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6.7 Thermohaline (double-diffusive) instability in a porous
layer
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In Salton Sea geothermal field of Imperial Valley, California, the temperature in the hotwater
reservoir can be 360°C. Salinity in groundwater is as high as 2.5 x 10° ppm. Due to sharp
contrast of thermal and salt diffusivities (kp ~ 1.5 x 107"m?/s, ks ~ 1.5 x 107m?/s),
convection can result from instability. This is called thermohaline convection.

In the context of oceanography, this mechanism was first discovered by Melvin Stern
(1960).



6.7.1 Heuristic picture

Monotone instability

Consider a fluid lighter at the top and denser at the bottom, with 7" and C' shown in
Figure 6.7.1. so that dT'/dz,dC/dz > 0.
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Figure 6.7.1: Salinity and temperature profiles favoring monotonic instability in a porous
medium

Let a fluid parcel rise from z to z + Az. Because the thermal diffusivity k,, is much
greater than the mass difffusivity of salt, k,, the rising water parcel absorbs heat much more
quickly than it absorbs salt. Hence, it can becomes lighter than the surrounding fluid and
continue to rise. If a fluid parcel drops by Az, the faster heat loss can make it heavier than
its sourounding fluid and sinking continues. Thus the fluid system can be unstable. This
instability leads to fingering. See Figure 6.7.2 for the Hele-Shaw model of fingering in a
porous medium Imhoff & Green have also given laboratory evidence of fingering as a result
of such instability as shown in Figure ??. The mechanism can be of interest in the transport
of contaminants in ground water.

Motivated by oceanographic interest, Turner has performed laboratory experiments shown
in Figure 6.7.5 for more rapidly diffusing salt solution on top of denser sucrose solution. Fig-
ure 6.7.5 shows the fingering by pouring hot dilute salt solution on top of a stable temperature
gradient.

Oscillatory instability Consider a cold and fresh water lying over a warm and salty water.
Assume that the the fluid density decreases with height. The profiles of T" and C' are shown
in figure 6.7.6 so that d7'/dz,dC/dz < 0.

A lighter fluid parcel accidentally moved up by Az will cool off quickly while losing
little salt. Hence, it will come down, resulting in oscillations. However, theory will show
later that the noninstantaneous heat transfer leads to unstable growth of the oscillations,
resulting in a mixed layer where the salinity and temperature are relatively uniform. At
the top of this mixed layer, the salinity is rather discontiuous because of weak diffiusivity.
But the temperture profile has a smoother transition because of the large diffusivity. The
density profile is contiuous. Now this thermal boundary layer is like a Rayleigh -Benard
(or Horton-Rogers-Lapwood) problem. When the jump become large enough The critical
Rayleigh number is exceeded so that Benard /Lapwood convection cells appear as sketched in
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Figure 6.7.2: Development of fingering at the interface of salt/sugar solutions. (Griffiths,

1981)

Figure ??. This process continues until another mixed layer develops. Eventually a staircase

profile is developed, as sketched in figure 6.7.8.
We shall explain the initial instability theory.

6.7.2 Governing equations

Conservation of Fluid Mass:

Conservation of fluuid momentum:

M —
0=—Vp—Tutpsg

Energy:

T
a%;+u-VT=Kmv%:

(PC) fluid
(pc) miz

(6.7.1)

(6.7.2)

(6.7.3)
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Figure 6.7.3: Fingering at salt/sucrose interface, by Imhopf and Green.

Conservation of Salinity :

oC B 9
ng+u-VC—HSVC

Equation of state:
pr=po[l = B(T —1Tp) + Bs (C — Cy)]
Note the sign difference of thermal expansion coefficient and salinity.
Static equilibrium:

u:

T, = To+ AT

1)
z
)
2 2
PS:P0—p0g|:Z—§AT<ZZ—E> BS C< %):|

6.7.3 Perturbed flow
Let u = u’ be the velocity disturbance, and let
T:T3+T/7 p:ps+p,7 C:Cs+C,

The perturbations must satisfy:

(1
C, = CO+AC(

V-u=0
0=—Vp — Lol — oo (BT = .C) g
or' AT ,
W=D — T
o T w' 7 = KknV
! A
naC —w' A0 _ = K, V2C'

ot H

(6.7.4)

(6.7.5)

(6.7.6)

(6.7.7)

(6.7.8)

(6.7.9)
(6.7.10)

(6.7.11)

(6.7.12)
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Fig. 4. Shadowpraph of a difusive interlace set up by poaring 2 layer of NaCl solution (the mors rapilly diffosivg
solute) on top of a Jayer of denser sucrose solution. .

