Introduction

In order to calculate forces exerted by moving fluids
and to calculate other effects of flows, such as trans-
port, we must be able to describe the dynamics of flow
mathematically. To discuss the dynamics, we have to
be able to describe the motion itself. The description
of motion is called kinematics. We are interested in
the kinematics of continuous media, that is, in de-
scribing the motion of deformable stuff that fills a
region. Specifically, we are interested in describing
the displacement, velocity, and acceleration of material
points in two kinds of reference frames commonly
used in fluid mechanics, We will show how these two
descriptions are related to one another.

In addition to moving from place to place, an ele-
mentary piece of fluid (a piece small compared to the
flow field) is usually distorted and rotated as it goes.
Here we focus our attention on the translation.*#

** Deformation is dealt with in the NCFMF filmm DEFOR-
MATION OF CONTINUQOUS MEDIA.

1. Computer simulation of steady flow in a contracting
channel. The open circles mark moving material points.
The dashed lines are the pathlines of the particles.

Figure 1 shows a computer simulation of the flow
of water through a contraction. Note that a few typical
material points are identified by open circles; we adopt
this convéntion throughout.
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Lagrangian Description

In elementary mechanics, we are accustomed to
describing the position of a material point as a func-
tion of time, using a vector drawn from some arbitrary
location to indicate the displacement. We will use

2. The open vector indieates displacement of a material
point from its initial location.

3. The velocity of a moving material point is indicated by
an open vector attached to it.

open vectors, (Fig. 2), to indicate velocity and dis--

placement relating to the material points. In a given
motion, we can compute velocity and acceleration of
such a point at each instant. In Fig. 3, we indicate the
velocity by a vector attached to the point. In a con-
tinuous fluid, of course, we have an infinity of mass
points and we have to find some way of tagging them
for identification. A convenient way, though not the
only one, is to pick some arbitrary reference time
(which we will call the initial time) and identify the
material point by its location at the time. Mathemat-
ically, we would say that the velocity is a Tunction of
initial position and time. To accord with this descrip-
tion, in Fig. 4 the vector is shown attached to the in-
itial position. We could show the vector attached to
the moving point, or use both, if we were displaying

4. The velocily of a moving material point is here indi-
cated by an open vector attached to its initial position.

5. Velociiy veetors displayed both at ‘the mbvig poinis
and at their initial locations.

6. The velocities of material points distributed thronghont

the flow field are displayed at the respective imitial posi-

tions of the points.

the motion of a group of points whose vectors do not
interfere with one another (Fig. 5). To display the
‘whole motion, and in more complicated situations, we
avoid interference by showing the vector only at the
initial location, as in Fig. 6. To describe the whole



motion, we would have to give the velocity of all the
pieces of matter in the flow as a function of time and
initial position.

Such a description, in terms of material points, is
called a Lagrangian description of the flow. The iden-
tifying co-ordinates are called Lagrangian, or some-
times material, co-ordinates. Given the Lagrangian
velocity field, we can easily calculate the Lagrangian
displacement by integration in time, and the accelera-
tion field by partial differentiation with respect to time.

7. A pressure gange is attached to one of the moving

points.

To make what we might call a Lagrangian measure-
ment, we can imagine attaching an instrument like a
pressure gauge to a fluid material point (Fig, 7). This
sort of measurement is attempted in the atmosphere
with balloons of neutral buoyancy. If the balloon does
indeed move faithfully with the air, it gives the Lagran-
gian displacement, i.e. the displacement of an identi-
fied fluid “element.” Such Lagrangian measurements
are actually very difficult, particularly in the laboratory.
We usuvally prefer to make measurements at points
fixed in laboratory co-ordinates; it is relatively easy to
kold an instrument at a fixed location.

8. An anemometer is placed at a fixed position in the flow
field.

Eulerian Description

Classically, the idea of a field, such as an electric,
magnetic, or temperature field, is defined by how the
response of a test body or probe, like the anemometer
in Fig. 8, varies with time at each point in some spatial
co-ordinate system. In Fig. 8 the fixed anemometer
probes in faboratery co-ordinates. We will always use

EULERIAN

9, The solid vectors indicate the velocities at fixed points
in the eontraction.

solid points and solid arrows to indicate such probing
positions, fixed in our laboratory, and the velocities
measured there.

