1. Channel flow visualized by hydrogen bubbles released
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Introduction

“Turbulence” is not easy to define, but it is nearly
ubiquitous. Tobacco smoke, industrial smoke, milk
mixed into tea, all reveal turbulent motion.

Turbulenit flows have common characteristics, one
of the clearest of which is disorder. Fig. 1 shows a
sheet of tiny bubbles advected by a channel flow. The

uniformly from a wire stretched across the flow.

disorder is so central that no matter how carefully
one reproduces the boundary conditions, the flow is
never reproduced in detail. On the other hand, aver-
ages, such as the mean speed of flow or correlation
functions, are very well defined and “stable.”

There are disordered fluid motions — for example
some fields of water waves or of acoustic waves —

which we prefer to exclude from the definition of
turbulence, since they do very little mixing and mixing
is an essential feature of turbulence. Thus disorder
is necessary but not sufficient for description. A further
characteristic of turbulence is the presence of-vorticity,
distributed continuously but irregularly in all three
dimensions.

We can botrow a word from pathology and give a
defining syndrone, or set of symptoms, for turbulence.
It has disorder, irreproducible in detail, performs ef-
ficient mixing and transport, and has vorticity irregu-
larly distributed in three dimensions, This distinguishes
turbulence from virious kinds of wave motion and ex-
cludes two-dimensiona! flows. Something like turbu-
lent motion can occur in two dimensions; large-scale
weather systems have some of this character. However,
in strictly two-dimensional flows vorticity behaves as
a scalar, and there is no vorticity production by vortex
line stretching.** Thus the characteristics of two-
**The constant density vorticity equation is

Do

Dt
In two dimensions the first term on the . right must vanish,
since.w is everywhere perpendicular to the plane of the flow.

The equation then becomes exactly analogous to that for a -
conservative diffusible scalar like heat.

=+ VYV +,V? .
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dimensicnal flows are quite different fiom those of‘

three-dimensional turbulent flows.

Reynolds Number

Some flows are clearly turbulent. Others, with simi-
lar boundary conditions, are equally clearly not. 'What
determines whether a flow is turbulent? '

2 Pressure drops geross a tube at constant flow rate and
varishle viscosity. In (a) and (b) the flow is laminar. In
{¢) it is turbulent.

3. Fiow issuing from the end of the pipe: shown in Fig. 2.
In (a) the flow correspomis to Fig. 2(a) and (k). In (b)
the flow corresp(mds o Fig, 2¢e).

In the film this question is discussed ‘with the aid of
an apparatus like that used by Hagen in the middle of
the nineteenth century for a study of flow through
pipes. A mixture of glycerin and water is pumped at a
constant rate through a tube some 4 m long and 3 em
in diameter. At the downstream end the liquid issues
into the free atmosphere. The pressure drop in the
tube is shown by a manometer (Fig. 2a) which is
tapped at an upstream position, and carried down to
the open end. By varying the ratio of glycerin and
water, the viscosity of the fluid can be controlled. Ac-
cording to the Hagen-Poiseuille law for laminar flow of
a Newtonian fluid flowing through a circular pipe of
length L and radius r, (L >>> r), the pressure drop is
given by AP = S_MLQ/-:rr“, th_:re p is the viscosity of
the fluid and @ the volume flow rate. '

As is seen in Fig. 2 (a) and (b), when the viscosity
is reduced somewhat the pressure drop decreases, con-
sistent with this formula. However, when the viscosity
is reduced still further, as shown in Fig. 2 (c}, we find
that the pressure drop increases.

At the higher viscosities the flow issuing from the
end of the pipe (Fig. 3a} is smooth and steady. At the
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lowest -viscosity - (Fig.- 3b) Iugbspeed photography
reveals a time-dependent itregularity of the edges of

- the stream. Thus when we pass to the lowest viscosity

we find that the Poiseuille law is not obeyed; instead
of decreasing, the pressure drop increases. The flow
in the pipe has become turbulent, revealed both by the
irregular motion of the outcoming stream and by the
greatly increased pressure drop down the tube,

In the early 1880’s Osborne Reynolds did a series
of experiments on flow through tubes and came to the
conclusion that the criterion for the onset of turbulence
depended upon a dimensionless function of the flow
parameters which has since been called Reynolds
number.

