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Introduction

Magnetohydrodynamics concerns fluid motion under
magnetic fields. Fluids are not, in general, magnetic
but if they can conduct electric currents I, these can in-
teract with a magnetic field B to produce forces j X B per
unit volume which profoundly affect the motion. Fig-
ure 1 shows a simple example of the effect of the j X B
force,

2. Solar flares.

The most abundant conducting fiuid in the universe
is jonized gas, or plasma, because all stars are com-
posed of it. Plasmas can support phenomena besides
those which are described by the magnetohydrodynamic
approximation, which treats the fluid as a continuum.

Magnetic fields are common in cosmic phenomena,
and Fig. 2 shows the strong effect of magnetic fields on
solar flares. Plasmas also occur terrestrially, but on
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Magnetic Pumping
The j X B forces can be made fo pump a conducting
fluid. InFig. 3,a vertical current is being passed through
mercury in a duct in the horizontal field of a magnet.

3. A simple electromagnetic pump.

The j X B acts to the left and pumps the mercury clock-
wise round the circuit, as is revealed by the “mercury-
fall” in the right-hand side of the picture. The manom-
eter above the magnet reveals the pressure rise across
the pump.

Induced Currents

In the pump the current is imposed, but currents may
be induced by motion of the conductor itself. In Fig. 4

4. When the aluminum ring moves into the magnetic
field, indueed currents produce a j X 1 force.

a ting entering a magnetic field links an increasing
amount of magnetic flux. A current is induced around
the ring, and j X B force strongly opposes the motion.

The Distribution of Magnetic Force and
Its Effect on the Fluid’s Vorticily

In a solid the distribution of j X B does not matter so
much as the overall force, because the rigid solid sus-
tains any force distribution. But a fluid subjected to
j X B forces cannot in general sustain them without
being continvously deformed. Figure 5 shows a top
view of mercury being stirred by forces due to the cur-

5. A mercury surface stirred by a moving magnet which
is seen leaving the picture to the right. The other pole is
gnder ihe trough, so the magnetic field is normal to the
surface. The magnet poles do not touch the mercury.

rents induced by a moving magnet which provides a
vertical field. Powder floating on the mercury reveals
its motion. The effect of § X B forces ona liquid is more
subtle than on a solid. We must examine how the force
affects each individual fiuid element.

A transparent electrolyte enables dye lines to be
used to reveal the motion. Copper sulphate solution is

6a. Cmrrent distribution between electrodes at edges of
flat dnct containing electroiyte. The magnetic field is uni-
form and normal to the pager.

6b. § X B distribution in uniform magneti.c ﬁélcl.

at rest in a flat box when the two-dimensional current
shown in Fig. 6a is passed between the electrodes. If
a uniform magnetic field is applied in the direction of
viewing, dye lines in the fluid show that it barely moves,
though the j X B distribution is compiicate_d (Fig. 6b)
and causes pressure changes which may be detected by
the manometer shown in Fig. 6c.

Here j X B is being balanced by pressure gradients,
ie. j X B=grad p (p= pressure). But curl grad =0
and so curl j X B =0, i.e. the magnetic field is an irrota-
tional vector, incapable of making fluid elements spin,
even though the force is far from uniform.
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Gc. Dye lines in the duct. The upper fluid in the manom-
eter is also dyed. The manometer shows the pressure dif-
ference across the duct.

It the same j, B and j X B distributions* are applied
with the fluid in motion at 4 fixed flow rate along the
duct, the flow pattern is quite unchanged when the
currentis turned on. Again the pressure distribution is
able to balance the j X B forces because these are still
1rrotat10nal

7a. Current distribation r,rossmg the edge of the magnetic
field. The ficld normal to the paper is uniform in the
darker region on the left and fall’s te zero in the right-hand
regiomn, s

7b. Distorted dyelines in the Huid, which was at rest with
the dyelines straight when the current shown in Fig, 7a
was turned on one second earlier,

Te. § % B distribution, which is rotatlonal because of the
falling off of the maghelic ﬁeld. ;

* Electrolytic conductivity is so low that the current distribu-
tion is mot affected by the fluid motion, because the induced
e.m.f.’s are far smaller than ‘the ohmic potential differences.
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These experiments are very different if repeated at
the edge of the magnetic field. When the current flows
through fluid at rest between the electrodes across the
edge of the field as in Fig. 7a, the fluid is stirred. Figure
7b shows its state after one second. The j X B force now
spins the fluid elements, i.e. it creates vorticity, which
is counterclockwise here. Figure 7¢ shows the new
§ * B distribution with curl j X B # 0 in the edge region.
But curl grad p=0 and so grad p7§ X B here. The
pressure gradient now cannot balance j X B, and the
fluid cannot stay still.

