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Introduction

A stratified fluid is a fluid with density variations in
the vertical direction. One example is a system of two
superimposed fluids in a channel with the lighter fluid
on top. In this case the density changes abruptly with
height, as illustrated in Fig. 1. Layered systems of strat-
ified fluids occur, for instance, where warm water lies
above cold water or fresh water above salt water. An
abrupt change also occurs at the interface between air
and waier. Both air and water are fluids, and together
they may be thought of as a stratified fluid system. Fre-

2, Smog. (Conrtesy U.S, Public Healih Service.)

h e quently, however, density varies continuously, as in the
e oceans and atmosphere. Density variations profoundly

T : affect the motion of water and air. Wave phenomena
in air flow over mountains and the occurrence of smog

(Fig. 2) are examples of stratification effects in the

e atmosphere,
In the film we use laboratory demonstrations to illus-
= trate the basic phenomena in stratified fluids. We em-

phasize fluid systems in which the density decreases
with height. When such a system is disturbed, gravity
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3. Convective motions in a fuid heated from belc_:w.

waves result, but gravity and friction eventually restore
undisturbed conditions, and the system is judged to be
stable. If the density increases with height, however,
the fluid tends to be unstable. Figure 3 illustrates the
cellular type of motion that results when a fluid is
heated in its lower portions to produce an unstable
distribution. .

In our examination of fluids that are stably stratified
in the vertical, we concentrate on flows over obstacles.
Such flows reveal most of the fundamental phenomena
that occur in stratified fluids. Moreover, such flows
frequently occur in nature.

Surface Waves Produced by
Flows over Obstacles

Figures 4-8 show water flow over a barrier in a
channel. The flow relative to the obstacle is produced
by moving it through the water. When the camera
moves with the obstacle, we see a uniform flow from
the left over a stationary barrier.

Phenomena in water flows depend on the dimensions
of the obstacle relative to the depth and on the ap-
proach Froude number. A local Froude number F
may be defined at any section as F=U/ \/5771',' where
U is the fluid velocity at the section, A is the local fluid
depth, and g is the gravitational acceleration. Since
\/gh is the speed of the fastest small-amplitude gravity

4. Subcritical flow of water ever an obstacle; the local
Froude number is less than one everywhere.

5. Hydraualic jump at a water surface. The approach
Froude number is Iess than one.

wave, the Froude number compares the fluid speed to
this wave speed. Where the Froude number is less than
one, the flow is called subcritical. Where it is greater
than one, the flow is called supercritical.

We first illustrate the change of flow patterns as the
Froude number based on the approach conditions is
increased from low to high values. Figure 4 shows a
very low approach Froude number. The flow is sub-
critical everywhere. The free surface dips down slightly
over the obstacle. In Fig. 5 the approach Froude
number is higher, although still subcritical. When

Cstarted from rest the upstream and downstream levels

6. Hydraulic jump at the hase of a dam.

were the same. A blocking effect sets in, however, and
causes a rise in the upstream level. When the motion
becomes established, as in Fig. 5, the upstream sub-
critical flow near the obstacle draws down as it passes
over the barrier, becoming supercritical in the lee. This
supercritical flow changes abruptly to subecritical flow
downstream as the fluid passes through a hydraulic
jump. The hydraulic jump is an important phenome-
non in nature. Figure 6 shows a jump at the base of a
dam,

When we increase the approach Froude number to a
value somewhat greater than one, we get an upstream
hydraulic jump as in Fig. 7. The flow goes from
supercritical to subcritical as it passes through the
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7. Upsiream hydraulie jump. The apstream Froude num-
ber is greater than one.

8. Supereritical flow. The approach Froude nmumber is
greater than one. The local Froude number exceeds one
everywhere.

jump, then accelerates to supercritical as it passes
over the obstacle crest.

When the approach Froude number is much greater
than one, the fluid swells symmetrically over the ob-
stacle (Fig. 8), and conditions are supercritical
everywhere. Since the Froude number is much greater
than one at all sections, the fluid speed everywhere
exceeds the speed of the fastest waves, and all disturb-
ances are swept downstream.

