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Introduction

Low-Reynolds-number flows are those in which
inertia plays only a very small part in the conditions
which determine the motion. The Reynolds number
of the flow of a fluid which is characterized only by
viscosity and density is defined as R — L¥p/u. Here
L 1s chosen as a length comnected with the solid
boundaries of the flow which may be expected to de-
termine the scale of the fluid motion, ¥ is a charac-
teristic velocity, p and p. are the density and viscosity
of the fluid. In low-Reynolds-number flows, the mu- .
merical value of R provides a rough estimate of the
relative importance of inertia and viscosity. When R
is small, the importance of inertia is small compared
with that of viscosity. As examples, the movement
of miscroscopic organisms for which L is very small
and the movement of glaciers for which ¥ is very
small and p. very- large are given. In the latter case
the flow was made apparent by a line of red flags which
was initially straight and was bowed out by the slow
motion of the glacier after two years.

Pulling a knife vertically out of a pot of honey for

1. Honey ﬂowing from a knife drawn out of a jar.

which p is large demonstrates two properties of a
viscous liquid. It can resist both tangential and tensile
stresses. The honey can be lifted by a tangential force
exerted by a knife’s surface, and the stretching of the
stream as it falls gives rise to a tensile stress over a
horizontal section such as 4B in Fig. 1.
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2. A low-Reynolds-number “jer” penelrates only slighily
into a mass of the same fluid.

Jet Flows

Though the honey stream demonstrates some prop-
erties of viscosity, it does not provide a model show-
ing the relative importance of viscosity and inertia.
For this purpose the honey experiment is repeated,
using a piston driven at a known speed to produce a
controlled jet of colored fluid at a known velocity.
This jet falls vertically into a transparent box con-
taining the same fluid, but uncolored. Four fluids
whose viscosities cover a very wide range are used,
and in order to ensure that the differences between
the flows observed in the four cases are, and can be
seen to be, due only to differences in Reynolds num-
ber, the diameters D and velocities ¥ are the same
in all four cases. Figs. 2 and 3 show the flows, and the
corresponding values of R = DVp/p are printed be-
3. Comparison of the penetrations of the first two jets

with Fig. 2 demonstrates the effect of increasing Reyn-
olds number. The third jet is turbulent.

(a)

(b}

low. In Fig. 2 (R = 0.05), the fluid is syrup which
Is so viscous that the vertical velocity is destroyed by
the vertical stress in the jet before it reaches the free
surface of the fluid in the box, so that it forms a pile
which flattens slowly under the influence of gravity.
In Fig. 3a (R = 10) the fluid is glycerine. The depth
to which the jet penetrates before losing its velocity
and spreading out into a mushroomlike head is only
a few jet diameters. The angle of the cone which
forms the stalk of the mushroom is an indication of
the rate at which the momentum of the jet is being
retarded by viscosity. In Fig. 3b (R = 200) the
fluid is 2 mixture of glycerine and water, and the jet
penetrates many diameters before being stopped. In
fact, it is not stopped until it reaches the bottom of
the box. Comparing Figs. 3a and 3b, it appears that
the angle which the roughly conical jet assumes when
it is retarded by viscosity is of the order of magnitude
1/R. ¥ig. 3c shows what happens when the Reynolds
number is sufficiently high. At R = 3000 the jet has
become turbulent.

Flow Through Long Tubes

This film is concerned with flow like that shown in
Fig. 2, for which R is small compared with 1.0 so that
mertia plays no appreciable part in the situation, flow
being determined only by the balance of viscous and
pressure stresses brought into play by gravity or
forces applied at the boundaries. The geometry as-
sociated with the flow shown in Fig. 2, however, is too
complicated for complete mathematical analysis, and
a simpler case is discussed in greater detail — namely,
the flow through long tubes of uniform bore. Here,
though the Reynolds number is not necessarily small,
there is no change in the inertia of the flow as it passes
through the tube, so that the results of calculation of
the kind used in discussing low-Reynolds-number
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4, Laminar flow through two tubes with inner diameters
in the ratio 2:1,

