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The experiments in this film illustrate the concepts
of vorticity and circulation, and show how these con-
cepts can be useful in understanding fluid flows.

The vorticity is defined as the curl of the velocity vee-
tor: » ="/ X V. Thus each point in the fluid has 4n as-
sociated vector vorticity, and the whole fluid space
may be thought of as being threaded by vortex lines
which are everywhere tangent to the local vorticity
vector. These vortex lines represent the local axis of
spin of the fluid particle at each point. In two dimen-
sions, the vorticity is the sum of the angular velocities

of any pair of mutually-perpendicular, infinitesimal

fluid lines passing through the point in question. For
rigid body rotation, every line perpendicular to the
axis of rotation has the same angular velocity: there-
fore the vorticity is the same &t every point, and is
twice the angular velocity.

VOr_ticity'i's- related to the moment of momentum of
a small spherical fluid particle about its own center of
mass. Given some very complicated motion of a liquid,
suppose that it were possible — by magic - suddenly
to freeze a small sphere of the liquid into a solid, while

1. Vorticity meter. The four vanes at the bottom are rig-
idly attached at right angles to the vertical glass tnbe, The
arrew is fixed to the tube and rotaies with approximately
the average mmgular speed of the pair of mutually-
perpendicular fleid lines which coincide with the vanes.
Thus the rate of rotation of the arrow is approximately
half the vertical component of vorticity of the lumip of
water in which the vanes are immersed. Note that since
the vanes are rigidly connected, the floa: does not respond
to shear deformation of the two fluid lines, biit only 1o
their average angalar velocity.
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conserving the moment of momentum. The angular
velocity of the solid sphere at the moment of its birth
would be exactly half the vorticity of the fluid before
freezing. Several dynamical theorems in effect relate
the changes in vorticity of a fluid particle — and thus
of its moment of momentum — to the moments of the
forces acting on that fluid particle.

Fig. 1 shows a “vorticity meter” which floats in
water with its axis vertical. Placed in a liquid which
is in solid-body rotation (Fig. 2), the vorticity float

Lo

9. View from above of an open cylindrical tank contain-
ing water, It is mounted on a parntable which rotates
abonl a vertical axis. The cross hairs are seribed on the
hottom -of the tank. After a long time the water is bronght
into solid-body ratation by viscous forces, and the vorticity
float (arrow) moves aé thowegh it ‘were rigidly affixed to
the eross hairs, The drawing smperimposed shows a closed
curve C on which the cireulation I' is reckoned, and the
associated vorticity fiux throogh the area bounded by C.

moves as though it were rigidly attached to the rotating
tank. It has the angular velocity of the tank; the ver-
tical component of vorticity at every point in the fiuid
is twice this angular velocity.

.Sometimes the word “rotation” is used as a synonym
for vorticity, but this does not mean that a flow has to
be curved for vorticity to be present. For instance, Fig.
3 shows water flowing in a straight channel. The

3. Water flowing from left 1o right in a channel with
straight vertical walls. The vorticity meter is placed in the
viscous houndary layer near one wall. As it moves down-

Picture (b)

_ slream, the arrow turns counterclockwise,
was taken a short time after picture (a).

streamlines are essentially straight and parallel to the
side wall. But the rotation of the arrow shows that
vertical vorticity is present. Near the wall is a viscous
boundary layer in which the velocity increases with

4, Viscous boundary layer near plane wall. Flu';id cross at
postiton 1 (solid lines) changes in form as it moves 1o
position 2 (dashed lines). Square at right shows the closed
cireuit -on which girculation is reckoned.

distance from the wall (Fig. 4). Examine the fluid
cross. One leg moves downstream paralel to the wall
while the other leg rotates counterclockwise owing to
the non-uniform velocity distribution. Thus thexe is a
net vorticity, and the vorticity meter of Fig. 3 turns
counterclockwise.

5. Plan view of sink-vortex tank. Water from the reser-
voir passes through the flow straightener, and thence into
the tank through the tangential entry. Afier spiralling

round and round in a very tight vortex, the water leaves
vertically through the drain at the center.