In Fig. 9 we have a grid of points fixed in space
with an arrow at-each to indicate the velocity at each
point. A description like this which gives the spatial
velocity distribution in laboratory co-ordinates is
called an Eulerian description of the flow.

Relation Between Eulerian and
Lagrangian Frames

Although the physical field is the same, the Eulerian
and Lagrangian representations are not the same, be-

10. The open vectors indicate the Lagrangian veloeity of
the moving material point, The solid vectors indicate the
Eulerian velocities zt two fixed points. When the moving
point coinecides with a fixed point, the Eulerian and La-
grangian velocities eoincide.
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cause the velocity at a point in laboratory co-ordinates
does not always refer to the same piece of matter. Dif-
ferent material points are continually streaming through
the same laboratory point. The velocity that a fixed
probe indicates is the velocity of the material point that
is passing through the laboratory point (probe loca-
tion) at that instant (Fig. 10).

Change of Reference Frame

A possible advantage of laboratory co-ordinates
(and their Galilean transformations, which are also
Eulerian) is that the Eulerian field may be steady in
one of these frames. This is illustrated by the case of
a simple surface wave. Figure 11 is a computer simu-
lation of the flow under a free-surface gravity wave.
To make things clearer, the wave amplitude has been
rather exaggerated. Figure 12 is a close-up of the
same flow, showing moving material points, and their
pathlines. The Lagrangian velocities of the moving
points are indicated by arrows attached to the points.
In any flow, the Lagrangian field can only be steady
if each material point always experiences the samie

11. Computer simulation of a free-surface gravity wave
which maoves from left o right.

12. The dashed lines show the pathlines of material points
under a moving wave. The open vectors indicate the
Lagrangian velocities.

13. The solid arrows show the Eulerian velocities at points
fixed in the laboratory fiame of reference. (The Tulerian
velogity vectors rotate about the fixed points as the waves
pass.)

14. The Eulerian velocities (solid arrows) as seen from a

laboratory reference frame moving to the right at the wave
speed. In this frame, the fluid has an equal velocity di-
rected to the left, which adds with the material-point veloc-
ity in the original frame to produce the resultant Enlerian
velocities. The dashed line is the pathline of the particles.

velocity. This degenerate case happens only in a
steady parallel flow.

Figure 13 shows the Eulerian description. In this
wave motion neither the Eulerian nor the Lagrangian
description is steady. In fact, they have an identical
appearance. However, in this flow, if the laboratory
frame is moved with the wave speed, the Eulerian pat-
tern will become stationary. Figure 14 illustrates the
result; the translation velocity is indicated by an arrow
at the bottom. The velocities have been resolved into
components: one component is the velocity with which
the laboratory frame is translating; the other compo-
nent is the material point velocity in the original frame
of reference.

The pathlines are also streamlines in this frame of
reference, since the flow is steady. The pathlines re-
semble the form of the free surface. As the material
point passes through each laboratory point, its velocity
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is instantaneously the same as that of the laboratory
point. It is partly this possibility of eliminating time
as a variable that makes the Eulerian representation
attractive.

Most laws of nature are more simply stated in terms
of properties associated with material elements, that
is, quantities described in Lagrangian frames. But it
is nearly always much easier mathematically, when
describing a continuum, to deal with these laws in
Iaboratory co-ordinates. Thus, to write the conserva-
tion equations of fluid mechanics, one must be able to
transform from one set of co-ordinates to the other.
We will discuss first the relation between time deriva-
tives of a scalar field in a flowing fluid, in the two
types of co-ordinates.

