amined. The timé rate of change of position of a line
of these points can be represented by velocity profiles,
If a small-

and these will usually have length scales associated

Iniroduction
The motion of a rigid body can be decomposed into
translation of one point in the body and rotation.
The motion of a deformable medium can be decom-
posed into translation of one material point, local

with them — related to their curvatures.
enough segment is examined, however, the profile can

be represented by straight lines;. looking at a still
smaller region then gives the same picture. By “local”
is meant the largest neighborhood in which the profiles
can be represented by straight lines. A local velocity

profile will look something like that in Fig. 1 to an

observer who himself moves with the reference point.
P
B

rotation, and local distortion of shape, usually called

the strain. Local rotation and distortion, together
called deformation, is the subject of this discussion.
First the deformation that takes place during a finite
time will be examined; later the rate of deformation
will be discussed. The discussion will be limited to
flows at constant density and for the most part to two-
dimensional flows (although the ideas carry over with
little change to compressible and three-dimensional

flows).
Understanding deformation is important to the un-
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Figure 1

derstanding of the general kinematics of motion. In

addition, from a dynamical point of view, deforma-
tion and its tirae derivatives determine the stresses in

most continuous media.
fluid is of primary interest in this film, a reference
point at the center of the element will be selected and

Since the deformation of a typical small element of
the relative motion of surrounding points then ex-

i,
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Characterization of the Flow

The film, DEFORMATION OF CONTINUOUS
MEDIA, shows an apparatus consisting of two endless
parallel belts immersed in a rectangular tank of glyc-
erine. The belts move in opposite directions at equal
speeds to produce a flow like that in Fig. 1. Glycerine
is used because its high viscosity establishes the flow
quickly, an/df in a short distance from the ends of the
parallel section.

Figure Z

The surface of this flow can be marked with powder;
the powder patterns move with the fluid. Figure 2 is
a multiple-exposure (at equal time intervals) photo-
graph of an initially vertical row of equally spaced
crosses. Note that the point in the middle does not

move — it can be taken as the reference point. The.

distances between successive images of the same point
are equal, and the paths are straight lines; this is a
steady flow with straight parallel streamlines. Since
displacement is proportional to velocity in a steady
flow, the velocity profile is evidently a straight lme.
Such a flow is called a steady rectilinear shear flow, or
a steady homogeneous shear. Because straight lines
remain straight, this flow evidently has no length scale
— similar patterns will distort similarly, no matter
what their size. This flow can be used as a model of
the local flow.

The Strain Ellipse

To examine systematically the distortion of the fluid
element whose center is at the reference point, a circle
of neighboring points can be marked, equally distant
from the reference and equally spaced (Fig. 3). The
lines joining the fluid point at the center to each of the
marked fluid points are fluid lines.

Figure 4 shows the pattern after 25 seconds; it is
not difficult to show that this shape is an ellipse. It is
called the strain ellipse.

Every other point has been numbered like the

Figure 3

Fignre 4

hours on a clock to help analyze the deformation.
We will now examine what happens to the different
fluid lines (or rays). Comparing Figures 3 and 4, it is
evident that there has been both distortion and rota-
tion of the rays, but of greatly variable amount. It is
not obvious how to characterize the rotation or the
stretching as a whole. For instance, different rays
have rotated different amounts: twelve o’clock has
rotated clockwise, while three o’clock has not rotated
at all.

The Principal Axes

The axes of symmetry of the ellipse represent the
directions of extreme strain (these are indicated on
Fig. 4, with their initial locations on Fig. 3). That is,
the point at the end of the major axis (dashed) has evi-
dently moved farthest from the reference point, while
that at the end of the minor axis (solid) has moved
closest. These axes appear to be (Fig. 3) at right
angles initially, in addition to being at right angles
after the deformation.* Therefore they rotate equal

*This can be shown to be mathematically precise for the
instants chosen. However, these particular fluid lines are
not at right angles at intermediate times.

T,
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amounts. No other pair of lines originally perpendicu-
lar to each other remains so. These so-called principal
axes can be used as a basis for the entire analysis of
deformation.