On the other hand, the flow may be without rotation
even though the streamlines are curved. Fig. 5 shows
in plan view a tank for producing a sink vortex in
which the streamlines are tight spirals and nearly cir-
cular. As shown in Fig. 6, the vorticity meter moves
in a circular path but does not rotate. It moves in pure
translation -— as would a compass needlc on a phono-
graph turntable. Consider a fiuid cross at a point on
a circular streamline (Fig. 7). Leg 4 follows the
sireamline, hence it rotates counterclockwise. Since
the angular momentum of the fluid is conserved as it
flows toward the drain, the tangential velocity varies




¢

47

6. Plan view of vorticity meter in the sink-vortex tank,
Picture (b) was taken a short time after picture (a); the
arrow direction has not changed. The drawings superposed
show elosed curves, C; and Cg, on which the cirénlation is
reclkoned for circuits whith respectively do not enclose, and
do enclose, the center of the vortex.

inversely with the radius. Thus the velocity of the
inner part of leg B is greater than the velocity of the
outer part, and leg B turns clockwise. The clockwise
turning rate of B is just equal and opposite to the
counterclockwise turning rate of 4. Hence the vorticity
is zero, The vorticity meter, in averaging the rotations
of legs 4 and B, translates, without rotation, on a
circular trajectory.

7. Fluid cresses in a two-dimensional vortex. One is on a
circular streamline, the other at the center.

Crocco’s Theorem

For the special case of steady motion of an incom-
pressible, inviscid fluid acted on by conservative body
forces, Crocco’s theorem has the form

1 ‘
VXm:?Vpo;pOEp+1/sz2+pU (1)

where V is the vector velocity, o the vector vorticity,
and p the density. The stagnation pressure p, is the
sum of the static pressure p, the dynamic pressure
pV?/2, and the potential energy per unit volume p U
associated with the conservative body-force field.

8. In a two-dimensional flow, V X ¢ is in the plane of the
flow and perpendicular to the streamlines.

When a flow is two-dimensional in the plane of the
paper, the vorticity vector is normal to the paper while
the velocity vector lies in the paper and along the
streamline (Fig.8). By Crocco’s theorem, the gradient
of stagnation pressure is normal to both the velocity
vector and the vorticity vector; thus it lies in the plane
of the paper and normal to V. Consequently the stag-
nation pressure, p,, is constant along each streamlirie
and varies between streamlines only if vorticity is
present.

To illustrate, consider again the straight boundary
layer of Figs. 3 and 4. The static pressure is uniform
across the boundary layer but the velocity is variable.
Thus the stagnation pressure is variable, and, by Eq. 1,
vorticity is present. The velocity gradient is strongest
near the wall and so is the gradient of stagnation pres-
sure. When the vorticity meter is near the wall, the
rate of spin is relatively large. With the vorticity meter
farther out in the boundary layer, the rate of spin is
smaller.

When the vorticity is zero, as in the sink-vortex tank
(Figs. 5 and 6), Crocco’s theorem says that the stag-
nation pressure must be everywhere the same. The
spiral of the vortex is so tight (Fig. 9) that it is not
much of a liberty to think of the streamlines as being
concentric circles. One may verify that the uniformity
of angular momentum, Vr = const., is the condition
for, (1) the stagnation pressure to be constant through-
out, and (2) the free surface to be a hyperboloid



9. A streamline of the sink vortex. Nete hyperboloidal
depiression in cénter, over the drain. i

of revolution. For an inviscid fluid, the hele in the
core ‘would extend downward indeﬁni.tely. However,
the high-velocity gradients and strain rates near the
AXis prbduce l-arge viscous fotces which reduce the
depression to a deep dimiple having a bottom.

A flow which is otherwise without rotation may
contain small regions where the vorticity is very large.
In the sink-vortex How, for instance, the vorticity is
generally zero (Fig. 6), except for a highly-concen-
trated core of vortical fluid right at the center. When
the vorticity float finally drifts into the center, its
motion, ‘which hitherto was purely translational, is
immediately changed to a pure and rapid rotation.
Only at the singular point in the center of Fig. 7 do
both arms of a fluid cross rotate in the same direction
and thus produce a net vorticity.