Figure 6.7.4: Fingering along the interface of a salt solution (more diffusive and lighter) on
top a sugar solution (less diffusive and heavier). J. S. Turner in Double Diffusive Convection,
edited by A Brandt an H.J. Fernando, 1995

6.7.4 Normalization

v*
— H * % % -
(x7y7z) (x 7y 72 )’ H
oH? K
t = —t* '=Zut T =|AT|T* 6.7.13
—r, w2 AT] (6.7.13
The dimensionless equations, are, with * omitted for brevity,
V-u=0 (6.7.14)
Rag
~Vp—u+ (RCLT - La C’) e3 =0 (6.7.15)
e
oT 9
— —w=VT 6.7.16

Le <n%—? - W> = V2C, (6.7.17)



1o LABORATORY MODELS OF DOUBLE-DIFFUSIVE PROCESSES

Fig. 5. Halt fingers fonmed by pouring bot, dilute sall selution, dyed with Muorescein, on op of a stalde emperaiise
gradient.

Figure 6.7.5: Fingering due to double-diffusive stability/instability in water. J. S. Turner in
Double Diffusive Convection, edited by A Brandt an H.J. Fernando, 1995

where
kHAT
Ra = gﬂT = thermal Rayleigh No. (6.7.18)
HA
Ra, = 9ORHAC = salinity Rayleigh No. (6.7.19)
VK
K :
Le = T = Lewis No.. (6.7.20)
Note that
Ras = Ra N Le, (6.7.21)
where
A
N = 820 (6.7.22)

- BAT
can be either positive or negative. Taking curl of Eqn. (6.7.15)

Vxu=Ra{(T,— NCy)er — (T, — NC,) ez} . (6.7.23)



Figure 6.7.6: Salinity and temperature profiles favoring oscillatory instability in a porous
medium
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Distributions of salinity, temperature, and density, generated by heating a linear salinity
gradient from below.

Figure 6.7.7: From Kundu fig 11.9

Taking curl of the above and using V-u =0

V2u — —RCL {(T$Z - Nc’zz) (531 + (Tyz - Noyz) €2 (6724)
— [(Tow + Tyy) — N (Cop + Cly)] €3} (6.7.25)

The z component is

0*  0?

2 2 2 _
V*w = Ra (V3T — NV30) , Vs, = 52+ o (6.7.26)
with the boundary conditions,
w=T=C=0, at z=0,L. (6.7.27)
Consider sinusoidal disturbances
wy\ (W
T — T e—iwt—l—iﬁx-‘rimy (6728)
C C
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(b) Diffusive regime ,

lig. 11.7 Two kinds of double-diffusive instabilities. (a) Finger instability, showing up- and
lown-going salt fingers and their temperature, salinity, and density. Arrows indicate direction of
aotion. (b) Oscillating instability, finally resulting in a series of convecting layers separated by
diffusive” interfaces. Across these interfaces T and S vary sharply, but heat is transported much

aster than salt.

From Eqn. (6.7.26)

From Eqn. (6.7.16)

From Eqn. (6.7.17)

where

Figure 6.7.8: From Kundu, Fig 11.7b

(D2 — a2) W = —a’Ra (T — NC’)

—iwT — W = (D2 —a2)T

(—iwné’ — W) Le = (D2 — a2) C

d
D=— and a® = 2 +m?
dz

The boundary conditions are

Applying the operator

W:T:é:o, Z:O,].

(D2 —a’+ iw) (D2 —a® - iwnLe)

on Eqn. (6.7.29) and using Eqns. (6.7.30) and (6.7.31), we get

(D2 —a’+ iw) (D2 —a’+ iwnLe) (D2 — az) W

—a’Rao (D2 —a®+ iwnLe) W+ a’Ra, (D2 —a®+ iw) W =0

The boundary conditions are

W=0
D*W =0 see (6.7.29)
D*W =0 see (6.7.30) & (6.7.31)

(6.7.29)

(6.7.30)

(6.7.31)

(6.7.32)

(6.7.33)

(6.7.34)
(6.7.35)
(6.7.36)



Similarly one can show that D?*"W = 0 on the boundaries. Assume the solution
W =sin jrz (6.7.37)
we get from Eqn. (6.7.33) the eigenvalue condition,

— (j27r2 + w2) (j27r2 +a® — iw) (j27r2 +a® — iwnLe)
+a’Rao [j*7* + a® — iwnLe]
—a’Ra, [j°m* 4+ @® — iw] =0 (6.7.38)

In general w is complex. At the threshold of instability, w = real. From the the real part of
(6.7.38):
2 2 | 2 I
oRa — Rag, = Um :—a )_n 2ew2 (6.7.39)
a a

From the imaginary part of Eqn. (6.7.38):

j27T2 + a2>

wnLe(ocRa) — Ras| = w ( (1+nLe) (6.7.40)

a?