If the fluid moving along the duct encounters the
same j X B forces in the edge region, they give it coun-
terclockwise vorticity with the result that the velocity
profile is deformed.

In this electrolyte experiment, vorticity is generated
by imposed currents, but in the mercury experiment
shown in Fig. 5 it is generated by induced currents.

To sum up this section: to understand the effect of
§X B on a fluid, we must consider also the unknown
pressure field which can balance irrotational forces.
Only to the extent that the j X B force is rotational, i.e.
tending to alter the fluids vorticity, can it elude the pres-
sure gradient and affect the motion. Thus the discussion
must be in terms of vorticity.

Vorticity Suppression

If a metal loop is spun about a diameter perpendicu-
lar to a magnetic field, it links a changing magnetic
flux (Fig. 8). As a result, induced currents produce
j % B forces which damp out the motion. For small in-

8. Meital loop in a magnetic field. When the loop is spun
about an axis perjpendlcular to the paper, a clockwise
torqueé acts to oppose its motion.

clinations of the plane of the loop to the field, the oppos-
ing torque is proportional to angular velocity, But if
the spindle is parallel to the field, there is no change of
flux linked and no damping of the motion.

Similarly, vorticity of fluid elements about axes per-
pendicular to a magnetic field should be suppressed by
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9, Damping of vorticity by a tramsverse magnetic field.
The vortices in the mercury in the wake of the towed
paddle decay more quickly when a transverse RB-field is
present (lower picture) than without (upper picture).

induced j X B forces.* Figure 9 shows two top views
of the surface of mercury in a shallow trough. In the
lower picture the arrows indicate the magnetic field.
The mercury surface is being used to reflect an illumi-
nated pattern. A moving paddle is shedding vortices
in its wake. These vortices, with vertical vorticity, are
visible because they create dimples which distort the
reflection. Figure 9 presents a comparison between
cases without the magnetic field (upper picture) and
with the field (lower picture). The vortices are seen
to decay much more swiftly when the field is present.
A stronger field prevents the vortices ever being shed.
So j X B forces can suppress vorticity as well as gener-
ate it.

VYorticity Redistribution

As another examplet of rotational j X B forces alter-
ing vorticity, consider the circular motion of mercury
between two concentric cylinders, the outer one fixed,
the inner one rotating about its vertical axis. In the
absence of magpetic effects and secondary flow, the
fluid velocity falls off monotonically from its value at
the inner cylinder to zero at the outer cylinder, and
the vorticity is opposed to the rotation of the inner
cylinder (Fig. 10). Now add a radial magnetic field
between the cylinders and consider an imaginary loop
initially lying in a plane through the axis. If the loop
moves with the fluid, it rotates in such a way as to start
linking magnetic flux. Thus induced currents must
produce forces which change the motion so that the
loop moves without linking magnetic flux, i.e. it stays

= This is a slightly oversimplified argument, because vorticity
is the sum of the angnlar velocities of perpendicular planes in
a fluid element, but closer investigation does not invatidate the
argument in the cases chosexn.

¥ This experiment is described and analyzed more fully by
Heiser and Shercliff reference.
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10. Plan view of cylinders and velecity profile without
magnetic effects.
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11. Velocity profile between cylinders, with the radial
field turned on.

in planes through the axis and the mercury rotates like
a solid with uniform vorticity and velocity proportional
to radius, as in Fig.-11. The vorticity is now in the
same sense as that of the inner cylinder. The uniform
angular velocity of the fluid becomes exactly one-fifth
of that of the inner cylinder when the field comes on, a
consequence of the ratio of the cylinders’ radii being
2:1 (see the Heiser-Shercliff reference ).

The mercury is now “slipping” over both cylinders,
the slip taking place across Hartman boundary layers
(see Fig. 11) containing intense vorticity of opposite

12a. The vorticity indicator, which is free to rotate at the
end of ils restraining arm, about to be inserted into the
mercury. The aunular mercury surface is visible round
the ceniral, rotatable cylinder, which is painted black and
white.