Fluid Circulation

The fluid circulation I is defined as the line integral
of the velocity V around any closed curve C. The cir-
culation theorem — which is purely geometrical —
equates the circulation I' around C to the flux of the
vorticity vector o, through any surface area bounded
by C.

P:Efv-dr:ffvxv-dA:ffm-dA 2)

If there is a definite circulation around C, then the
fluid lying in any surface bounded by C must have vor-
ticity. When the circulation is zero for every curve in
a certain region, the fluid in that region must be entirely
free of vorticity: the motion is then called irrotational.

Returning to the boundary-layer flow of Figs. 3 and
4, consider the circulation for the small square circuit
in Fig. 4. Because of the non-uniform distribution of
speed, there is a net circulation which, by Eq. 2, is
related to the vertical vorticity of the enclosed fluid.

Vorticity may be distributed throughout the entire

fluid. But often the vorticity is very large only in a
thin thread of fluid while the remaining fluid is vit-
tually without vorticity. Then we can simplify our
thinking by lumping all the vorticity into a coneen-
trated vortex line around which the fluid spins (Fig.
10), and by pretending that the remaining fluid is
entirely free of vorticity. The finite amount of circula-
tion around the core requires that the vorticity be
itifinite in the vortex line, which has zero cross-sec-
tional area. In cross section, a straight vortex line
with non-vortical fluid outside would appear as a point
around which the fluid moves in concentric circles, the
circumferential velocity varying inversely with radius.

In the solid-body rotation tarik (Fig. 2, the vertical
vorticity is everywhere equal to twice the angular veloc-
ity of the tank. Every horizontal circuit therefore has
a circulation equal to twice the product of the angular
velocity and the area bounded by the circuit,

19. Schematie of a vortex core of strength T imbedded in
otherwise irrotational fluid.

In the sink-vortex tank the flow is non-vortical ex-
cept for the concentrated vortex core which accourts
for the whole circulatory motion. ‘All fluid circuits not
surrounding the core (Fig. 6a) have zero circulation
because they contain no vorticity flux. All fluid circuits
surrounding the tore (Fig. 6b) have the same circula-
tion because they contain the entire vorticity flux.

A wing generates lift because of the higher pressure
below and the lower pressure above. According to
Bernoulli’s integral, the velocity on the upper surface
must be greater than the velocity on the lower surface.
This means that there is a net circulation around a
lifting wing. Often we model this circulation as being
produced by a fictitious vortex which is “bound” in
the wing and which accounts for the circulatory move-
ment (Fig. 19). The vorticity is really present, but it
is distributed throughout the viscous boundary layer
rather than concentrated in a single vortex line.

Kelvin’s Theorem

The concept of ¢irculation is important mainly be-
cause of a powerful theorem evolved by Lord Kelvin
from the dynamical laws of motion, It shows how the
time rate of change of circulation T, associated with




a closed curve C always made up of the same fluid
particles is governed by the torques produced by all
the forces acting in the Auid:

:_§T+'¢.G-dr+3g%v2\f'dr (3)

The three terms on the right represent torques due
to pressure forces, body forces, and viscous forces,
respectively.

Viscous Torques

Let us consider first the torques produced by viscous
forces acting on a fluid particle. A force diagram for
a fluid particle (Fig. 11) shows that viscous forces are

11. Yiscous stresses on a fluid particle.

indeed capable of producing torques about the center
of mass. Such viscous torques change the vorticity of
the fluid particle and thus the circulation on a bounding
circuit. For instance, in the straight channel of Fig. 3,
a vorticity float inserted just outside the boundary layer
moves downstream for a while without turning. But
vorticity is diffusing outward from the wall, and even-
tually -the floid in which the float travels reaches a
position where a viscous torque produces vorticity.
Then,the fioat begins to spin.

