERNATIVES (THE FIRST ITERATION) 

             Alternative 
 Interval i    a1 a2 a3 

1 0.0663 0.7798 0.1539 
2 0.0574 0.6829 0.2597 
3 0.2328 0.4878 0.2795 
4 0.0579 0.2179 0.7242 
5 0.0934 0.112 0.7946 
6 0.2481 0.4419 0.3099 
7 0.2309 0.3514 0.4177 
8 0.2993 0.2508 0.4498 
9 0.0835 0.1058 0.8107 
10 0.2367 0.2418 0.5215 
11 0.2971 0.2267 0.4763 
12 0.1595 0.1497 0.6909 

 
Parameters pr and qr would be updated by Equations (10) 

and (12) with the fractional counts calculated from Equations 
(11) and (13) in the previous iteration.  

After updating the parameters, the new most-preferred 
probabilities of alternatives are re-calculated according to 
Equations (6), (7) and (8).  The above procure is iterated until 
converged.  

Results and Discussion 
Table 3 shows the iterative results of pr and qr. It shows 

that pr converges to 0.716 after 5 iterations, while qr converges 
to 0.672 after 7 iterations. In the experiment, several initial 
estimates for p and q are tried, and all of them are converged to 
the same values.  

TABLE 3 ITERATIVE VALUES OF PARAMETERS 

         Parameter 
Iteration 

pr qr 

1 0.4 0.5 
2 0.564 0.418 

3 0.694 0.546 
4 0.714 0.644 
5 0.716 0.668 
6 0.716 0.671 
7 0.716 0.672 
8 0.716 0.672 

 
Figure 1 shows the probabilistic preference evolution of 

three alternatives when the converged parameters are applied to 
Preference Transition Model and Utterance-Preference Model. 
The solid line with square dots stands for the evolution of 
probabilities that Alternative a2 is most preferred, the dotted 
line with triangle dots stands for the evolution of probabilities 
that Alternative a3 is most preferred, and the broken line with 
circle dots stands for the evolution of probabilities that 
Alternative a1 is most preferred. In terms of preferences, Figure 
1 suggests that Alternative a2 and a3 dominate and that these 
two alternatives alternate with each other during the design 
process. This conjecture from the chart is validated by a 
qualitative reading of the original transcript.   
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 FIGURE 1 DESIGN PROCESS EVOLUTION: MOST-
PREFERRED PROBABILITIES OF THE THREE 

ALTERNATIVES 

 
Design sensitivity. Since the converged values of p and q 

are estimated with EM algorithm, they might vary from the true 
values. Let p , q  be the converged values of p and q, and 
suppose p, q  are in the range with p , q  shifting 10%. The 
evolutions of the most-preferred probabilities for the cases 
when p or/and q are underestimated/overestimated are plotted 
as shown in Figures 2-4. The gaps between the uppermost lines 
and the lowermost lines give the true value ranges that 
alternatives are most preferred. In this example, qualitatively 
speaking, the true values of p and q are in close ranges of the 
converged p and q. Therefore, the most-preferred probabilities 
of design alternatives calculated based on p , q   can 
approximately describe the preferences over the design process. 
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FIGURE 3 MOST-PREFERRED PROBABILITY RANGES OF 

ALTERNATIVES A2 
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FIGURE 4 MOST-PREFERRED PROBABILITY RANGES OF 

ALTERNATIVES A3 

CONCLUSIONS AND FUTURE RESEARCH  
The methodology presented in this paper suggests a 

probabilistic way to describe the preferences in the design 
process and model the design selection process through 
preference evolution. The method may lead to a novel way to 
understand the nature of design choices over time. The results 
of applying the methodology to the case study are consistent 
with the qualitative reading of the design transcript. It was 
expected that design alternative choices would oscillate in a 
large-scale system design problem, and this was true for the 
component selection problem which was chosen for the case 
study in this paper. Qualitative readings are not a rigorous way 
of verifying the preference probabilities. Future work will focus 
on experiments to validate more accurately these findings. 

This preliminary research models design preference 
evolution using a probabilistic approach. The methodology in 
this paper shows a method for modeling the relationship 
between the preferences observed in two consecutive time 
intervals and the relationship between a design team’s 
utterances and their possible preferences. There are several 
directions which could be done in the future to improve the 
models as well as the methodology.  

In this study, fixed time intervals were specified as the 
simplest, preliminary way to test the approach. This fixed time 
interval was chosen such that neither too many nor too few key 
alternative words. The biggest risk of this approach is that there 
may be too many key alternative words in some intervals, and 
too few in others. Another potential problem of this approach to 
selecting time intervals is that the preference transition may 
happen in a time interval, not between two time intervals. This 
would make the model not consistent with the real design 
process. This was not a problem for the case study described in 
this paper as the design team was very intensively concentrated, 
and the session chosen was not very long. However, for a more 
complicated and longer design process, fixed time intervals 
may be insufficient. Future work would involve other 
approaches to specifying the time intervals such as combining 
the first and the second methods discussed in the “Time 
Interval” section. Transitional words and long time gaps 
between utterances of alternatives could be taken as indicators 
as the separators of the time intervals.  

In the case study, all design alternatives are considered at 
the embodiment level, but the method can be extended to the 
design alternatives at a different level such as the functional or 
the behavior level. In practice, this may somewhat complex, as 
design alternatives may be considered at different levels 
throughout during design team discussion. Levels of granularity 
in design alternatives should be considered in the future via 
linguistic analysis. 

This study directly associates design choices of the design 
alternatives with the utterances of the alternatives in the 
discussion. However, the unambiguous identification of a 
design concept or alternative in text is an open area of research 
in linguistic. There are several papers related to the association 
of the design concept, such as concept formation as knowledge 
accumulation [27], linguistic application to engineering notes 
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[36], text analysis for constructing design representations [37]. 
Simple word frequency may be useful for some cases, but not 
for others. A more accurate language model for the elicitation 
of preferences will be developed. Actually, some utterances of 
alternatives occur in negative context, such as negative adverbs 
“no”, “not”, “hardly”, or negative adjectives “bad”, 
“ridiculous”, “impracticable”. In the further research, the 
influences and weightings of the negative utterances should 
also be included. In addition to considering word frequency as a 
weighting factor for design alternative collection, appraisals 
[30] for the design alternatives will also be quantified to give 
weightings on the design alternatives. For example, the 
appraisal word “great” on an alternative in the contextual 
discussion will give more weighting on that alternative than the 
appraisal word “good”. And during the design process, different 
designers may use different words to represent the same or the 
similar meanings. The degree of similarity of different words or 
phrases should also be considered. The lexical relationships 
among the key words will be built and the semantic analysis 
will be employed to extract the information. The lexical 
relationships are being used include: synonymy, antonymy, 
hypernymy, hyponymy, meronymy, holonymy, troponymy [28, 
38]. 

This study assumes a simple preference transition model 
and a simple utterance-preference model, the parameters of 
which are constant. But intuitively, the probabilities of 
preference transitions and utterance representations of 
preferences could be different in different time intervals 
depending on such factors as the preference strengths of 
different alternatives and etc. The expressions of the key two 
models can be represented in more detailed and complicated 
way in the future.  
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