Material Derivative in a Scalar Field

Let us imagine a river in which a radioactive tracer
is suddenly and uniformiy distributed. Since deriva-
tives measure local changes, let us look at an infinitesi-
mal part of this river. The dots in Fig. 15 symbolize

15. An expanded view of an infinitesimally small rec-
tangular area in a river. The dols represent decaying
radioactive tracer particles which are uniformly distrib-
uted there. The solid eircles are Iaboratory points; the
solid bars on the counters below indicate the level of
radioactivity at these fixed points. The open cirele is
moving on a streamline from one laboratory point to the
other; the open bar below indicates the level of radiocac-
tivity experienced by the moving point.

the tracer which is gradually decaying everywhere.
The filled-in circles represent two fixed (“laboratory”)
poinis which are infinitesimally close together on the
same streamline: they only appear to be far apart as a
resuli of our expanded view. Since in this case the
tracer was distributed uniformiy, the radioactivities at
the two laboratory points are the same, but are chang-
ing with time. Radiation counters are indicated at the
laboratory points. The solid bars on these Eulerian
radiation counters show the levels of radioactivity at
the two laboratory points. The level experienced by a
material point traveling from one laboratory point to

16. Sitmation at the instant the moving material point
coincides with the right-hand laboratory peint. At —

is the total change since it coincided with the Teft-hand
point,

the other is monitored by watching the open bar on
the Lagrangian counter carried by it. The dashed bar
represents the value recorded by the Lagrangian coun-
ter as the material point passed through the ieft-hand
laboratory point. From the before and after values
of the Lagrangian counter (Fig. 16) it is evident that
the traveling point sees just the same change that each
of the laboratory points sees. This can be written as
the time difference multiplied by the rate of change
with time, as indicated on the figure.

17. Now the tracer imtensity is greater upstream (as
shown by larger dots there) and falls off downstream.

- If the tracer is not uniformly distributed, but instead
has greater intensity upstream (Fig. 17), both intensi-
ties decrease with time as before. Just as before, the
only change experienced by a material point is due to
decay. The change seen at a fixed laboratory point is
not, however, since new material of originally higher
intensity is being swept past. To express the change
experienced by a material point, but in Eulerian vari-
ables, we need two terms (Fig. 18): (1) the change of
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18. The total change experienced by a material point as
it travels from one laboratory point to the other is the
sam of (1) the change with time at either lzboratory
point (the upper expression), and (2) the intensity dif-
ference between the laboratory peints at a fixed time (the
lower éxpression).

intensity with time at a fixed point, and (2) the inten-
sity difference between neighboring laboratory points
at a fixed time. The total change when the material
point has reached the right-hand laboratory point is
given by the difference in level between the dashed
counter on the left and the Lagrangian counter. The
change with time experienced by either laboratory
point (they have only infinitesimal separation) is given
by the difference in level between the dashed counter
and the FEulerian counter on the left, and can be
written, as before, as the time difference multiplied by
the spatially local rate of change with time.

The change due to the intensity difference between
the laboratory points at any time is indicated by the
difference in level between the two Eulerian counters,
and can be written as the distance traveled multiplied
by the spatial gradient in the direction traveled. The
distance traveled can be written as the time difference

19. The total change is the sum of the two expressions in
Fig. 18. The expression in brackets is the material deriva-
tive,

multiplied by the magnitude of the velocity. The total
change (Fig. 19) is the sum of the two changes de-
scribed. Material, or substantial, derivative is the
name given to the expression multiplying the time dif-
ference in Fig. 19. This is simply the time rate of
change experienced by the material point as it passes
the laboratary point, expressed in laboratory co-ordi-
nates. The importance of this point cannot be over-
emphasized. Since this derivative operator occurs in
every Eulerian conservation equation, we often give
it a special symbol in fluid mechanics:
DR _ 3R | ;3R
Dt 8t dx

In vector notation, the velocity times the gradient in
its direction can be written as the scalar product of
velocity and the gradient vector:

DR SR

Dr o + (U- )R,
Material Derivative in a Steady
Yector Field

We are also interested in the material derivative of
a vector field, such as the velocity, particularly be-
cause the material derivative of the velocity expresses
the acceleration in a form which we need for the mo-
mentum equation in an Eulerian frame.