‘When the water in the cylindrical tank illustrated in
Fig. 2 is at rest, I'=0 for all circuits. When the
turntable is started, the ‘water in the middie does not at
first move, because none of the forces which create
circulation come into play there for a.while. Next to
the wall, the fluid moves prompily because of viscous
stresses. These viscous forces (aided by outward flow
in the boundary layer on the bottom of the tank)
gradually accelerate fluid farther out from the wall and
more and more of the fluid moves. In the end, viscos-
ity brings all the fluid into a perfect solid-body rotation.
At this limit, paradoxically, viscous forces have van-
ished altogether and there is nothing to force further
changes in circulation, If the turntable is then stopped,
the fluid continues to rotate as a solid body except near
the walls of the tank where the viscous forces are large.
Viscosity again causes the vorticity change to diffuse
inward from the wall, decreasing the circulation more

12. Fluid flows from left to right past a sharp edge. The
photo shows condlnons soon after the flow has started im-
pulswely. The flow separates behind ‘thé edge, and flnid
in ‘the surface of dlscentmulty, in which strong ‘viscous
forcés act, forms a starting vortex which moves down-
stream. (After Prandtl )

and more until finally the whole fluid is brought to rest.

When a fluid flows around a sharp edge (Figs. 12
and 23b), viscous and pressure forces in the boundary
layer lead to a separated flow. The fluid which has been
affected by viscous forces forms a concentrated vortex.

In Fig. 23b, two vortices are made by pulling a plate
with sharp edges through the water. We can make the
vortex visible in this experiment by placing a ping—'pong
ballin the dimple of the vortex. It rémains there stably.
In a channel of constant width and depth, the spin of
the-ball decreases-with time because viscosity diffuses
the vorticity of the core into the surrounding fluid.

Body-Force Torques

If the body force G is irratational (i.e. curl G = ),
that is, conservative, the body-force term in Eq. 3 is
zero. But, for rotational body forces, that is, non-
conservative forees, this term is, in general, not zero.

Whenever the net body force G passes through the
center of mass of a small sphere of fluid, it produces no
torque to change the circulation. Centrally-directed
forceslike gravity are of this type. They are irrotational.

There are two important rotational body forces in
fluid mechanics which can change circulation: (1)
Coriolis forces, (=20 X V), in rotating reference
frames, and (2) Lorentz forces, (J X B), due to the
flow of an électric current at an angle to a magnetic
field. In both these cases the line of action of the re-
suftant body force need not go through the center of
mass of a spherical particle. Because of such forces
the oceans and the atmosphere are full of vorticity, as
are magnetohydrodynamic flows.

Does the vortex in the bathtub always turn in the
same direction? Does it depend on which hemisphere
you are in? You can’t really tell in the bathtub, be-
cause the Coriolis force due to the earih’s rotation, for




13. A tank six feet in d_.iameier and six inches high, with
a drain hole 3; inch in diameter at the center, is filled with
water swirling clockwise. It is then covered to minimize
meotions indueed by air carrenis, by buoyaney, and by
impuritics on the surface causing non-uniform sarface
tension, and it is allowed to stand for 24 hours. The flow
is started by pulling a plug from the end of a hose, several
fect long, attached to the drain. The experiment is cur-
ried out at latitude 42° N near Bostoxn, Mass.
a s_Pééd toward the drain of about 0.2 inches per min-
ute, is only about a billionth the force of gravity! Other
effects all too easily mask that of the earth’s rotation.
However, with care, one can do an experiment domi-
nated by the earth’s’ Coriolis force (Fig. 13). Imme-
diately after starting the flow, a small vorticity float
with its vanes entirely submerged is placed over the
drain. For the first 10 or 15 minutes there is no per-
ceptible rotation of the float. But at about 15 minutes
a distinct counterclockwise motion begins. At 24 min-
utes, with the tank nearly empty, the float is turning at
about 0.3 rev./sec. This represents a 30,000-fold
amplification of the earth’s rotation at Boston. The
reader can verify that this agrees, in order of magni-
tude, with the angular momeénturm being conserved.
The Coriolis force acting on a fluid particle in the

northern hemisphere as it moves radially inward toward

14. Funnel of a tornmio.

the drain is circumferential and counterclockwise. This
force integrated around a circle contributes a counter-
clockwise torque in Kelvin’s theorem. This tends to
make the circulation increase counterclockwise with
time. In the reference frame of the earth a fluid circle
which starts at one radius with zero circulation there-
foré acquires counterclockwise circulation as time
proceeds.