flows are applicable. The two tubes shown in Fig. 4
(left) have the same length, but the bore d of one of
them is twice that of the other. Compressed air at the
top of the reservoir drives the fluid at constant pres-
sure through the two tubes into two receptacies with
marks at one ounce and 16 ounces respectively (Fig.
4, right). Calculation shows that the discharge from
the large tube should be 16 times that of the other,
so that if the flows into both receptacles are started
at the same time, they reach the marks simultaneously.
In this experiment the driving pressure AP acting over
the area of cross section {nd? balances the tangential
stress ¢ acting over an area wd L so that APind? =
ordl or AP/e = 41./d. When the length L is large
compared with the diameter d, as it is in the experi-
ment shown, a small tangential stress can produce a
large change in pressure. This is the principle on
which hydrodynamic lubrication is based.

Hydrodynamic Lubrieation

A very simple experiment can demonstrate that
the coefficient of friction, which is the ratio of the tan-
gential to the normal force between two solid bodies,
can be much reduced by hydrodynamic lubrication.
If a sheet of note paper is held horizontally above a
smooth polished table and dropped onto it with a
small horizontal velocity, it can be made to slide
smoothly many times as far as if the table were not
smooth, This is because, as the paper settles, the air
under it must flow outwards and this outflow produces
a tangential stress which enables enough pressure to
be built up in a very narrow space between paper and
table to support the paper out of contact with the
table. This tangential stress is much smaller than solid
contact friction stress. When the layer gets so thin
that lack of flatness or smoothness of paper or table

permits actual contact, the paper stops gliding. In
this experiment the layer of air continually decreases
in thickness, but if the sheet could be held at a very
small angle to the table and moved horizontally with
the wide gap in front, air would be swept in there and
would be forced to flow out through the narrower parts
of the gap. In this way a layer of air would separate
paper and table so long as the horizontal motion was
maintained. This principle is illustrated by means of
the toy shown in Fig. 5, which can be called a tee-
totum. This consists of three equal fat laminae made
of mica, which can be very flat. These are stuck to
the lower sides of three light arms which are rigidly
set to form a 120 triad from the center of which
rises a light vertical rod. The laminae are mounted
so that they are inclined upwards at an angle of half

. a degree or less with a plane normal to the axis Tod.

The teetotum is spun between finger and thumb in a
counterclockwise direction and dropped on a hori-
zontal table. It will spin for a very large number of
revolutions, but if it is spun in a clockwise direction
it stops instantly. In the film the direction of rotation
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5. The three laminae of the spinning toy are inclined

slightly upwards. When spinning counterclockwise the
front edges are higher.



6. Pressure distribution in a journal bearing with mini-
mum gap at the top. Shaft is rotating in a eounterclock-
wise direction,

is partly obscured by a stroboscopic effect when the
teetotum is spinning.

The principle illustrated by the teetotum is em-
ployed not only in slipper bearings, but also in the
Jubrication of a journal bearing in which a cylindrical
shaft rotates inside a cylinder of slightly greater di-
ameter. The shaft assumes a slightly eccentric position
so that there is a parrowing gap into which the oil
is dragged, so producing a high pressure. Beyond
the point where the clearance is a minimum, the gap
is expanding and the pressure is reduced.

This is illustrated in Fig. 6, which shows a journal
bearing with a fixed eccentricity in which the top of the
maer cylinder is the position of minimum clearance.
Three manometer tubes are connected with holes in
the outer cylinder, one just before the minimum cleat-
ance, one at this position, and the third as the same
distance beyond it. In Fig. 6 the shaft is seen rotating
in the counterclockwise direction. The level of the
lubricant in the right-band manometer is just as much
above that of the central one as that in the left-hand
manometer js below it. The situation is reversed
when the direction of rotation is reversed.