‘There is usually some arbitrariness in the choice of
parameters for the definition of Reynolds number. For

pipe flow we may take it as: Re = Q, where D is the
v

tube diameter, V is the average speed of the flow and
v is the kinematic viscosity. Although the question is
still under investigation, it secms that if the Reynolds
number so defined is appreciably less than 2000, the
flow is not turbulent and perturbations are damped out
by viscosity. At higher Reynolds numbers the flow
may or may not be turbulent. Poiseuille’s relation
corresponds to a solution of the dynamical equations
which is valid at all Reynolds numbers. At sufficiently
large Reynolds nurmber, however, this flow is unstable
to certain perturbations, Whether or not a particular
pipe flow is turbulent depends upon the length of the
pipe and upon the nature and amplitude of perturba-
tions, as well as upon the Reynolds number, If great
care is taken to reduce such perturbations it is possible
to push the Reynolds up to the neighborhood of
100,000 without turbulence.

Mixing

If a thin streamer of dye is introduced into the flow,
as in Fig. 4 (a), mixing can be examined. At low
Reynolds number the dye filament maintains its
identity with very little change right to the end of the
tube, as shown in Fig. 4 (b). The only mixing is
molecular, so the process is very slow. I the Reéynolds
number is increased, perturbations can be seen in the
dye flow, and at the onset of turbulence it seems to
explode; the dye is rapidly mixed across the tube, as
in Fig. 4 (c).

We can regard the increase in pressure drop with the
onset of turbulence, shown in Fig. 2, as a manifesta-
tion of mixing too — mixing of momentum. When
the flow is laminar, slow-moving fluid from close to the
wall produces the steeply dropping portion of the
stream shown in Fig. 3 (a). Flow in the center of the
tube is much more rapid and produces the flat trajec-

tory which forms the upper right boundary of the

4. Dye filament iniroduced (a) ati the enirance to a tube
retains its identity (b) in laminar flow but “explodes® and
mixes rapidly across the flow (¢} when the flow becomes
turbulent.

stream. When the flow becomes turbulent, the mixing
of momentum causes the flow speed in the pipe to be
much more uniform. The fastest fluid is not quite so
fast, and there is so little slow fluid that it can be
dragged along with the rest, producing the tiajectory
shown in Fig. 3 (b). The fluid motion vanishes at the
wall, so we can regard it as the sirk for momentum.
The turbulence increases the rate at which momentam
is transferred toward the wall. Thus, with turbulence
we need a larger pressure gradient to replace the
momentum lost to the wall.

Tuarbulent Transport and
Reynolds Stress

Although the principal motion of the fluid in the
channel of Fig. 5 is downstrearn, because of the tur-
bulence there is appreciable cross-stream motion. Fluid
moving across the stream tends to carry its properties
with it. Thus the darker dye which marks fluid ori-
ginally in the center of the stream has moved, in some




5. Dye amected near the center ancl neas the wall of a
turbulent ¢hannel flow. The walls of the channel have been
defiberately roughened to increase the ratio of the tnrbue-
lenit to the miean How speeéds.

places, quite close to the wall. The lighter-colored
dye, marking fluid originally close to the wall, has
moved toward the center of the channel. This ability
of turbulence to carry fluid properties is referred to as
turbulent transport, and occurs whenever there is
some gradient of a mean property, be it momentum,
dye concentration or whatever, within the turbulent
fluid. For example, in the low shown in Fig. 5 the
regioti near the wall continuously gains momentum at
the expense of the region near the center of the flow.
Analyfically, in tensor form, we may writc the
Navier-Stokes equation for the velocity component V',
as
8pVy SP 8 8V, , 8V
e et i (5 50
= body fo:ce ,
Now if we define some suitable average* velocity U;
(space, time, or ensemble, depending upon the situa-
tion) we can put
Vi U1 + uy,
<V‘> = Ui <> = 0

and write the equation as

*-e-—U + SPU U’ + 3 Lpthiut;> + §<P>

Sx 8x;
T by (Sx]

) = < body foree >
the expression <—pi;i;>> appears in the equation in
the same way as does the viscous stress

@ (SUi +8U ) Thus it acts like a stress. It is
8x;  8x .

called the Reynolds stress.

Consider now the mixing of a scalar. If two miscible
liquids are carefully placed in a vessel, one floating on
top of the other, after a week or two molecular diffu-
sion does a fair job of mixing. However, much more

*Symbolized by the bracket < — .

- thorough mixing can ) be accomphshed in less than a

ntinute if w¢ make the fluid turbulent. ¥n this case too,
the end result is intimate mingling on a molecular
scale — although the turbulent motions themselveés are
not much smaller than a millimeter. The role of the
turbulence is to make inhomogeneities more vulnerable
to the effects of molecular diffusion. This is illustrated
schematically in Fig. 6.

