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6.6 Horton-Rogers-Lapwood instability in a porous

layer

Nield & Bejan, Chapter 6 Convection in Porous Media
Related: Rayleigh-Bernard Problem (Chandrsekhar, Chapter II, Hydrodynamic and Hy-
dromagnetic Stability)
If a layer of viscous fluid is heated from below, instability can occur and leads to convec-

tion cells important in meteorology. (Benard Problem).
If a saturated porous layer is heated from below, similar instabilily and convection can oc-
cur. This is of basic interest to geothermal convection and suggests more studies of the more
complex problem of convection induced by buried nuclear waste.

Figure 6.6.1: A saturated porus medium in geothermal gradient
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Consider the perturbed state of small disturbances:

u = 0 + u0, T = TS + T
0, P = pS + p

0 (6.6.3)

then
∇ · u0 = 0 (6.6.4)

0 = −∇p0 − µ
k
u0 + βgρoT

0k (6.6.5)

(ρC)m
∂T 0

∂t
+ (ρC)fu

0 ·∇TS = Km∇2T 0 (6.6.6)

6.6.1 Non-dimensionalization

. Let Km,κm = Km/(ρC)f be the conductivity and diffusivity of the mixture, and k the
permeability. Define

(x, y, z)→ h(x∗, y∗, z∗), t→ σh2

κm
t∗,

u0 → κm
h
u∗, T 0 = ∆Tθ, p0 → µκm

k
p∗ (6.6.7)

Then, after omitting ∗ for brevity, we get

∇ · u = 0 (6.6.8)

0 = −∇p− u+Ra θk (6.6.9)

∂θ

∂t
− w = ∇2θ (6.6.10)

where

Ra =
ρfgkβ∆Th

µκm
Rayleigh number in a porous medium (6.6.11)

is the Rayleigh number (ratio of buoyancy force to diffusive resistence) of the porous medium.
In Benard’s problem, Rayleigh number is defined as

Ra =
ρg∆Th4

µκ
, Rayleigh number in a pure fluid (6.6.12)

Sometimes one calls

D =
k

h2
,Darcy number (6.6.13)

Darcy number so that Rayleigh number of a porous medium is the product of the traditional
Rayleigh number and Darcy number.
Taking the curl of (6.6.9),

∇× u = Ra(iθy − jθx) (6.6.14)



3

Note that the z compoent of the vorticity vector is zero.
Taking the curl again and using

∇×∇× u = ∇(∇ · u)−∇2u
we get

∇2u = −Ra [iθxz + jθyz − k(θxx + θyy)]

Taking the z component, we get

∇2w = Ra∇2Hθ (6.6.15)

where

∇2H =
∂2

∂x2
+

∂2

∂y2
(6.6.16)

is the horizontal Laplacian.
Equations (6.6.10) and (6.6.15) couple the two unknowns w and θ. The boundary con-

ditions are
w = θ = 0, z = 0, 1 (6.6.17)

After they are solved the other velocity components and pressure can be found.

6.6.2 Solution for sinusoidal disturbances

Let
(w, θ) = (W (z),Θ(z)) exp(ilx+ imy − iωt) (6.6.18)

and

D =
d

dz
then from (6.6.10),

−iωΘ−W = (D2 − a2)Θ (6.6.19)

and from (6.6.15)
(D2 − a2)W = −a2RaΘ (6.6.20)

where
a2 = `2 +m2 (6.6.21)

The boundary conditions are :

W = Θ = 0, z = 0, 1 (6.6.22)

Because the equations and the boundary conditons are homogeneous, the problem for W
and θ is an eigenvalue problem.
Note that l,m, a are related to dimensional wave numbers by

l = kxh =
2πh

Lx
, m = kyh =

2πh

Ly
, a = kh = 2πh

µ
1

L2x
+
1

L2y

¶1/2
with k =

q
k2x + k

2
y

(6.6.23)
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6.6.3 Principle of exchange of stabilities

We shall first show that ω must be purely imaginary. Multiplying (6.6.20) by W ∗ and
integrating from z = 0 to z = 1, we get, after partial integration and using the boundary
conditions,

−
Z 1

0

(|DW |2 + a2|W |2)dz = −a2Ra
Z 1

0

W ∗Θdz (6.6.24)

Similarly we multipy (6.6.19) by Θ∗ and integrating from z = 0 to z = 1, and get

−
Z 1

0

(|DΘ|2 + a2|Θ|2)dz = −iω
Z
|Θ|2dz −

Z 1

0

WΘ∗dz (6.6.25)

Taking the complex conjugate of the second equation

−
Z 1

0

(|DΘ|2 + a2|Θ|2)dz = iω∗
Z
|Θ|2dz −

Z 1

0

W ∗Θdz (6.6.26)

