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6.7 Thermohaline (double-diffusive) instability in a porous

layer
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−−−−−−−−−−−−−
In Salton Sea geothermal field of Imperial Valley, California, the temperature in the hotwater
reservoir can be 360◦C. Salinity in groundwater is as high as 2.5× 105 ppm. Due to sharp
contrast of thermal and salt diffusivities (κT ∼ 1.5 × 10−7m2/s,κS ∼ 1.5 × 10−9m2/s),
convection can result from instability. This is called thermohaline convection.

In the context of oceanography, this mechanism was first discovered by Melvin Stern
(1960).
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6.7.1 Heuristic picture

Monotone instability

Consider a fluid lighter at the top and denser at the bottom, with T and C shown in
Figure 6.7.1. so that dT/dz, dC/dz > 0.

Figure 6.7.1: Salinity and temperature profiles favoring monotonic instability in a porous
medium

Let a fluid parcel rise from z to z + ∆z. Because the thermal diffusivity κm is much
greater than the mass difffusivity of salt, κs, the rising water parcel absorbs heat much more
quickly than it absorbs salt. Hence, it can becomes lighter than the surrounding fluid and
continue to rise. If a fluid parcel drops by ∆z, the faster heat loss can make it heavier than
its sourounding fluid and sinking continues. Thus the fluid system can be unstable. This
instability leads to fingering. See Figure 6.7.2 for the Hele-Shaw model of fingering in a
porous medium Imhoff & Green have also given laboratory evidence of fingering as a result
of such instability as shown in Figure ??. The mechanism can be of interest in the transport
of contaminants in ground water.

Motivated by oceanographic interest, Turner has performed laboratory experiments shown
in Figure 6.7.5 for more rapidly diffusing salt solution on top of denser sucrose solution. Fig-
ure 6.7.5 shows the fingering by pouring hot dilute salt solution on top of a stable temperature
gradient.

Oscillatory instability Consider a cold and fresh water lying over a warm and salty water.
Assume that the the fluid density decreases with height. The profiles of T and C are shown
in figure 6.7.6 so that dT/dz, dC/dz < 0.

A lighter fluid parcel accidentally moved up by ∆z will cool off quickly while losing
little salt. Hence, it will come down, resulting in oscillations. However, theory will show
later that the noninstantaneous heat transfer leads to unstable growth of the oscillations,
resulting in a mixed layer where the salinity and temperature are relatively uniform. At
the top of this mixed layer, the salinity is rather discontiuous because of weak diffiusivity.
But the temperture profile has a smoother transition because of the large diffusivity. The
density profile is contiuous. Now this thermal boundary layer is like a Rayleigh -Benard
(or Horton-Rogers-Lapwood) problem. When the jump become large enough The critical
Rayleigh number is exceeded so that Benard/Lapwood convection cells appear as sketched in
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Figure 6.7.2: Development of fingering at the interface of salt/sugar solutions. (Griffiths,
1981)

Figure ??. This process continues until another mixed layer develops. Eventually a staircase
profile is developed, as sketched in figure 6.7.8.
We shall explain the initial instability theory.

6.7.2 Governing equations

Conservation of Fluid Mass:

∇ · ~u = 0 (6.7.1)

Conservation of fluuid momentum:

0 = −∇p− µ
k
u+ ρf~g (6.7.2)

Energy:

σ
∂T

∂t
+ u ·∇T = κm∇2T, (6.7.3)

σ =
(ρc)fluid
(ρc)mix
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Figure 6.7.3: Fingering at salt/sucrose interface, by Imhopf and Green.

Conservation of Salinity :

n
∂C

∂t
+ u ·∇C = κs∇2C (6.7.4)

Equation of state:
ρf = ρ0 [1− β (T − T0) + βs (C − C0)] (6.7.5)

Note the sign difference of thermal expansion coefficient and salinity.
Static equilibrium:

u = 0 (6.7.6)

Ts = T0 +∆T
³
1− z

H

´
Cs = C0 +∆C

³
1− z

H

´
(6.7.7)

PS = P0 − ρ0g

∙
z − β

2
∆T

µ
2z − z

2

H

¶
+
βS
2
∆C

µ
2z − z

2

H

¶¸
(6.7.8)

6.7.3 Perturbed flow

Let u = u0 be the velocity disturbance, and let

T = Ts + T
0, p = ps + p

0, C = Cs + C
0

The perturbations must satisfy:
∇ · u0 = 0 (6.7.9)