Flows of a Two-layer Fluid over Obstacles

Phenomena similar to those of water flows in a chan-
nel occur in liquids with internal density variatons. For
example, waves, similar to waves on a water surface,
can occur at the interface of two liquids with a slight
density difference. The frequencies of the interfacial
waves and the water waves are both proportional to the
square root of the restoring force. The restoring force
for water waves is the gravitational force g. But for
the internal waves the restoring force is g multiplied by
the small number Ap/p, where Ap is the density differ-
ence between the liquids and p is the average density.
As a result, the frequency of internal waves is usually
much smaller than that of water waves. The slow
motion of internal waves is a characteristic feature of
the experiments of the film.

In the flow of a two-layered fluid over obstacles, the
important Froude number is the internal Froude num-
ber of the approach flow, F,=U / \/ g -?Ap—P R,
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in which g is replaced by “modified gravity” gAe/p, A
is the total depth of the two fluids, and U is the common
approach velocity of the two fluids. A critical value of
F,, as in water flows, corresponds to a fluid speed equal
to the speed of long waves. However, the critical value
is no longer one, since the wave speed also depends on
the ratio of the depth of the lower fluid to the total
depth. For two fluids, the flow patterns are determined
by F;, the ratio of the depths, and the height and length
of the obstacle relative to the depth.

As these parameters are changed the flow patterns
change. A long obstacle and a low value of the internal
Froude number of the approach flow leads to suberitical
flow at every section, and a slight draw-down of the
interface over the barrier (Fig. 9). This long, gently-
shaped barrier minimizes vertical accelerations of the
fluid, and the pressure remains nearly hydrostatic, ie.,
the pressure is proportional to the depth. However, for
the same ratio of fluid depths and the same internal
Froude number, a shorter model of the same height

9. Suberitical flow of two fluids over an obstacle. The flow
condition is analogous to that in Fig, 4.

10. Weak lee waves in a two-fluid system.

11. Strong lee waves in a two-fluid system.
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results in weak lee waves (Fig. 10), as nonhydro-
static pressures become important, As we increase the
Froude number by increasing the speed, these lee waves
become stronger (Fig. 11). At a still higher Froude

12. Breaking waves in a two-fluid system.

13. Hydraulic jump in the lee of an obstacle in a iwo-fluid
system.

14. Supereritical flow in a two-fluid system. Compare this
with Fig. 8 for the water-air case.

15. Hydraulic drop in 2 iwo-flaid system. Note the in-
crease of thickness of the upper fluid downsiream.
number (Fig. 12), the waves show signs of breaking,
as in the undular hydraulic jump on a water surface.
Furtber increase in Froude number only results in a
lengthening of these waves.

When we increase the size of the obstacle, a strong
hydraulic jump occurs downstream (Fig. 13). The

upstream suberitical flow changes to supercritical as it
passes over the barrier. Further downstream, it jumps
to a new level, and the flow again becomes subcritical.
As in water, if the approach Froude number is high
cnough, the flow is supercritical everywhere (Fig.
14). To this point, phenomena at the interface re-
semble those on a water surface, largely because there
is a deep upper fluid in these cases, as is shown by the
fact that when we make the lower fluid deeper than the
upper, as m Fig. 15, the depth of the lower fluid
abruptly decreases downstream of the obstacle in what
might be called a “hydraulic drop.”

A common feature of all the two-fluid experiments
we have described is that the liquid-air surface remains
quite undisturbed despite very large disturbances at the
interface. We can explain this if we forget for a
moment that there are two fluids in the channel, and
notice that in all of these two-fluid experiments the
ordiniary Froude number is much less than one. In
other words, conditions are very much subcritical as
far as disturbances of the liquid-air interface are con-
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16. Free-surface disturbance of a two-fluid system.

cerned. The free surface becomes disturbed if we move -
the obstacle fast enough to obtain an ordinary Froude
number of order one (Fig. 16). In such cases the
internal density variations are no longer important.