Although the earth’s Coriolis forces are small com-
pared with gravity, they are extremely important to our
everyday weather. They can also generate hurricanes.
1f the conditions of temperature and humidity are such
that thete is a strong local up-draft in some region, air
must rush in from the sides to the “sink” forming the
up-draft. This is like the water-tank experiment, but
upside down, and a strong vortex is formed (Fig. 14).

Pressure Torquies

When the fluid is effectively incompressible, or more
generally when the density depends upon pressure
alone, the term @ dp/e is zero, and thus dees not
change the circulation.

To se¢ the physical significance of this term, con-
sider the fluid particle in the circular region of Fig. 15.
The lines of constant pressure (isobars) are shown by
the solid lines. The pressure forces acting on the par-
ticle parallel to these lines éxactly cancel each other,
hence the net pressure force on the particle is per-
pendicular to the isobars and passes through the geo-
metric center. The dashed lines represent the contours
of constant density (isochors) in the fluid particle. If
the isochors are parallel to the isobars — a sitbation
described as barotropic, which means that ¢ is a func-
tion of p alone — the line of action of the net pressure
force goes through thé mass center M, and produces
no torque about M. But, if the isochors are not parallel
to the isobars (Fig. 15), the net pressure force pro-

NET PRESSURE

FORCE

15. A small spherical fluid particle in a region where the
isobars are the solid lines marked p. The nel pressure
force on the particle is perpendicular to the isobars and
passes through the geometrie center 0. The dashed Imes
represent the isochors in the fluid. The center of mass M
lies on the line BB, which is perpendicular to the isochors
and passes through O,
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duces a torque about M, and acts to change the
circulation,

If the fluid is at rest in the gravity field of the earth,
the isobars are horizontal. Since the circulation in a
stationary fluid is forever zero, the surfaces of constant
density must coincide with the surfaces of constant
pressure. This is why the free surface of water in a
pail is horizontal. If the pail contains oil floating on
water, the interface is also horizontal, When we tilt
the free surface and the interface by tipping the pail,
the surfaces do not remain tilted: the isobars and
isochors are now misaligned and the term ¢ dp/p
in Eq. 3 creates a circulation which tends to make the
surfaces horizontal again.

The circulations arising in natural convection sys-
tems are driven by the pressure-density term in Kel-
vin’s theorem. One example is the hot-water or hot-air
heating system in a house. Another is the principal
circulation of the earth’s atmosphere between the cold
regions at the, poles and the hot regions «t the equator.

Origin of Trrotational Flow

Kelvin’s theorem shows how irrotational ﬂows may
arise. Consider a.motion which began-from a state of
rest. 'With no metion;, there ¥ no vorficity; and with
no vorticity, there is no circulation. Sup_pbsé that the
flujd is barotropic, that body forces if present dre con-
servative, ‘and that viscous forcés ate negligible. Then
the circulation must forever remain zero on every fluid
circuit, and the vorticity must also everywhere and
forever remain zero.

Let an airfoil begin to move suddenly through a
flwid initially at rest. In the absence of viscosity, the
circulation around any arbitrary fluid element is zero
to begin with and therefore Temajns zero; thus the flow
remnains everywhere irrotational. There can be no
circulation around the airfoil, and hence no lift. For-
tunately, viscous friction, no matter how small, to-
gether with the no-slip condition at the solid surface,
make lift generauon possible. When the airfoil begins
to move, viscous effects near the trailing edge result in
the shedding of a so-called “starting vortex” (Fig. 16},
and thus to-a circulation on the curve ABCDA. But the
fluid along the larger curve-4ABCDEFA is not subject
to viscous forces, being outside the viscous boundary
layer and wake. By Kelvin’s theorem, the circulation
on this curve must be zero. . For ‘this to be true there
must be along the curve ADEFA surrounding the air-
foil a circulation equal and opposite to that on the
curve ABCDA surrounding the vertex. This circula-
tion around the airfoil may be ascribed to a fictitious
vortex bound in the airfoil, and is necessary for the
production of lift.

