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6.6 Horton-Rogers-Lapwood instability in a porous
layer

Nield & Bejan, Chapter 6 Convection in Porous Media
Related: Rayleigh-Bernard Problem (Chandrsekhar, Chapter II, Hydrodynamic and Hy-
dromagnetic Stability)

If a layer of viscous fluid is heated from below, instability can occur and leads to convec-
tion cells important in meteorology. (Benard Problem).
If a saturated porous layer is heated from below, similar instabilily and convection can oc-
cur. This is of basic interest to geothermal convection and suggests more studies of the more
complex problem of convection induced by buried nuclear waste.
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Figure 6.6.1: A saturated porus medium in geothermal gradient

Static state

u = 0, a =0
Hence .
Ts =T, + AT (1 - E) (6.6.1)
Static equilibrium:
dps z
T = r [To=BAT (1= 7))

hence

AT [ 22
Ps = Po — Pod {Toz + ﬁT (W — 22) } (662)



Consider the perturbed state of small disturbances:

u= O+u’, TITS—i-T/, P =pg +p’ (663)
then
V-u=0 (6.6.4)
0=—Vp — %u’ + BapsT'k (6.6.5)
8T/ / 21
(pC)mE + (pC’)fu : VTS = Kmv T (666)

6.6.1 Non-dimensionalization

. Let Ky, km = K, /(pC) s be the conductivity and diffusivity of the mixture, and & the
permeability. Define

oh?

(xz,y,2) = h(z*,y", 2"), t > —17,
u - %’”u*, T' = ATO, p — %p* (6.6.7)
Then, after omitting * for brevity, we get
Vou=0 (6.6.8)
0=—-Vp—u+ Rabk (6.6.9)
06 5
— —w=V* 6.6.10
o V=V (6.6.10)
where LBATH
Ra = % Rayleigh number in a porous medium (6.6.11)

is the Rayleigh number (ratio of buoyancy force to diffusive resistence) of the porous medium.
In Benard’s problem, Rayleigh number is defined as

ATh*
Ra = pgT, Rayleigh number in a pure fluid (6.6.12)
Sometimes one calls L
D= 7 Darcy number (6.6.13)

Darcy number so that Rayleigh number of a porous medium is the product of the traditional
Rayleigh number and Darcy number.
Taking the curl of (6.6.9),
V x u = Ra(if, — jb,) (6.6.14)



Note that the z compoent of the vorticity vector is zero.
Taking the curl again and using

VxVxu=V(V-u)-Vu

we get
V?u = —Ra[if,, + 30z — k(bpz + 0,y)]

Taking the z component, we get

V2w = RaV%0 (6.6.15)
where o o
2 e _

Vi = 527 + By? (6.6.16)

is the horizontal Laplacian.
Equations (6.6.10) and (6.6.15) couple the two unknowns w and 6. The boundary con-
ditions are

w=60=0, z=0,1 (6.6.17)

After they are solved the other velocity components and pressure can be found.

6.6.2 Solution for sinusoidal disturbances

Let
(w,0) = (W(z),0(z)) exp(ilz + imy — iwt) (6.6.18)
and p
D=—
dz
then from (6.6.10),
—iw® — W = (D? — a®)©® (6.6.19)
and from (6.6.15)
(D? — a®>)W = —a*Ra® (6.6.20)
where
a® =0 +m? (6.6.21)

The boundary conditions are :
W=6e=0 z=01 (6.6.22)

Because the equations and the boundary conditons are homogeneous, the problem for W
and 0 is an eigenvalue problem.
Note that [, m, a are related to dimensional wave numbers by

2mh 27h 1 1\Y/*
l:kg;h: Lx’ m:kyh:L—’a:kh:27rh(L_%+L_Z) Wlth kzﬁlkgﬂ—k‘g

’ (6.6.23)




6.6.3 Principle of exchange of stabilities

We shall first show that w must be purely imaginary. Multiplying (6.6.20) by W* and
integrating from z = 0 to z = 1, we get, after partial integration and using the boundary
conditions,

— /01(|DW|2 +a*|W|*dz = —a®Ra /01 W*0dz (6.6.24)
Similarly we multipy (6.6.19) by ©* and integrating from z = 0 to z = 1, and get
—/01(|D®|2 @20z = —z'w/|@|2dz - /01 Werd: (6.6.25)
Taking the complex conjugate of the second equation
—/01(|D@|2 +a’|0)*)dz = iw*/|@|2dz — /01 W*0dz (6.6.26)

Egs (6.6.24) and (6.6.26) can be combined by eliminating the cross product terms, ,

1 1 1
—/ (IDOP + a|O)dz = —iw* / Oz — — / (IDWP + @ WP)dz  (66.27)
0 a*Ra J,
Since all integrals above are real, —iw* = —w; — iw, must also be real. We conclude that
w, =0, hence —iw= —uw; (6.6.28)

Marginal stability (the threshold of instability) occurs at w, = w; = 0. If w; > 0, the
static state is unstable; w; = 0, marginally stable; if w; < 0, stable. A problem where the
eigenfrequency is real so that marginal instabililty occurs when w = 0 is said to obey the
principle of exchange of stabilities.