Both these equations respresent instability thresholds and must hold for real w.

6.7.5 Monotonic instability

There is no oscillation and the real part of w is also zero. It follows from (6.7.39) that

22 2\2

ocRa — Ra, = —(‘7 T —2|—a ) (6.7.41)

a
When there is no salinity, AC' = 0 and only temperature variation in the background, it
is necessary that AT > 0 (or cRa > 0 , warmer water is at the bottom) for instability.
Similarly, when there is no temperature variation (A7 = 0) and only salinity variation,
AC < 0 (or Ras < 0) is necessary for instability. With both effects present, we expect
that o Ra — Ras > 0 corresponds to instability. In particular to find the lowest threshold of

instability as a function of a, we take j = 1, we take

%(O’Ra — Ra,) =0 — a® = r? (6.7.42)

Therefore, the lowest threshold for w = 0 gives

oRa — Ra, = 47° (6.7.43)

which is a straight line in Figure 6.7.9. The region of instabilty but lie to the right of this
line.

In a Hele-Shaw experiments Griffiths (1981) showed how the fingers evolve after a long
time, see Figure 6.7.10
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Figure 6.7.9: Domains of montonic stability and instability

6.7.6 Oscillatory instability
We now assume that the real part of w # 0. From Eqn. (6.7.40)

2 2 2\2
nLe(cRa) — Rag = %(1 +nLe)

The lowest threshold of oscillatory instability is at : j = 1, a® = 72

nLe(ocRa) — Ra, = 47*(1 + nLe)| (B) (6.7.44)

If nLe(ocRa)— Ra, > 472(1+nLe), oscillatory instability occurs. The frequency of oscillation
w is given by Eqn. (6.7.39)

nLew?
2

= 47* — (0 Ra — Ra,) (6.7.45)

™

Since w is real, we have on the one hand,

47* > oRa — Ra,|, (A) (6.7.46)

for instability. The equality sign is one boundary.
The second boundary is defined by Eqn. (6.7.44) which is a straight line that intersects
with Eqn. (6.7.46) at

nLe 472
d (Ras),.= .
nle—1 (Ras). nle — 1

(0Ra), = 47 (6.7.47)

Example: nLe = 2(> 1)
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Figure 6.7.10: Development long after fingering at the interface of salt/sugar solutions.
(Griffiths, 1981)

Hence the wedge-like region (doubly hatched) of oscillatory instability is in the first quadrant
of Figure 6.7.11.

Example: nLe = 1/2(< 1)
The second boundary intersects with the first at

(0Ra), = —4r? (Ray), = —2 (47?)

In this case the wedge-like region (doubly hatched) of oscillatory instability is in the third
quadrant of Figure 6.7.12.

Fingering induced by double-diffusive instabilty occurs in oceans where there are strong
gradients of temperature and salinity. It has been observed and recorded in Mediteranian
Sea "below the warm salty Mediteranian outflow in the eastern North Altlantic and in the
western tropical North Altlantc” (Schmitt, 1994). This is reflected by the staircase structure
of temperature and salinity profiles, see Figure 6.7.13.

An additional laboratory demonstrations by J.S. Turner is shown in Figure 6.7.14.
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Figure 6.7.11: Domains of stability/instability for nLe = 2.
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Figure 6.7.12: Domains of stability /instability for nLe = 1/2.
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Figure 2 (b) The vertical profiles of temperature, salinity, potential density anomaly ’(Jg,
kg/m®), and R, from a station in the C-SALT area, from the surface to 800 m depth.
Temperature contrasts across the steps are typically 0.5-1.0°C. Mixed layers are 5-30 m
thick. The layered structure in the 300600 m depth range has 1.5 < R, < 1.8.
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Figure 6.7.13: Vertical profiles in sea water near Barbados, showing thermohaline staircasses

(Schmitt, 1994)



14

Fig. I A series of layers formed by the melting of on feeblock, contuining fMuorescein dye, inta a salinity gradivnt

Figure 6.7.14: Fingering near a melting ice in a salt-stratified water. J. S. Turner in Double
Diffusive Convection, edited by A Brandt an H.J. Fernando, 1995