When the airfoil stops, the bound vortex is shed as

16. An airfeil impulsively started from right to left sheds
a “starting vortex” at the sharp trailing edge. (After
Prandtl.)

a stopping vortex (Fig. 17), again because of viscous
forces at the sharp trailing edge. ‘O a circuit around
either vortex, viscosity has acted and circulation is pres-
ent. But on a citcuit enclosing both vortices, and
passing through fluid on which friction has never acted,
the circulation remains zéro. The e_qual and qpp051te
vortices produce zero net flux of vorticity through any
area containing both vortices.

17. Shortly after the airfoil of Fig. 16 is impulsively
started, leaving a starting vortex “A?, it is impulsively
stopped and sheds the stopping vortex “B of opposite
sign to “A” but of equal sirength (after Prandil). (a)
Immediately after stopping. (b) A short time later.
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Helmholiz’s Vortex Laws

‘When-all the torque-producing factors in Kelvin’s
theorem are absent, fluid dynam1cs can be given a
beautiful geometrical interpretation in terms of Helm-
holtz’s laws:

(1) Vortex lines pever end in the fluid. They
either form closed loops or erid at a fluid bound-
ary, and the circulation is the same for every
contour encIosmg the vortex line.

{2) A fluid line which at _an—y instant of time ¢oin-

' cides with a vortex line will coricide with a vortex
line forever. (The. vortex lmes are, as 1t were,
frozen to the fluid.) '

(3) On a vortex line of fixed identity, the ratio of
the vorticity to the product of the fluid density
with the length of the line remains constant as
time proceeds (w/pl = const.). Thus, if the vor-
tex line is stretched, the vorticity increases.

The vortices A and B of Fig. 17b are of equal and
opposne strength They move downward together,
because the velocity field of B displaces the fluid at
A, and vice versa, and because each vortex core is
convected with the fluid to which it is frozen

18. Smoke ring..

One can tiever see 2 ‘smoke ring which is broken
somewhere because vortex lings can never end (F1g
18). The fact that the smoke ring propels itself shows
that the vort1c1ty is frozen in the fluid: each element of
fluid is propelled forward by the-induced ve10c1ty fields
of all the other ¢lements of ‘the ring vortex, and the
whole vortex is thus convected by itself. The smoke,
which marks the fluid, is carried with the vortex core,
showing that the vorticity is locked to the fluid. ‘When

a smoke Ting approaches a wall normal to. the axis of
the ring, it spreads out and slows down.. This may be
explained in terms of the induced velocity field of the
fictitious image vortex on the other side of the wall,
which, in effect, takes the place of the wall itself.

Fig. 19 shows the vortex system for a wing of finite
span The circulation required to produce lift may be

considered as originating from vorticity bound in the
wing. But the bound vortex lines cannot end at the
wing tips; they form vortex loops, closed by trailing

19. The vortices associated with a wing of finite span.

vortices and the starting vortex left at the airport. The
trailing vortices from the tips of the lifting wing are
made visible in Fig. 20. As the angle of attack of the
wing is increased, the tip vortices grow in strength as
the lift, the circulation, and the strength of the bound
vortex also increase.

2
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20. A view locking ‘upsiream along the axis of a wmd

tunmnel. Beétween the camera and the n-aﬂ.mg edge of the
wing is a rectangular grid of fine wu-es, in a vertieal plane,
with wool tufis attached at the net pomts "Fhe wool tufls
align themselves with the flow, which is more or less per-
pendiculsr to the paper. The relatively heavy, horizontal
white line is the trailing edge of the wing, and the dim
white region above is the upper surface at ineidence. One
sees the projections of the wool tufts in a plane transverse
to the direction of free flow and downstream of the trailing
edge, and thus obtains an impression of the iransverse
velocity field. (Courtesy NASA,)

The little ~Vortic'ity meter of Fig. 21 shows streamwise
vorticity. . Put right behind the wing tip, it spins very
fast; if we move it slightly inboard or outboard of the
tip, it hardly turns. The trailing vorticity is strongly
concentrated at the wing tip.

The concentration of trailing vorticity in sirong tip
vortices results in very low pressures in the center of
these vortices. Behind marine propellers, the water in
the vortex cores may boil (cavitate), and this. makes
the trailing vortices from the blades easily visible (Fig.
22). They form a helical pattern.