Eqs (6.6.24) and (6.6.26) can be combined by eliminating the cross product terms, ,

−
Z 1

0

(|DΘ|2 + a2|Θ|2)dz = −iω∗
Z
|Θ|2dz − 1

a2Ra

Z 1

0

(|DW |2 + a2|W |2)dz (6.6.27)

Since all integrals above are real, −iω∗ = −ωi − iωr must also be real. We conclude that
ωr = 0, hence − iω = −ωi (6.6.28)

Marginal stability (the threshold of instability) occurs at ωr = ωi = 0. If ωi > 0, the
static state is unstable; ωi = 0, marginally stable; if ωi < 0, stable. A problem where the
eigenfrequency is real so that marginal instabililty occurs when ω = 0 is said to obey the
principle of exchange of stabilities.

6.6.4 Solution to eigenvalue problem

Consider the situation at marginal stability : ω = 0,

(D2 − a2)W = −a2RaΘ (6.6.29)

−W = (D2 − a2)Θ (6.6.30)

Eliminating Θ, we get
(D2 − a2)2W = a2RaW (6.6.31)

subject to
W = 0, D2W = 0, z = 0, 1 (6.6.32)

Expanding (6.6.31)
D4W − 2a2D2W + a4W = a2RaW (6.6.33)
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Clearly D4W = 0 on z = 0, 1. Differentiating (6.6.33) twice we see that D6 = 0 on z = 0, 1.
Repeating the process we find

D(2m) = 0, m = 1, 2, 3, · · · , on z = 0, 1 (6.6.34)

Therefore the eigensolution must be

W ∼ sin jπz (6.6.35)

To satisfy (6.6.31) it is necessary that

Ra =
[j2π2 + a2]2

a2
, for j = 1, 2, 3..., (6.6.36)

which is the eigenvalue condition. For any j, Ra becomes unbounded for both a2 → 0 and
a2 →∞ and is curve concave upward in the plane of a2(abscissa) vs, Ra (ordinate).
The lowest threshold occurs at j = 1, and

∂Ra

∂a2
= 0

i.e.,

a2 = π2 (6.6.37)

or

Rac = 4π
2 = 39.48 (6.6.38)

6.6.5 Possible convection patterns

This is similar to Benard’s problem which has been exhaustively studied theoretically and
experimentally. There are many possibilities. Let us consider the lowest mode only with
j = 1.
2-Dimensinal Rolls : (` = π,m = 0)
Take

w = cosπx sinπz (6.6.39)

then from mass conservation,

u = − sinπx cosπz (6.6.40)

The dimensionless wavelength is Lx = Ly = 2. Along lines x = 0,±n, n = 1, 2, 3, 4, ..., u = 0
but w 6= 0. Along x = 0,±2m, w > 0, hence fluid rises verrically. Along x = ±2m − 1,
w < 0 hence fluids sinks vertically. Along z = 0and 1, w = 0. On the bottom (z = 0), u > 0
while on the top (z = 1), if 0 < x < 1, 2 < x < 3, 4 < x < 5, ... . The streamlines are shown
in Figure 6.6.2.
Experimetal images of rolls in a pure fluid (Benard problem) is shown in Figure 6.6.3.
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Figure 6.6.2: Rolls in a period

Rectangular cells: (` = m = π/
√
2).

w = cos
πx√
2
cos

πy√
2
sinπz (6.6.41)

From the z component of the vorticity equation (6.6.14),

∂v

∂x
− ∂u

∂y
= 0 (6.6.42)

and from continuity
∂u

∂x
+
∂v

∂y
= −∂w

∂z
(6.6.43)

By cross differentiation, we get

∂2u

∂x2
+
∂2u

∂y2
= − ∂2w

∂z∂y
=

π2

2
√
2
sin

πx√
2
cos

πy√
2
cosπz (6.6.44)

and
∂2v

∂x2
+
∂2v

∂y2
= − ∂2w

∂z∂x
=

π2

2
√
2
cos

πx√
2
sin

πy√
2
cosπz (6.6.45)

These are easily solved to give

u = − 1√
2
sin

πx√
2
cos

πy√
2
cosπz (6.6.46)

and

v = − 1√
2
cos

πx√
2
sin

πy√
2
cos πz (6.6.47)

The streamlines in a horizontal plane is shown in Figure 6.6.4.
Hexagonal cells: See Chandrasekhar. See Figure 6.6.5.
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Figure 6.6.3: Rolls in a pure fluid layer heated from below. From van Dyke: An Album of
Fluid Motion
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Figure 6.6.4: Rectangular and square cells in a pure fluid heated from below. From Chan-
drasekhar
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Figure 6.6.5: Hexagonal cells in a pure fluid headted from below. From van Dyke