0 = −∇p0 − µ
k
u0 − ρ0 (βT

0 − βsC
0)g (6.7.10)

σ
∂T 0

∂t
− w0∆T

H
= κm∇2T 0 (6.7.11)

n
∂C 0

∂t
− w0∆C

H
= κs∇2C 0 (6.7.12)
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Figure 6.7.4: Fingering along the interface of a salt solution (more diffusive and lighter) on
top a sugar solution (less diffusive and heavier). J. S. Turner in Double Diffusive Convection,
edited by A Brandt an H.J. Fernando, 1995

6.7.4 Normalization

(x, y, z) = H(x∗, y∗, z∗), ∇ = ∇
∗

H

t =
σH2

κm
t∗, u0 =

κm
H
u∗ T 0 = |∆T |T ∗ (6.7.13)

C 0 = |∆C|C∗ p0 =
µκm
k
p∗

The dimensionless equations, are, with ∗ omitted for brevity,
∇ · u = 0 (6.7.14)

−∇p− u+
µ
RaT − Ras

Le
C

¶
e3 = 0 (6.7.15)

∂T

∂t
− w = ∇2T (6.7.16)

Le

µ
n
∂C

∂t
−W

¶
= ∇2C, (6.7.17)



6

Figure 6.7.5: Fingering due to double-diffusive stability/instability in water. J. S. Turner in
Double Diffusive Convection, edited by A Brandt an H.J. Fernando, 1995

where

Ra =
gβkH∆T

νκm
= thermal Rayleigh No. (6.7.18)

Ras =
gβskH∆C

νκs
= salinity Rayleigh No. (6.7.19)

Le =
km
ks
= Lewis No.. (6.7.20)

Note that

Ras = RaN Le, (6.7.21)

where

N =
βs∆C

β∆T
(6.7.22)

can be either positive or negative. Taking curl of Eqn. (6.7.15)

∇× u = Ra {(Ty −NCy) e1 − (Tx −NCx) e2} . (6.7.23)
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Figure 6.7.6: Salinity and temperature profiles favoring oscillatory instability in a porous
medium

Figure 6.7.7: From Kundu fig 11.9

Taking curl of the above and using ∇ · u = 0
∇2u = −Ra {(Txz −NCxz) e1 + (Tyz −NCyz) e2 (6.7.24)

− [(Txx + Tyy)−N (Cxx + Cyy)] e3} . (6.7.25)

The z component is

∇2w = Ra ¡∇22T −N∇22C¢ , ∇2 = ∂2

∂x2
+

∂2

∂y2
(6.7.26)

with the boundary conditions,

w = T = C = 0, at z = 0, 1. (6.7.27)

Consider sinusoidal disturbances W
T
C

 =
 W̃

T̃

C̃

 e−iωt+i`x+imy (6.7.28)
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Figure 6.7.8: From Kundu, Fig 11.7b

From Eqn. (6.7.26) ¡
D2 − a2¢ W̃ = −a2Ra

³
T̃ −NC̃

´
(6.7.29)

From Eqn. (6.7.16)
−iωT̃ − W̃ =

¡
D2 − a2¢ T̃ (6.7.30)

From Eqn. (6.7.17) ³
−iωnC̃ − W̃

´
Le =

¡
D2 − a2¢ C̃ (6.7.31)

where

D =
d

dz
and a2 = `2 +m2

The boundary conditions are

W̃ = T̃ = C̃ = 0, z = 0, 1 (6.7.32)

Applying the operator ¡
D2 − a2 + iω¢ ¡D2 − a2 − iωnLe¢

on Eqn. (6.7.29) and using Eqns. (6.7.30) and (6.7.31), we get¡
D2 − a2 + iω¢ ¡D2 − a2 + iωnLe¢ ¡D2 − a2¢ W̃
−a2Raσ ¡D2 − a2 + iωnLe¢ W̃ + a2Ras

¡
D2 − a2 + iω¢ W̃ = 0 (6.7.33)

The boundary conditions are
W̃ = 0 (6.7.34)

D2W̃ = 0 see (6.7.29) (6.7.35)

D4W̃ = 0 see (6.7.30) & (6.7.31) (6.7.36)
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Similarly one can show that D2nW = 0 on the boundaries. Assume the solution