The induced velocity field of the vortex loop of Fig.
19 produces downwash velocities within the enclosed
region. These downwash velocities, which are ob-
servable in the tuft pattern of Fig. 20, act at the wing
itsell. They make the wing appear. to be flying through
air which is itsell descending, and this results in what
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21. A vorticity meter whose axis is aligned with the flow
shows the streamwise component of vorticity. It is here
located behind the trailing edge of a wing, near the wing
tip. Flow is from left to right.

22, Trailing vertex system from a marine propeller in
a water tunnel, made visible by cavitation in the vortex
cores. (Courtesy MLL.T. Propeller Tunnel,)

is called induced drag. The work of the forward-mov-
ing wing as it moves against this induced drag force
accounts for the kinetic energy being fed into the
constantly-lengthening system of trailing vortices.

A plausible explanation for the V formation of
migrating birds is that each bird takes advantage of
the upwash velocities in the trailing vortex systems of
the ones forward of it. Each bird behind the leader
flies on an ascending induced air current, while the
leader has not only his own induced drag, but addi-
tional induced drag due to the downwash of all the
birds behind him.

The vortex laws of Helmholtz come from the dy-
namical equations of motion. Therefore anything we
deduce from the vortex laws can also be deduced, al-
though perhaps not as conveniently, from the pressure
field. With the lifting wing, for example, air can leak
around the tip from the high-pressure region below to
the low-pressure region above. This leakage produces
a transverse flow which accounts for the tip vortex.

To show the effect of stretching vortex lines, water

9

is caused to flow over a hump (Fig. 23), and a vortex
with vertical axis is observed, As it approaches the
crest of the hump, the spin of the ping—pong ball de-
creases. This agrees with Helmholtz’s third statement,

23a. Witer flows sub-eritically from left to right over a
hump in an open ¢hannél. The water depth first decreases
to the top of the hump, ithen increases.

23b. Two vértical vortices are made by a plate with sharp
edges, which s then withdrawn, and a ping-pong ball is
placed in the dimple of one of the voriices, - The rate of
spin of thie ball gives an indication of the vorficity in the
voriex core. )

inasmuch as the lengths of the vertical lings of fluid to
which the vorticity is attached are also decreasing:
When the vortex goes down the hump, the lengths of
the vortex lines increase, and the rate of spin of the
ball is seen to increase. The change in spin rate as the
ball goes down the hump, however, is not as strong as
the change going up the hump. That is because viscos-
ity is always acting to decrease the rate of spin of the
ping-pong ball. There is 2 simple mechanical explana-
tion of this experiment. When a vertical thread of fluid
moves up the hump, its length decreases, but the vol-
ume of the thread remains the same; hence its diameter
increases. For moment of moimentum to be conserved,
the spin rate must decrease. When the vertical thread
of fluid goes down the hump, it stretches and becomes
thinner. Accordingly, the rate of spin increases. A
figure skater or ballet dancer knows this mechanical
trick instinctively. She speeds up in a pirouette by
moving her arms and legs inward to decrease her
moment of inertia.

Turbulent flows are full of vorticity. The vortex
lines are like tangled spaghetti. The mutually-induced
velocities of these vortex lines cause some of them to
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lengthen, and this lengthening produces a finer-grained
turbulence with higher velocity gradients. This makes
for added viscous dissipation. As L. F. G. Richardson
has put it, “Big whirls make little whirls,/which feed
on their velocity./Little whirls make lesser whirls,/and
s0 on, to viscosity.”

Secondary Flow

The generation of secondary flows is illustrated in
the curved channel flow of Fig. 24. Upstream, the
flow is parallel to the walls of the channel. Because of

24. Water flows around a bend, from upper right 10 lower
léft, in an open channel of trapezoidal cross-section. (a) A
floating ping-pong ball entering the bend, near the inside
of the bénd. (b) The samé ball a féw seconds later. It is
approaching the outer walki

the boundary layer on the bottom of the channe! the
upstream flow has a horizontal component of vorticity
in a direction transverse to the flow, but the vorticity
components in the vertical and streamwise directions
are both zero. When the streamwise vorticity meter
shown in Fig. 21 is aligned with the flow at the exit of
the bend, it spins, showing that somehow a streamwise
component of vorticity has been generated in the bend.
The same result is shown by the drift of the ping-pong
ball to the outer side of the bend, while heavy oil
droplets rolling along the floor drift to the inside of
the bend. To see why, consider three perpendicular
fluid lines 4, B and C, in the upstream position (Fig.
25). If viscous forces are neglected compared with
inertial forces in the bend, the vortex lines may be

thought Qf as frozen to these three fluid lines. Notice,
though, that upstream ‘there is no vertical component