6. Schematic representation of the turbulent mixing of
a scalar. The mirbulent motions stretch and distort a
blob of inhomiogeneous fluid, until both the inecrease in
surface arex and the inevease in property gradients enalile
molecnlar effects 1o ocenr rapidly,

Analytically, the transport of a scalar can be de-
scribed as follows: the Eulerian equation for the con-
centration C of a conservative scalar property is

SC

5 TV VC =KVC
where Kis the dlffusmty appropriate to C.
If we again break the fluid velocity V into mean and
turbulent parts U and u, we get

8<C>
8t
The vector <mC>> represents the turbulent transport
of the property C.
Notice that in both this example and the previous
one, which shewed the origin of the Reynolds stress,
the turbulent effects were analyticaliy derived from the

+ Vo USC> + V oe<ul> = K V2 <C>.

“advection” terms V*VC and pV V;. In the Navier-

Stokes equation this term is non—lmear It is this es-
sential non-linearity that leads both to the complexity
of turbulence and to the great difficuity of treating it
analytically. Typically, in turbulent situations, the
non-linear term is as important as any other in the
equation and so cannot be treated adequately by the
usual perturbation methods.

The Influence of Reynolds Number
on Fully Developed Turbulent Flows

One of the curious properties of turbulence is the

fact that, although the Reynolds number is very im-




7. Tuorbulent jets showing that the Reynolds nuniber does
neot much affect the appearance, so long as it is suﬂie;enﬁy
large that the jet is indeed tnrbulent. The upper jet has a
Reynolds number 50 times that of the lower,

portant in determinin_g whetner or not a particular flow
will be turbulent, once it has beceme turbulent the
Reyriolds number: is of very little importance so far as
the large-scale motion is concerned. This is illustrated
in Fig. 7, which shows two jets, identical in every way
except for the viscosity of the fluids (and therefore the
Reynolds number), which differs by a factor of fifty.
Evidently the large-scale features of the flow are com-
paratively insensitive to Reynolds number.

However, the small-scale motion, as revealed in
shadowgraphs such as those in Fig. 8, is markedly
affected. The higher Reynolds nuniber jet has a much
fiier scale structure than the other. This can be under-
stood if we consider the energy dissipated. These two
jets differ only in viscosity; all other conditions are the
same, including the rate of energy input into the jet.
Therefore they dissipate energy at the same rate.

Dimensionally the dissipation rate must be given by
vI2/02 where A is 2 characteristic scale important to

8. Shadowgraphs of the jeis shown in Fig. 7. Note how
mauch finer grained is the structure in the high-Reynolds-
number jet than that in the ]ow-Reynolds—number jet.
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the dissipation process, and V' a characteristic speed.
Clearly, the targer v is, the larger A must be.

Turbulent Energy Cascade and
Small-scale Similarity

This leads to one of the most important concepts in
the study of turbulence: the idea of the energy cascade.
As we have seen, under certain circumstances a large-
scale motion can become turbulent. Some of the energy
in the large-scale motion is converted into turbulent
energy. The largest scales of the turbulence are usually
smaller than, alt'ho_ugh comparable with, the scale of
the basic flow, as can be seen in Fig. 1 and 7. How-
ever, usually these large-scale motions are themselves
unstable and break into smaller-scale motions which
take energy from them. Finally the energy passes down
to scales like these revealed in the shadowgraphs of
Fig. 8, which arc so small that their Reynoids number
is too low for mstablhty Their energy is then dis-
sipated by the action of viscosity.

9. Shadowgraph of a high-Reynolds-number jet. The
only difference between these two photographs is the fact
that a circle from the cénter of Fig. 9(a) has heen rotated
through some 80 degrees 1o produce Fig. 9(h). The fact
that this circle is hard to locate in Fig. 9¢b) indicates that
the small-scale turbulence is approx:mately boih isctrepic
and homogeneous.



In this turbulent-energy cascade; at the smaller
scales of motion it is only the rate of energy “dissipa-
tion which is of any consequence. Other information
associated with the large-scale motion is lost in the
transfer process. Thus at high-enough Reynolds num-
ber the small-scale turbulence loses all directional
orientation. It becomes locally isotropic, as is illu-
strated in Fig. 9.

10. Shadowgraphs show simil_al_'ity of smali-seale stroe-
ture. The iipper half of the frame is a.shadowgraph from
a jet, like that of Fig. 9. The lower half is from 2 channel
flow, in part magmﬁed so that the scale will be comparable
to that of the jeti.