Measurement of Rotation

In Figures 3 and 4 the initial and final locations of
a pair of dotted lines on either side of -the major axis
are shown. Initially they are symmetrically placed
with respect to the major axis. The line on the right
evidently does not rotate as much as the major axis,
while the one on the left rotates more. Since the lines
are symmetrically placed with respect to the major
axis after the rotation, the average of the rotation of
these two lines must be the same as that of the major
axis. All the points on the ellipse can be paired this
way, hence, the principal axes rotate an amount tI;at
is the average of the amounts rotated by all the fuid
rays emanating from the reference point. Specifying
the angle through which the principal axes have ro-
tated is thus a convenient way of specifying the aver-
age rotation of the deforming fluid element.

The Reciprocal Sirain Ellipse

The numbered marks on the periphery of the circle
are a somewhat artificial way of finding the initial .

Figure 5
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position of the principal axes. It would be more satis-
fying to find an intrinsic way of marking the initial
position. Such a way can be found by asking the ques-
tion “What initial pattern will turn into a circle after
the deformation?” Since running this flow backward
is very much like running it forward, it can be antici-
pated that probably an ellipse with a backward orien-

-tation will turn into a circle.

In Fig. 5 is shown a pattern consisting of the old
circle plus a backward ellipse oriented about the in-
itial position of the principal axes. Figure 6 shows
what happens after deformation. The circle, of course,
turns into the strain ellipse, and the backward eilipse
turns into a circle. Notice that the axes of the strain
ellipse have grown out of the axes of the backward
ellipse. That is not surprising, since the minor axis of
the strain ellipse marks the point that has moved

‘closest, while the major axis of the backward ellipse

marks the point that will move closest, and vice-versa,
The backward ellipse is called the reciprocal strain
ellipse and the initial principal axes are its principal
axes. Thus, to discover the original principal axes of
any strain ellipse, we merely flip it over into the

‘reciprocal strain ellipse, and look at the principal axes

of the latter. The angle between the minor axis of
the reciprocal strain ellipse and the major axis of the
strain ellipse gives the average angle of rotation dur-
ing the deformation.

Properties of the Principal Axes

Two characteristics of the principal axes have al-
ready been noted. First, they each rotate an amount
equal to the average rotation of the fluid; and second,
they lie in the directions of exireme strain. There are
two more important properties associated with de-
formation in the absence of rotation. Such deforma-
tion without rotation is called pure strain. To study
it, a pattern based on lines paralle] to the axes of the
reciprocal strain ellipse is convenient.

Figure 7 shows such a pattern, and Fig. 8 a picture
of the same pattern after deformation. During the
deformation, the lines that were parallel remained
parallel but the spacing changed. The angle between
the two sets of lines also changed. While the defor-
mation progressed, these sets of lines were not at right
angles to each other. However, after the deformation
the lines are at right angles again. It is evident that
the displacement of a point in the direction of one
axis is not a function of position along the other axis.
This is a third important property of the principal
axes. A line initially parallel to a principal axis is
parallel to the same principal axis after deformation;
note, however, that the distance between any two
points on such a line changes during the deformation.

The principal axes can also be defined as those lines
which undergo no shear deformation, since they are



Figure 7

Figure 8

mutually perpendicular both before and after the
deformation. In Fig. 9, three sets of mutually per-
pendicular lines are shown, the principal axes (4, B)
and two other crosses. During the deformation all the
crosses were sheared, but after deformation (Fig. 10)
the principal axes (A, B) are again at right angles,
while the other pairs of lings, which also started out
at right angles, are no longer mutualy perpendicular.
This is the fourth major characteristic of the principal
axes: principal axes are the only pair of lines that are
mutually perpendicular before and after the deforma-
tion.