£
%

e




12b. Top view of the mercury and eylinders, with voriicity
indicator in use.

sign. The fotal vorticity is unaltered by the magnetic
field and the j X B forces have merely redistributed it.

The behavior of the vorticity outside the boundary
layers when the field comes on is revealed by the vortic-
ity indicator shown in Figs. 12a and 12b. The cruci-
form paddles take a correct mean for the fluid’s angular
velocity, which is indicated by the black-and-white disc.
The freely rotating arm keeps the indicator vertical in
midstream.

Perturbation of the Magnetic Field

So far we have considered only half of magneto-
hydrodynamics — the effect of the magnetic field on
the flow. The currents in the fluid must also affect the
field to some extent. IYigure 13 shows the experiment
in which a conducting loop swings through a magnet
gap. The current induced in the loop affects the field,
as is revealed by the twitching of the iron nails on the
side of the magnet pole.

Field perturbation is weak in the experiments so far,

13. The currents indueed in the metal loop affect the field
and ecanse the iron nails (on the right of the nearer mag-
netic pole) to move.

14. Cuorrents induced in the rotating loop perturb the
field so as to reduce the change of flux linked. (a) Field
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and has been ignored. When the fields due to the cur-
rents induced in the fluid are too big to be ignored,
the nature of magnetohydrodynamics changes drasti-
cally.

Consider a conducting loop rotating so that its plane
becomes increasingly inclined to a magnetic field. Fig-
ure 14 shows how the field due to the induced current

INDUCED FIELD

RESULTANT FIELD

components. (b) Resultant field.

makes the total field less inclined to the loop than
before. Thus the field is perturbed so that the rise of
flux linked by the loop is reduced.

If the loop stops rotating, its resistance causes the
induced current to decay and the field relaxes back to
its original form in a “magnetic relaxation time” L/R
that depends on the inductance L and the resistance R
of the loop. It gets longer if we reduce the resistance.
The extent to which a rotating loop perturbs the origi-
nal field depends on how L/R compares with the time
for a revolution.

When L/R is small, the field continually relaxes
back to its original form and is hardly perturbed. Then
the magnetic forces on the loop are dissipative; there is
a torque only when the loop is moving, inducing the
current.

But when L/R is large because the conductivity is
high, the field is deformed strongly, and when L./R is
very large, there is virtually no change of flux linked.
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With perfect conductivity, the induced e.m.f. becomes
negligible and spontaneous currents alter the field so
that the flux linked never changes.

Modeling Perfect Conduetivity
by the Use of a Feedback

We may show how a perfectly conducting loop
behaves by encrgizing a coil from a power source fo
which feedback is applied from a search coil in such
a way that the flux linked is constant.* Figure 15 shows
such a coil, pivoted in a horizontdl magnetic field.

15. Amﬁcla] “perfectly-conducung
magnetic field. When the ¢oil is tilted slightly and re-
leased, it ‘oscillates about the pivot. The compass needle
in the center shows the dlrecuon of ithe magnetic field; it
oscillates with the coil, showing that the magnetic field
lines are distorted so that the coil never links any flux.
When the coil is disturbed, it oscillates as though
subject to an elastic, torsional restraint. There cannot
be dissipation when there is “perfect” conductivity.
The torque is now proportional (for small angles) to
the tilt, not to angular velocity (as in the low con-
ductivity case). The time for an oscillation is much
less than the magnetic relaxation time and the magnetic
forces act in a pseudo-elastic, non-dissipative manner.
There are corresponding effects in a fluid conductor.

High Cenductivity Behavior in Fluids;
the Alfven Wave

For any loop drawn in the fluid, the magnetic relaxa-
tion time is of order p,s/2, which is big if o, the conduc-
tivity, is large or I, the scale, is latge (as it is in astro-
physics).

In the experiment shown in Fig. 9, p.0l* for Joops
drawn in the vortices is short compared with their rota-
tion time, and the magpetic force is dissipative, not
elastic.