7. Cavitation bubbles in the low-pressure region of a
Jjournal bearing.

Very large pressures which can support large loads
can be produced if the fluid is very viscous or the gap
very small. The fluid, however, cannot support the
large npegative pressures which the last experiment
might lead us to expect, and cavitation bubbles may
occur. These can be seen in Fig. 7, which was taken
through a transparent journal and shows the fluid
downstream of the minimum clearance at the top of
the picture. The bubbles form at the position of mini-
o pressure marked AB in Fig. 7, and extend into
the widening gap to the position CD where the pres-
sure begins to rise again,

Kinematic Reversibility

The reversibility of the pressure when the direction
of rotation is changed in the experiment of Fig. 6
mmplies reversibility of flow. Some surprising results
of this reversibility are shown with the apparatus of
Fig. 8, in which the space between two concentric
cylinders is filled with glycerine. Dye is introduced

8. Kinematic reversibility in an annulus, (a) initial dyed-
element, (b) inner cylinder turned 4 turns forward, (¢)
inner cylinder turned back 4 turns.




9. Kinematic reversibility is achieved for the dved fluid

squnare and the rigid ring, but is not achieved for the
hit of yarn.

into the anoulus which forms a compact colored
volume (Fig. 8a). The inner cylinder is turned
through, say, N revolutions. When observed from the
side, the colored area seems to mix with the uncolored
glycerine (Fig. 8b), just as milk mixes with tea when
stirred in a cup, but on reversal of the motion the dye
suddenly collects into a compact mass when the
cylinder has been turned exactly N turns in reverse
(Fig. 8c). To understand the reason for this peculiar
behavior, one can observe what happens when looking
through the fluid in a direction parallel to the axis of
rotation. Omne sces the dyed areas being drawn out
into long, thin stréaks. On reversal of the motion of
the boundary, every particle retraces exactly the same
path on its return journey as on the outward journey,
and at every point its speed is the same fraction of the
boundary speed as it was at the same point on its
outward journey, so that when the boundary has re-
turned to its original position every particle in the
fluid has also done so and the original pattern of dye
is reproduced. Of course, molecular diffusion, which
is irreversible, is negligible during the time of this
experiment.

The motion of a rigid body suspended in a fluid is
also reversible, but that of a flexible body is not, be-
cause when the stresses in a flexible body are reversed
it changes its shape. This is illustrated in Fig. 9, where
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the rigid body is a small plastic ring with a gap to
mark its orientation. In Fig. 9a the gap is in the 12
o'clock position. The flexible body, consisting of a
piece of wool, is on the left and a rectangular pattern
of dyed fluid on the right. The inner cylinder was
then rotated in a clockwise direction (Fig. 9b), the
dye, ring and wool moved round in a clockwise
direction, and the ring rotated in 2 counterclockwise
direction about its center. The wool remained nearly
straight, because it was in fluid which was moving in
such a way as to stretch it. The dye almost disap-
peared. After the motion was reversed until the inner
cylinder was in its original position (Fig. 9c¢), the
rigid ring returned to its original position and orienta-
tion. The rectangle of dye reconstituted itself, but the
wool curled up because on the return path the viscous
stresses gave rise to a compressive stress along its
length which naturally made it collapse.

Falling Bodies and Sedimentation

The resistance of similar solid bodies moving at
low Reynolds numbers through a fluid are propor-
tional to their linear dimensions. The weight of a
sphere is proportional to the cube of its diameter.
When it is falling through the fluid, it weight is sup-
ported by the fluid resistance, so it will fall at a rate
proportional to the square of its diameter. Fig. 10

10. Two balls with 34-in. and 34-in. diameters fall in
syrup.
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shows two brass balls of diameters 34 inch and 3
inch falling in syrup. They can be released mechani-
cally. Background marks at equal intervals make it
possible to demonstrate their relative falling speeds.
The bigger ball is released when the smaller one has
traversed % of the distance to the lowest mark (Fig.
10a). The two balls reach this mark simultaneously
(Fig. 10b).