The expression deduced for the material derivative
of a scalar field is correct for each component of a

20. The solid cireles are fixed laboratory points infinitesi-
mally elose together in a magnificd view of an arbitrary
steady flow. The solid vectors indicate velocities at the
laboratory points. The open vectors indieate the velocity
of the moving material point (the open circle).

vector field, but we can also operate on the vector field
directly. The two laboratory points in Fig. 20 are an
infinitesimal distance apart on the same pathline. The
material point travels from one to the other. The
material point velocity is indicated by open arrows
attached to it, and to its “initial” location, the left-
hand laboratory point. Although the flow_is steady in
the laboratory frame, the moving material point ex-
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21. When the material point arrives at the right-hand lab-
oratory point, the change in velocity it has experienced is
the difference hetween the Eulerian (solid) veetor and the
Lagrangian vector at the left-hand laboratory point.

periences change as it travels through regions where
the steady velocity is different. The total change is
simply the difference between the velocities at the two
laboratory points, indicated by the solid Eulerian
vectors. The difference between the Rulerian vector
and the Lagrangian vector at the left-hand poist gives
at each instant the change that the material point has
experienced. The total change (Fig. 21) when it ar-
rives at the right-hand point, a vector distance Ar away,
after a time Az, is the vector distance traveled times
the. gradient of the velocity. The distance traveled is
just the time difference times the velocity.

Material Derivative in an Unsteady
Vector Field

¥ the velocity of the entire flow changes with time,
the Eulerian vectors (at fixed laboratory points) also
change with time (Fig. 22). For clarity, we include as

22, The velocity field is here changing with time. The
dashed vector shows the initial value at the left-hand lab-
oratory point; the solid vectors show the values at the
fixed laboratory points; the open vectors show the velocity
of the moving material point.
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a dashed vector the initial value of the left-hand
Eulerian vector, in addition to placing the Lagrangian
vector at the left-hand point. When the material point
arrives at the right-hand laboratory point (Fig. 23) the -
total change it has experienced is the difference be-

23. The material point has arrived st the right-hand Iab-

U

oratory point. The total change has two parts. At ot

is the temporal velocity difference; At (U - V) U is the
spatial veloeity difference,

tween the dashed vector and the Lagrangian vector.
But this can be broken into two parts: the difference
between the velocities at the left and right-hand lab-
oratory points at this instant is given by the difference
between the Eulerian apd Lagrangian vectors on the
left. The change each laboratory point has undergone
during this time is given by the difference between the
dashed and the Eiilerian vectors on the left. The
spatial velocity difference can be written as before as

24, The total change is the veetor sum of the two compeo-
nents in Fig. 23. The material derivative is the expression
multiplying the time difference.

the time difference times the velocity times the gradient
of the velocity. The temporal velocity difference can
be written as the time difference times the rate of
change with time at a laboratory point. The total
change is the vector sum of the two effects (Fig. 24).
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The material (or substantial) derivative is just the ex-
pression multiplying the time difference. This is the
rate of change seen by the material point as it passes
the laboratory point, written in laboratory co-ordinates.
The acceleration, more simply written in a Lagrangian
frame, has been expressed in an Eulerian frame.

Summary

To summarize: we can “tag” the material points in
a flow by using their locations at some reference time,
and then give their displacements, velocities, and ac-
celerations as functions of time and initial positions.
This is called a Lagrangian description. Alternatively,
we can choose a “laboratory” co-ordinate system arbi-
trarily, and probe to find the displacement, velocity,
and acceleration at points fixed in that system. This
is called an Fulerian description, and it has the ad-
vantage that some fields are steady in a correctly-
chosen frame of this type. In many problems, Eulerian
frames are mathematically enormously more conveni-
ent, so we nearly always write the conservation equa-

tions for a continuum in this system. It has the disad-
vantage that we are not always referring to the same
material point. We can, however, transform between
Eulerian and Lagrangian systems by using the fact
that displacement and velocity at a laboratory point
are the displacement and velocity of the material point
that happens to be there.

To express in Eulerian field variables the change ex-
perieficed by a moving material point, we must take
into account not only the change with time of proper-
ties at a fixed point, but also the change of properties
with position at a fixed time.
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