We can also disturb a two-layer system by moving
an obstacle in the upper layer (Fig. 17). This exper-
iment has an interesting application. It was noticed
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17. Disturbance of a two-fluid interface by an obstacle
moving in the upper fAuid.



long ago that ocean-going vessels off the coast of Nor-
way suddenly found themselves unable to maintain
their accustomed speed as they moved past the mouth
of a fjord. This “dead water” phenomenon was first
explained by the Swedish oceanographer Ekman. He
pointed out that the fresh water from the fjords flows
out in'a density current over the heavier water of the
ocean, and forms a two-layer stratified fluid system.
At certain speeds, much of the power from the ship’s
engines goes into the creation of waves at the fluid in-

18. Disturbance of the interface of a two-fluld system by
a model ship moving at the free surface.

terface (Fig. 18), while the liquid-air surface is
rather undisturbed. If the ship moves at a higher speed,
the interfacial disturbances are much weaker and the
dead-water phenomenon no longer exists.

Flows of a Continuously Stratified Fluid

The fundamental mode of oscillation in a two-fluid
system involves a simple sine wave at the interface. A
three-layer system, however, has two distinct modes
(Figs. 19 and 20). Indeed, one mode is added for
each layer. Carried to the limit, an infinite number of
infinitely thin layers has an infinity of modes. This is
equivalent to a fluid system in which the density varies
continuously with height, as in the atmosphere and
oceans. '

To understand experiments with continuous density
stratification, we consider the parameters which govern
the flow of a continuously stratified flow over an ob-
stacle. Again, the most important nondimensional
number is the internal Froude number,

£
\/ 85k
where Ap/p is now the fractional density difference
from the top to the bottom of the channel, and & is the
total depth. The flow patterns are influenced not only
by the internal Froude number, but also by the char-
acteristics of the obstacle relative to the depth.

Our experimental fluid is a saline solution in which
the salt concentration, and therefore the density, de-

19. Symmetric distarbance of a three-layer system.

20. Antisymmetric distarbance of a three-layer system.

creases continuously with height. The tracer particles
are neutrally buoyant polystyrene beads. The variation
of the salt concentration, and therefore the density, is
more or less linear with height. '

In Fig. 21 the motion js analogous to the super-
critical flow of water. The internal Froude number is
high, and the fluid simply swells over the barrier as
water does at supercritical speeds.

If we drop F; below its first critical value of 7%,
simple sine waves appear in the lee of the obstacle
(Fig. 22). These internal waves are not possible in
a homogeneous fluid. To see how they can arise in a
stratified fluid, consider the vorticity equation for a
frictionless, nonhomogeneous fluid,

21. Supercritical flow of a continuonsly stratified fluid
over an obstacle. The uneven distribution of tracer par-
ticles in this and subsequent pictures does not reflect the
density distribution. The density distribution depends only
on salt coneentration and is nearly linear with height.



22. Flow of a continuously. siratified fluid over an oh-
stacle at an internal Froude nuraber of less than 1/,

de 1
= (0 V)V+ P—ﬂ(VpX v ).

® is the vector vorticity, V is the velocity, and p is the
pressure. do/dt is the rate of increase of vorticity of
a moving parcel of flnid. The last term shows that the
vorticity can be generated through the interaction of
the pressure and density fields. This equation can be
solved under certain circumstances to yield flow pat-
terns corresponding to the experiments we have just
seen (Fig. 23). We can make use of this pattern to
show the relationship between the generation of vor-
ticity and the wave motion. The density varies from
point to point in the fluid, but because the motion is
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23. Theoretical flow pattern of a continuonsly stratified
fluid over an obstacle.

steady, the density is constant along a given streamline.
The density gradient \/p is everywhere normal to the
streamlines. Despite the motion, the constant pressure
surfaces are nearly horizontal, i.c., the pressure gradi-
ent \/p is vertical. As the fluid descends in the lee of
the obstacle, the last term in the vorticity equation,
Ve X Vp, yields a vorticity generation, or fluid rota-
tion, in a counterclockwise sense (Fig. 23). This
rotation permits the descending fluid to turn upward
toward its original level. On the way up, vorticity of
the opposite sense is generated. The fluid can then
turn back into the next phase of the wave.