At low Reynolds numbers the disturbance produced
by a moving ball extends many diameters. Beads
suspended in a fluid at considerable distance from it
are moved, conversely, a solid body such as a wall

11. The sphere near the wall falls more slowly than an
identical one far from the wall.

can affect its rate of fall. Fig. 11 shows two identical
balls which were teleased simultaneously from the
same height. The one nearer the vertical wall falls
more slowly, but owing to the reversibility of low-
Reynolds-number flow it remains at a constant dis-
tance from it.

The retarding effect of neighbors makes a dispersed
suspension of particies fall more slowly than a single
one. Thus, when a suspension of particles falls in a
fluid it develops a sharply defined top. This happens

12, Twe boxes of assorted beads left to settle at the same
time. The box at left has a larger particle density.

even for a suspension of particles of assorted sizes, as
in this experiment. A particle which has a terminal vel-
ocity rather lower than its neighbors does not get left be-
hind, because if it did it would find itself isolated and
would fall faster and catch up the rest. Fig. 12 shows
two boxes, each containing fluid and sediment. They
were bath shaken and left to settle at the same moment.
The left-hand box has many particles and settles much
more slowly than the right-hand box, which has few.

Resistance of Long Thin Rods

When a body is not spherical, its resistance at low
Reynolds numbers is not the same for all directions
of motion. A long, thin body of revolution, for in-
stance, has twice the resistance to lateral motion that
it has to motion parallel to the axis. This was first
proved for the special case of a long ellipsoid, but is
true generally. Fig. 13 shows two identical rods which
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13. Identical cylinders falling in syrup. When released,
the bottom of the vertical cylinder was at the same height
as the horizontal cylinder.

were released simultaneously in syrup with the bottom
of the vertical rod at the same level as the horizontal
rod. This level was that of the uppermost of three
equally spaced marks., The photograph was taken
when the bottom of the vertical rod had just reached
the lowest mark and the horizonal rod was level with
the intermediate mark.

When a rod of uniform section and density is re-
leased obliquely, it does not change its orientation
but drifts sideways. At the terminal speed the net
weight is just balanced by the drag, which therefore
acts vertically. This drag is the resultant of two forces,
one parallel to the long axis and one perpendicular
to it. In the triangle of forces ABC (Fig 14a) these
are represented by C4 and BC, while the weight is
represenied by 4B. Since at low Reynolds number
the velocity of a body is proportional to the applied
force, and since for long cylinders a force moves the




body only half as fast when applied laterally as when
applied longitudinally, the triangle of velocity is ACD
where D is the midpoint of BC. AD therefore is the
direction of motion when the force on the cylinder
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14, Geometrie comsiruction of the “flight path®” of an
obliquely oriented cylinder.

acts in the direction of 4B. This geometrical con-
struction can be mechanized, using three drawing
pins F, C and E (Fig. 14b) on a vertical line FE of
which C is the midpoint. A draftsman’s square whose
rectangular corner is A can slide around making con-
tact on its two perpendicular sides with pins F and C.
The line joining A4 and E (which in a model could be
a thread attached to the corner A4 of the square) is the
direction of motion when the axis of the cylinder lies
parallel to AC. The lines AB and CB in Fig. 14b are
drawn parallel to 4B and CB in Fig. 14a to reveal the
geometry of the model. By observing the slope of AE
to the line 4B as the square is moved, it can be seen
that the maximum angle of inclination of the flight
path to the vertical is about 19 degrees.