Figure 11 is a multiple-exposure photograph taken
of the patterns at equally spaced times. The reciprocal
strain ellipses corresponding to each of these instants
can be formed in this flow by reversing Fig. 11. Such
a mirror-image reversal has been superimposed on
Fig. 11 to make Fig. 12. (The major axes of the suc-
cessive strain ellipses and the minor axes of the cor-
responding reciprocal strain ellipses have been indi-
cated for future reference.) It is evident that as the
strain ellipse rotates one way, the reciprocal strain
ellipse rotates the other way, so that the initial loca-
tion of material points on the principal axes is differ-
ent at every instant. Put another way, this means

that the principal axes are made up of different mate-
rial points at every instant.

To describe the deformation as a function of time
it is necessary to give the rotation, and the strain, at
every time and for every neighborhood in the fluid.
According to the description developed above, this

¥iguare 9

Figure 10

would be in terms of the present location of the points
as a function of their initial position. This is called
a Lagrangian specification. The Lagrangian specifi-
cation is of great interest as a description of deforma-
tion in a solid, and it is also sometimes of interest in
a fluid. In a solid the material is tied together and
neighboring material points can never get very far
away from each other. In a fluid, however, there is
no primeval undeformed state to serve as a reference;
in an unsteady inhomogeneous flow, the relation be-
tween the present state and the initial state can be
extremely complicated. For that reason the deforma-
tion in a fluid is uwsually described in terms of the
rates of deformation at a particular place, at a particu-
lar time, using the present state as a reference; that
is, the rate of change from the present state, the rate
of change of the rate of change, and so on. Such a
specification, involving only laboratory coordinates, is
called an Fulerian specification. The number of deriv-

s
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Figure 11

Figure 12

atives that must be determined depends on how com-
plete a specification is needed, and that depends on
the use to which it will be put. Incidentally, a very
important reason for describing deformation is be-
cause stress depends on it. In many fluids stress is
quite accurately described by a function only of the
present rate of deformation, as for example in those
fluids obeying the Navier-Stokes equations (i.e. New-
tonian fluids). Our discussion will be limited to de-
formation rate,

Rate of Rotation

To analyze the present rate of deformation, “the
initial instant” of our previous discussion will always
be taken as the present, that is, the instant of special
interest.

The position of the principal axes at the initial
instant in this flow can be determined by an examina-
tion of Fig. 12; as time is successively closer to zero,
the major axis of the strain ellipse and the minor axis
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of the reciprocal strain ellipse not only approach each
other, but both approach 45 degrees. Forty-five de-
grees and 135 degrees are evidently the initial posi-
tions of the principal axes.

Since the amount of rotation at any instant can be
measured by the angle between the principal axes of
the strain ellipse and those of the reciprocal strain
ellipse, a picture like Fig. 12 could be used to infer the
rotation rate at the initial instant; it would be neces-
sary to measure the angle between the major axis of
the strain ellipse and the minor axis of the reciprocal
strain ellipse as a function of time from the initial in-
stant, then to differentiate to obtain the rafe at the
initial instant.

Since the principal azes have at each instant an
angular displacement that is the average of that of
all the other fluid lines, they have an angular velocity
which is the average of that of all the other fluid lines.
Thus their rotation rate is related to the moment of
momentum, or angular momentum, in the fluid. The
vorticity in the fluid is exactly twice the rotation rate
of the principal axes. The averaging property sug-
gests a simple experiment for exhibiting the average
rotation in the fluid,

Figare 13

The floats shown in Fig. 13 support a rigid wire
ring just above the surface; they are small enough
and far enough apart not to seriously affect the flow.
The ring may be expected to rotate at the average
angular velocity of the rays to each of the floats, be-
cause in this situation the clockwise and counter-
clockwise drags due to the relative motion will be
equal. This rotation can be removed by rotating the
frame of reference — that is, by rotating the camera
— so that the crosshairs on the circle are stationary.
The walls of the channel then appear to revolve in the
opposite direction.