Of course, these waves can also be explained from a
buoyancy-force viewpoint. The descending fluid par-
ticle finds itself in a heavier environment and is forced
back up as it moves along. It overshoots, then de-
scends again, and so on.

When the barrier is small, the waves have small am-
plitudes, as in Fig. 22. If we increase the height
of the barrier, keeping F; the same, the amplitude of
the waves gets much larger, as shown in Figure 24a.

In the theoretical flow pattern (Figure 24b) corre-
sponding to the experiment in Figure 24a, closed
streamlines appear near the free surface above the
obstacle. In the experiment, such regions appear to be
unstable and break into turbulent eddies. The loss of
energy in this turbulence causes the wave amplitude
downstream to be less than that indicated by the cor-
responding theory.

24. Experimental (a) and theoretical (b) flow of a con-
tinueously stratified fluid over an chstacle.

In going from the experiment of Fig. 22 to that of
Fig. 24, we raised the beight of the model but kept
F; the same. A decrease of F; reduces the length scale
of the fluid motion, and, in addition, the wave structure
is o longer a simple sine wave.

When the Froude number is low, but the obstacle is
large, the flow pattern again has a small scale, but is of
a very different character (Fig. 25). The approach
flow consists of a number of jets moving rapidly toward
the obstacle, sandwiched between layers of fluid that
are stagnant with respect to the obstacle. In these

25. Jet-patterns in flow of a stratified fluid over an ob.
stacle. Notice that the fluid is stagnant with regard to the
obstacle in a number of layers, with jets sandwiched be-
tween. (The jets are delineated by the lightened areas.)
The first stagnaut layer extends from the hottom to the
Ievel of the ohstacle crest.



flows, there is always a stagnation layer extending from
the bottom of the channel to the level of the crest. At
low Froude numbers, the fluid has insufficient kinetic
energy to move up over the obstacle from this region.
This illustrates the tendency of a slowly moving par-
cel of stratified fluid to maintain its original level.

An example of a natural flow of a stratified fluid is
the flow of air over a mountain ridge. Such flows have
been carefully studied in the Owens Valley east of the
Sierra Nevada in California. A typical streamline pat-
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26. Streamline pattern over the Owens Valley. The verti-
cal scale is exaggerated in this line drawing.

tern constructed from balloon and glider observations
is shown in Fig. 26.

We can model this flow in the laboratory by creating
a model of the terrain in this region and simulating
the density stratification of the atmosphere by the den-
sity variation in salt water. Figure 27 shows an experi-
mental photograph in which the Froude number is the

27. Flow over a model of the Sierra Nevada Mountains
simulating the observed flow in Fig. 26.

same as that in the atmosphere on the day the observa-
tions were made in Fig. 26. A single large wave
appears over the valley. When the wind is weaker the
number of waves over the valley increases. When the
flow in the model was adjusted downward to give a
corresponding Froude number, the same increase of
wave number appeared in the experiment.

Effects of Stratification on Biffusion

Density stratification has an important effect on dif-
fusion in fluids. For example, smoke coming from a
chimney diffuses turbulently if the atmosphere is not

28. Diffusion of smoke in conditions of neutral stability.

stably stratified, as seen in Fig. 28. When the lower
air is stable, as in the morning or early evening, the
smoke comes out and flattens into a long, thin layer
(Fig. 29). Swrong siratifications, or inversions as

29. Diffusion of smoke when the atmosphere is stably
stratified.

they are sometimes called, confine contaminants to the
lower layers of the atmosphere, and cause many of our
air-pollution problems.

Conclusion

Thus, stratification gives rise to forces that generate
internal waves, inhibit turbulent diffusion, and create
strong velocity gradients and jets. These phenomena
have far-reaching effects on the motion of air and water
in the atmosphere, oceans, lakes, and reservoirs.
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