To see the effect of “elastic” § X B forces in a highly

* For further details of this experiment see reference 2.

loop perturbing a

16. Schematic model of rectilinear shear motion. The
cnrved arrow represents the vorticity, the horizontal arrow
the field. The sides of white rectangunlar loops Iying in. a
plane normal to the page are visible between the white
cards. The veriical arrows on the left represcnt the mag-
netic torque on the first loop.

conducting fluid, consider the simplest motion that con-
tains vorticity, namely a rectilinear, shear motion. In
Fig. 16 the white rectangles represent layers of fluid
with left-hand layer moving downward and counter-
clockwise vorticity between it and the next layer.

To understand the magnetic effects when there is an
imposed horizontal field, consider rectangular loops
lying between the layers, initially linking no. rhagnetic
flux. When the first Jayers move down,’ the | induced
currents produce elastic forces on the first Ioop, as
shown in Fig. 16, tending to twist the loop back in line.
The force on the second layer causes it to acce]erate
downward in turn, and then the third layer begms to
feel the downward force, and so on.

17 Worlnng mode] of Alfven wave.

Figure 17 shows a working version of thls appara—
tus,* with the rectangles mounted on plvoted rods.
Flexible loops, attached to the rods, simulate’ perfeet
conductivity by means of feedback. The 1mposed mag-
netic field is again horizontal.

When the first rectangle s displaced doanard a
downward motion propagates from rod to- rod as-a
wave. In a fluid this corresponds to the propagation of

* See Melcher reference for fuller details.




the vorticity between the layers. Thus, when the rota-
tional magnetic forces behave elastically because the
conductivity is high, vorticity propagates along the field
lines as-a wave, known as an Alfven wave.

An Alfven Wave Experiment in Liquid Metal

Alfven waves can be produced in liquids if p.ef is

made large by choosing a highly conducting fluid such

o as NaK (sodium-potassium eutectic) and by making /,

18. Experiments on Alfven waves in NaK. The large
magnet is at the rear, the stainless-steel tank (without lid)
s on the right, and the outer coppér electrode in the fore-
@ E gronnd, Instrumentation is on the left.

i

19. (a). Initial carrent and (b} j X B distribution in
Alfven wave experiment. i
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the scale, as large as possible, and at the same time
making the characteristic time (the transit time of the
waves) small by making them travel fast in a sirong
magnetic field. _

Figure 18 shows the apparatus. The stainless steel

VOLTAGE

23. Oscilloscope traces from Alfven wave experiment.
(a) Field off. (b) Field on. (¢) Perfect conductor case.
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tank on the right contains the NaK. The motion is
excited by passing a current radially between the cen-
tral rod and the outer wall, both made of copper (Fig.
19a). The imposed magnetic field is vertical.

The current at first flows across the bottom of the
NaK and the resulting j X B force (Fig. 19b) makes
just the bottom layer of fluid swirl. There is horizontal
vorticity between the moving layer and the stationary
fluid above. Immediately this vorticity propagates away
along the vertical field lines as an Alfven wave. The
layer of radial current travels with it, and this deforms
the magnetic field, as in Fig. 20. A search coil in the
middle of the NaK detects the magnetic perturbation
due to the traveling current layer, and the signal is
displayed on an oscilloscope.

Figure 21 shows the results; the upper trace shows
the sudden onset of the driving current, and the lower
trace shows the voltage in the search coil. In Fig. 21a,
the vertical magnetic field is absent, no waves occur
and the fower trace shows only some stray signals,
because the NaK shields the search coil itself. But in
Fig. 21b, with the field on, the lower trace reveals the
wave passing the search coil (the first arrow) and
passing it again after reflection (the second arrow).

With a perfect conductor, the signals would be as in
Fig. 21c, in which the pulse width is fixed by the finite

width of the search coil. The resistance of the NaK
makes the first pulse broader and weaker, and the
second pulse after reflection is even broader and
weaker. Nevertheless there is clear evidence of propa-
gation of current and vorticity by the Alf¥en mech-
anism in a real fluid.

Summary

In studying the effect of magnetic forces on a con-
ducting liquid, it is fruitful to concentrate on their
rotationality, or effect on vorticity, because then the
unknown pressure gradient can be left out of considera-
tion. When perturbation of the field by the currents is
small, the magnetic force tends to be dissipative, alter-
ing the fluid’s vorticity in various ways, but when the
fluid conductivity is high enough for strong perturbation
of the field to occur, the magnetic force is pseudo-
elastic and vorticity propagates in Alfven waves.
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