25. Generation of streamwise vorticity in a channel hend.

of vorticity €, nor any streamwise component of vor-
ticity B. There is only a transverse component of vor-
ticity A4 associated with the viscous boundary layer on
the floor of the channel. Now, to first order, € moves
along the center streamline to ', so there is no vertical
component of vorticity at C’. This means that the
average turning of the lines A4 and B must be zefo.
Liné B follows its streamline, rotating counterclock-
wise, hence line A must rotate clockwise by an equal
amount into position 4”. One consequence isthat the
velocity at the inside of the bend is greater than at the
outside. But, more interestingly, the vortex line A’ now
has mwo components: one transverse to the local flow,
which existed upstream, ‘and -4 new compenent along
the flow. This streamwise'component — the secondary
vorticity — swirls ‘the flow clockwise as one looks
downstream, and explains the observed motions of the
vorticity meter, the ping-pong ball, and the oil droplets.

Such secondary flows often occur in curved channels.
When a river goes around a bend (Fig. 26), the sec-
ondary flow erodes the outer bank and deposits sand
and pebbles on the inner bank. This tends to accentu-
ate the curve of the bend. This may be one of the
mechanisms by which exaggerated cases of river me-
andering occur (Fig. 27). When a pipe s curved, there

26. Secondary flow currents in a river bend.




27. Meandering of a river.

are two cells of secondary flow (Fig. 28). These sec-
ondary flows carry high-energy fluid from the middle
of the pipe to the walls, thereby increasing the fric-
tional losses.

28. Secondary flow in a curved pipe.

The vortex laws are also illustrated by flow in an
open channel when it is forced to pass under a trans-
verse circular cylinder (Fig. 29). Strong vortices are
developed from the vertical vorticity present in the
viscous boundary layers on the two side walls. When
a vertical vortex line generated by viscosity on a side
wall is convected downstream with the fluid to which
it is frozen, it is not only bent around the cylinder but
also greatly strefched. The stretching of the vortex
line intensifies the vorticity and makes a vertical vortex
core visible upstream of the cylinder. The bending of
the line produces a streamwise component of vorticity
downstream of the cylinder.

Vertical vorticity was introduced by stirring in Fig.
30. Then the plug was pulled from the bottom. A
strong vortex formed very quickly. A vertical column
of fluid initially on the axis is also a vortex line. When
the flow begins, this column is enormously lengthened
and the vorticity increases proportionately, according
to Helmholtz’s third law. A similar mechanism under-
lies the formation of fornadoes as air with angular
momentum flows inwards to the ascending vortex core.
The centrifugal pressure field of the vortex creates such
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29. Water flowing.from left to right in & horlzontal chan-
nel passes under a transverse circular eylinder. which acts
as a sluice gate. Vertical vortieity is present in the bound-
ary layers on the vertical side walls, having been gererated
by viscosity over a considerable distance upstveam. The
siretehing of vortex lines is evidenced by the vertical vortex
core upsiream of the cylinder (b). The hending of the
vortex lines is evidenced by the spinning of the stream-
wise vorticity meter held in the downstream flow (a).

30. A beaker of water with a small hole in the bottom,
initially plugged. The water is stirred with a rod, and the
plug is then removed,
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a very low pressure at its center that houses over which
the eye of the tornado passes literally explode.

In the bathtub vortex experiment of Fig. 13, the fluid
initially had a very small vorticity in inertial space due
to the turning of the carth. When the plug was pulled
the vertical fluid thread on the axis was enormously
lengthened and the vorticity in inertial space was
strengthened proportionately, finally to the point where
we could see it in the reference frame of the earth.
Photographs of the earth’s cloud cover taken from
orbiting satellites show that similar events occur in the
earth’s dtmosphere on a grand scale.
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