6.6.4 Solution to eigenvalue problem

Consider the situation at marginal stability : w = 0,

(D? — a®>)W = —a*Ra® (6.6.29)
~W = (D*-ad»)© (6.6.30)
Eliminating ©, we get
(D* — a*)*W = a®*RaW (6.6.31)
subject to
W =0, DW=0, 2=0,1 (6.6.32)

Expanding (6.6.31)
D*W —2a*’D*W + a*W = a®*RaW (6.6.33)



Clearly D*W = 0 on z = 0, 1. Differentiating (6.6.33) twice we see that D% =0 on z = 0, 1.
Repeating the process we find

D™ =0 m=1,23---, on z2=0,1 (6.6.34)

Therefore the eigensolution must be

W ~ sin jrz (6.6.35)
To satisfy (6.6.31) it is necessary that
2 2, 272
R S (6.6.36)
a

which is the eigenvalue condition. For any j, Ra becomes unbounded for both a? — 0 and
a® — oo and is curve concave upward in the plane of a?(abscissa) vs, Ra (ordinate).
The lowest threshold occurs at j = 1, and

ORa
=0
0a?
ie.,
a® =7° (6.6.37)
or
Ra. = 47* = 39.48 (6.6.38)

6.6.5 Possible convection patterns

This is similar to Benard’s problem which has been exhaustively studied theoretically and
experimentally. There are many possibilities. Let us consider the lowest mode only with
j=1

2-Dimensinal Rolls : (¢ = m,m = 0)

Take

w = cosTx sin Tz (6.6.39)

then from mass conservation,
u = —sinmrcos Tz (6.6.40)

The dimensionless wavelength is L, = L, = 2. Along linesx =0,+n,n=1,2,3,4,..., u=0
but w # 0. Along x = 0,+2m, w > 0, hence fluid rises verrically. Along x = +2m — 1,
w < 0 hence fluids sinks vertically. Along z = 0and 1, w = 0. On the bottom (z = 0), u >0
while on the top (z =1),if 0 <z < 1,2 <z <3,4<z<05,.... The streamlines are shown
in Figure 6.6.2.

Experimetal images of rolls in a pure fluid (Benard problem) is shown in Figure 6.6.3.
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Figure 6.6.2: Rolls in a period

Rectangular cells: (£ =m = 7//2).

T Ty .
W = COS —= COS —=sin 7z

VRN

From the z component of the vorticity equation (6.6.14),

oo
or Oy
and from continuity
ou Ov ow

o ey oz

By cross differentiation, we get

0%u N 0%u 0w 7 Y
=— = sin — cos —= cos Tz
ox?  Oy? 020y 22 V2 V2
and
v v 0w 2 T . Y
= COS —= Sin —= COS T2

02 "o 0zor ava B e

These are easily solved to give

1 . 7z Y
U = ——— SIN —= COS —= COS T2
V2 V2 V2
and
1 T . Ty
U = ———= COS —= SIIl —= COS T2
V2 V2 V2

The streamlines in a horizontal plane is shown in Figure 6.6.4.
Hexagonal cells: See Chandrasekhar. See Figure 6.6.5.
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Figure 6.6.3: Rolls in a pure fluid layer heated from below. From van Dyke: An Album of

Fluid Motion



46 THERMAL INSTABILITY OF LAYER Chap. II

The streamlines of the motion in the horizontal plane are determined
by the equation

dz _u __ L,
T v L,

[sin(27z/ L,))[cos(2my/ L,)] (246)
dy v

cos(2mx/ L) |[sin(2my/ Ly,)]

€

Fio. 3. The streamlines in the horizontal plane for a rectangular cell.

Fic. 6. The streamlines in the horizontal plane for a square cell.

Figure 6.6.4: Rectangular and square cells in a pure fluid heated from below. From Chan-
drasekhar



142. Imperfections in a  hexagonal
Bénard convection patteen. The hec
gonal pattern-of cells rvpical of convective
instabiliey driven primarily by surface ten-
sion s sean to nocommodane telf o g circu-
lar boundary. Alurnd num powder shows (e
flow in a thin layer of silicone ol of ke
matic viscosity (L3 cm®fs on a uniformly
heated copper plate. A tiny dent in the
plare causes the imperfection ar the left,
farming dizmond-shaped cells, This shows
how sensitive the pattern s 1o small irvegu-

larities, Koschorieder 1974
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Figure 6.6.5: Hexagonal cells in a pure fluid headted from below. From van Dyke