W = sin jπz (6.7.37)

we get from Eqn. (6.7.33) the eigenvalue condition,

− ¡j2π2 + ω2
¢ ¡
j2π2 + a2 − iω¢ ¡j2π2 + a2 − iωnLe¢

+a2Raσ
£
j2π2 + a2 − iωnLe¤

−a2Ras
£
j2π2 + a2 − iω¤ = 0 (6.7.38)

In general ω is complex. At the threshold of instability, ω = real. From the the real part of
(6.7.38):

σRa−Ras = (j2π2 + a2)

a2
− nLe
a2

ω2 (6.7.39)

From the imaginary part of Eqn. (6.7.38):

ω [nLe(σRa)−Ras] = ω

∙
(j2π2 + a2)

a2
(1 + nLe)

¸
(6.7.40)

Both these equations respresent instability thresholds and must hold for real ω.

6.7.5 Monotonic instability

There is no oscillation and the real part of ω is also zero. It follows from (6.7.39) that

σRa−Ras = (j2π2 + a2)
2

a2
(6.7.41)

When there is no salinity, ∆C = 0 and only temperature variation in the background, it
is necessary that ∆T > 0 (or σRa > 0 , warmer water is at the bottom) for instability.
Similarly, when there is no temperature variation (∆T = 0) and only salinity variation,
∆C < 0 ( or Ras < 0 ) is necessary for instability. With both effects present, we expect
that σRa−Ras > 0 corresponds to instability. In particular to find the lowest threshold of
instability as a function of a, we take j = 1, we take

∂

∂a2
(σRa−Ras) = 0 → a2 = π2 (6.7.42)

Therefore, the lowest threshold for ω = 0 gives

σRa− Ras = 4π2 (6.7.43)

which is a straight line in Figure 6.7.9. The region of instabilty but lie to the right of this
line.
In a Hele-Shaw experiments Griffiths (1981) showed how the fingers evolve after a long

time, see Figure 6.7.10
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Figure 6.7.9: Domains of montonic stability and instability

6.7.6 Oscillatory instability

We now assume that the real part of ω 6= 0. From Eqn. (6.7.40)

nLe(σRa)−Ras = (j2π2 + a2)
2

a2
(1 + nLe)

The lowest threshold of oscillatory instability is at : j = 1, a2 = π2

nLe(σRa)−Ras = 4π2(1 + nLe) (B) (6.7.44)

If nLe(σRa)−Ras > 4π2(1+nLe), oscillatory instability occurs. The frequency of oscillation
ω is given by Eqn. (6.7.39)

nLeω2

π2
= 4π2 − (σRa− Ras) (6.7.45)

Since ω is real, we have on the one hand,

4π2 ≥ σRa− Ras , (A) (6.7.46)

for instability. The equality sign is one boundary.
The second boundary is defined by Eqn. (6.7.44) which is a straight line that intersects

with Eqn. (6.7.46) at

(σRa)c = 4π
2 nLe

nLe− 1 and (Ras)c =
4π2

nLe− 1 . (6.7.47)

Example: nLe = 2(> 1)

(σRa)c = 8π
2, (Ras)c = 4π

2
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Figure 6.7.10: Development long after fingering at the interface of salt/sugar solutions.
(Griffiths, 1981)

Hence the wedge-like region (doubly hatched) of oscillatory instability is in the first quadrant
of Figure 6.7.11.
Example: nLe = 1/2(< 1)

The second boundary intersects with the first at

(σRa)c = −4π2 (Ras)c = −2
¡
4π2
¢

In this case the wedge-like region (doubly hatched) of oscillatory instability is in the third
quadrant of Figure 6.7.12.

−−−−−−−−−−−−−−−
Fingering induced by double-diffusive instabilty occurs in oceans where there are strong

gradients of temperature and salinity. It has been observed and recorded in Mediteranian
Sea ”below the warm salty Mediteranian outflow in the eastern North Altlantic and in the
western tropical North Altlantc” (Schmitt, 1994). This is reflected by the staircase structure
of temperature and salinity profiles, see Figure 6.7.13.
An additional laboratory demonstrations by J.S. Turner is shown in Figure 6.7.14.
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Figure 6.7.11: Domains of stability/instability for nLe = 2.

Figure 6.7.12: Domains of stability/instability for nLe = 1/2.
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Figure 6.7.13: Vertical profiles in sea water near Barbados, showing thermohaline staircasses
(Schmitt, 1994)
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Figure 6.7.14: Fingering near a melting ice in a salt-stratified water. J. S. Turner in Double
Diffusive Convection, edited by A Brandt an H.J. Fernando, 1995