The Deformation Relative to a
Rotating Frame

Having thus picked the correct average angular
velocity of the fluid by the foregoing experiment, the
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wire ring can be removed and a pattern placed on the
flow that consists just of the lines that will become
the principal axes at the initial instant. Viewed in the
rotating framework, Figures 14 and 15 show the
pattern slightly before and slightly after the initial
instant. At first the figure’s major axis is in the 135°
direction. The ellipse contracts in this direction,
reaches a circle, and expands to an ellipse with major
axis in the 45° direction. We can turn the pattern

Figure 14

Figure 1

so that the 135° and 45° lines — the principal axes
at the initial instant — can be used as coordinate axes.
It is only necessary to start the rotation at a different
time, relative to the time at which the fluid is marked,
and to view the moticn in the rotating frame previ-
~ ously established by the wire-ring experiment. Figure
16 (slightly before the initial instant) shows the bulge
coming in slightly to the right of the new ordinate, but
approaching the ordinate as the figure approaches a
circle. As the figure passes out through the circle

Figure 16

Figure 17

(Fig. 17 - slightly after the initial instant) the bulge
moves out along the abscissa,

At the instant that the figure passes through the
circle, the velocity is inward along the ordinate and
cutward along the abscissa. Since in the rotating
frame of reference the velocity is precisely inward
along one axis and outward along the other, it is obvi-
ous that the principal axes are the only pair of lines
that are not changing direction (relative to one an-
other) at the instant of interest; this is why this pair
of lines can be used to measure the rate of rotation of
the fluid region. In addition, at the instant of interest,
it is evident that these axes are in the direction of the
maximum rates of stretching and shrinking. These
axes are called the principal axes of strain rate.

Properties of the Principal Axes of
Strain Rate

In this rotating reference frame three of the proper-
ties of the principal axes have already been seen. At
the instant of interest, (1) they mark the directions
of extreme strain rate; (2) they rotate with the aver-
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age angular velocity of the fluid; and (3) they are not
only mutuaily perpendicular instantaneously, but they
are the only pair of lines whose included angle is not
changing, and therefore they are the only axes for
which the shear strain rate is zero. By analogy with
finite strain, a fourth property of these axes may be

Figore 18

expected. This was seen before by putting lines paral-
lel to the axes. Figure 18 shows such a paitern at the
instant of interest. The lines remain parallel as they
move toward or away from the axes. This means that
the velocity parallel to one principal axis is not a func-
tion of position relative io the other principal axis.

Conclusions

The analysis of deformation rate is similar to the
analysis of deformation itself. They can both be re-
solved into a rotation and a strain. In both there are
mutually-perpendicular principal axes that serve as
average representatives of the angular velocity, and
that lie in the directions of the extreme stretch, and
these directions are not changed by the strefch. In
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addition, the motion in the direction of one axis is noi
a function of position relative to the other axis. There
are differences, of course. The principal axes of strain
continually change direction as the deformation pro-
gresses. The principal axes of initial strain rate only
occupy one position. Generally speaking, deformation
rate is easier to describe mathematically than defor-
mation, but that is because an Eulerian specification
car be used. The fact that it is easier is not surpris-
ing, because it deals only with the first derivative of
the deformation at the initial instant. Fortunately, to
describe the stress in Newtonian fluids, deformation
rate is all that is needed.

To extend these observations to three-dimensional
situations, few changes are necessary. Direct and re-
ciprocal strain ellipses become ellipsoids. The velocity
profile in a very small region of an incompressible
fluid is a plane instead of a line. There are three
mutually-perpendicular principal axes for which the
strain is purely lineal; two of these axes have the
extrema of lineal strain. The reciprocal strain ellip-
soid cannot be obtained by simply turning over the
strain ellipseid, but it is defined in an analogous way,
i.e. as the surface that turns into a sphere. Deforma-
tion can still be analyzed into rotation and strain;
deformation rate into angular velocity and strain
rate. The principal axes still represent the average
rotation. They still are in the directions that are not
changed by the stretching. Sfrain rate in one prin-
cipal-axis direction is still not a function of position
along the other two axes.

No fundamental changes are required to include
compressibility; it is necessary only to allow the area
(or volume) of the pattern to change with time. The
conclusions are the same.
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