~

11. Flow visunalization of decaying turbulence behind =2
grid. Photograph (b) is taken several seconds later than
photograph (a). Although the energy-transfer mechanism
passes energy largely from large scale to small, the decay
of the small-seale motion is comparatively rapid, so that
it is the large-scale motions that are last to die.

Moreover at hlgh Reynolds number the small-scale~ :

turbulent stucture ceases to depend upon the nature
of the large-scale flow. Macroscopically the difference
between a jet and a channel flow is marked. However
on the very small scale revealed by shadowgraphs, the
difference in structure disappears, as is shown in Fig.
10. Because of the size difference, the similarity
between the small-scale structures may not be obvious
unless suitable magnification is used, as in Fig. 10.
This is"a kind of “similarity”: similar structure de-

spite differences in scale. (The velocity scales may-

differ, as well as the length scales.) We have already
seen that the large-scale motion does not depend much
upon the Reynolds number. We now find that the
structure of the small-scale motion is similar for all
kinds of turbulence. What the Reynolds number does
is to determine the ratio of the largest scales to the
smallest scales.

In decaying turbulence, energy seems, paradoxically,
to pass from small scales to large. In fact, however, the
energy transfer is still mostly from large scale to small.
The large-scale motions are the last to die, because the
small scales dissipate more rapidly. Fig. 11 illustrates
the effect.

Effect of Buoyancy on Turbulence

The Reynolds number is not the only important
parameter in determining the likelihood of turbulence.
In some cases the Reynolds number may be enormous,
many millions, and no turbulence will exist, because
of the presence of some other influence like rotation,
density stratification or, for conducting fluids, magnetic
fields.

Of these, buoyancy effects are easiest to understand.
If the fluid at the bottom is less dense than that at the
top, convective activity sets in and can greatly increase
the turbulence present — or even produce turbulence
when none would otherwise exist. On the other hand,
if the fluid on top is less dense, turbulence is inhibited,
because the buoyancy effects operatc in the other
direction and take energy out of the turbulence.

In the atmosphere both stable and unstable buoy-
ancy effects occur frequently. In Fig. 12 we see a
smoke layer in an atmosphere which is stable because
the air close to the ground is colder and heavier than
the air above it. This situation is called an inversion by
meteorologists. Vertical turbulent motions are strongly
inhibited and any motion which occurs tends to be
almost horizontal. Smog can accumulate when an in-
version at some height above the city prevents pollu-
tion. from mixing upwards.

On the other hand, air close to the ground is often
heated. This can produce vigorous comvection, as
shown in Fig. 13. Buoyant convection occurs nearly
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12. Smoke layer in a stable atmosphere. Because the air
ahove is warmer and lighter than the air below, turbulence
is greatly inhibited. AlIl motion tends to be horizontal.

13. When the air is heated from below, convection is
likely to result. In the case of cumulus clouds of this iype,
the convective activity is greatly enhanced by the release
of Intent heat when water vapor condenses into droplets
to form a cliound.

always when a fluid is heated from below, whether in
a porridge pot or in the surface layers of the sun.

Small-scale Intermittency

In the defining syndrome of turbulence we did not
employ the word “randem,” although it would seem to
be apropos, because, to some at least, it carries with
it the connotation of a Gaussian process. Turbulent
distributions are more complicated than that. In Fig.
14 we see the output of a hot-wire anemometer op-
erated in an atmospheric boundary layer. The large-
scale motion, as shown by the horizental velocity
component u, is closely Gaussian. However, if we
differentiate the signal, or examine any other property
that is strongly dependent upon the smali-scale mo-

14. Chart recordings of hot-wire anemometer measure-
mentis of the downwind turbulént velocity compoenent in
an atmospheric boundary layer. The upper trace shows
the measured velocity. The distribution is very nearly
Gaunssian. The lower trace is the time derivative of the
signal. (It is best to interpret this signal as a spatial de-
rivative, since the time rate of change is mostly produced
by the turbulent structure blowing past the probe, rather
than by changes in the structure itsef. Thuas this signal
is related to vorticity.) Thke distribution here is very inter-
mittent, and clearly mon-Gamssian. This effect increases
with increasing Reynolds mumber.

tions, we find that activity scems to be distributed in
concentrated bursts separated by regions "which are
comparatively quiescent. The effect is illustrated in
Fig. 14

The non-Gaussian, intermittent character of the
small-scale structure becomes more marked as the
Reynolds number increases. It seems to be funda-
mental to the nature of the turbulent cascade, but as
with many other aspects of turbulence we do not have
a fully satisfactory theoretical explanation. Tt is
another manifestation of its baffling but fascinating
complexity.
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