Self-Propelling Bodies

All the familiar types of self-propelling bodies such
as airplanes, boats, or fish derive their thrust from the
inertial reactions of air or water to their propulsive
mechanisms. Even a swimming snake derives its pro-
pulsion by sending waves down its body so that each
section of it contributes a forward force component
by inertial reaction. The relevant Reynolds numbers
for these cases are often as high as many millions.
Even tadpoles, for which the Reynolds number is of
order 10% to 10°, derive their propulsion almost en-

15. Bull spermatozoa.
long.

Each sperm is about .005 em

tirely from inertial reaction. On the other hand, miero-
scopic organisms such as the bull sperms shown in
Fig. 15, though they make motions like those of tad-
poles, have such low Reynolds numbers (of the order
1073 if the over-all size is used in defining Reynolds
number or 109 if the diameter of the tail is chosen)
that they cannot derive any appreciable thrust from
inertia. They derive their forward thrust from viscous
reaction due to oblique motion of thin tails, just in the
way that has been demonstrated with an obliquely

. moving cylinder.

To illustrate the difference between inertial and
viscous propulsion, the two models shown in Fig. 16
were constructed. The “engines” of both consist of
twisted rubber bands. In the lower one a tail organ
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16. Mechanical swimming models in a vat of syrup.
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is made to oscillate by means of a crank, and in the
upper one two similar spiral wires, one right-handed
and the other left-handed, are driven in opposite direc-
tions of rotation by the twisted band to the ends of
which they are attached. When the oscillating-tail
model is put into the water it swims well, because, as
15 well known in the case of a boat rudder, such a
motion at a large Reynolds number gives rise o a
backward flow, the reaction to which propels the boat.
The spiral model propels itself much more stowly,
because the area of the wires is much smaller than
that of the oscillating blades so that it gets only a
feeble grip of the water and produces a much smalier
backward stream.

When the oscillating-tail model is wound up and
put into viscous syrup, the tail waves backwards and
forwards but produces no resultant motion because,
owing to the reversibility of low-Reynolds-number
flow, the forward motion of the blade is exactly neu-
tralized by the backward motion when it returns
through the same position.

The spiral model swims when put iato syrup, be-
cause every element of each spiral is behaving like
the obliquely moving rod. Since lateral resistance is
greater than longitudinal resistance, motion of every
element at right angles to the axis of the spiral contrib-
utes a resultant longitudinal component.

Hele-Shaw Cell

This apparatus consists of two parallel rectangular
glass plates fixed 0.020 inch apart. A viscous fluid is
driven through it under pressure applied at one side, the
two neighboring sides being sealed. Thus all particles
move parailel to the sealed sides when there is no ob-
struction, though at speeds which depend on the dis-
tance from the plates. Colored fluid is injected at points
along the injection side so that an observer sees a set of
paralie]l straight lines when the flow is unobstructed.

"When an obstruction is placed in the cell, the stream-
lines spread out around it and join together again down-
stream. The obstruction shown in Fig. 17 is a circular
disc of the same thickness as the distance of separation

17. Hele-Shaw flow past a circular disk,

18. Blurring of streamlines of a Hele-Shaw source and
uniform flow when the source strength is varied.

of the plates. That the visible streamlines are sharply
defined is due to two causes. The first is that motion is
steady. so that dye particles follow one another along
a fixed streamline. The second is that all particles on
a line perpendicular to the sheet move in the same
direction, though at different speeds, so that to an
eye observing the pattern along a line perpendicular
to the glass sheets the streamlines at all depths are
superposed when the motion is steady. If the obstacle
were to move or change its shape during the experi-
ment, the visible lines of colored particles would no
Jonger be superposed and would appear blurred. This
effect is shown in Fig. 18 where the obstacle has been
replaced by a source flow. Internal streamlines are
marked with red dye emitted from eight small holes
at a small radial distance from the source. As long as
the rate of delivery at the source is constant the bound-
ary of the fluid originating there is like a fixed obstacle
and the streamlines around it are sharply defined.
If the rate of delivery is changing, as it was when Fig.
18 was recorded, the colored streams are no longer
sharply defined, but they re-establish their definiteness
in a new position when the rate of delivery at the
source becomes constant at a new value. The interest
of the Hele-Shaw cell is that the streamlines observed
in this low-Reynolds-number flow have exactly the
same shape as those predicted theoretically for two-
dimensional flow of a fluid with no viscosity and there-

fore infinite Reynolds number.
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