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6.5 Geothermal Plume

Consider a steady, two dimensional plume due to a line source of intense heat in a porous
medium. From Darcy’s law:

µ

k
u = −∂p

∂x
(6.5.1)

and
µ

k
w = −∂p

∂z
− ρg (6.5.2)

These are the momentum equations for slow motion in porous medium. Mass conservation
requires

ux + wz = 0 (6.5.3)

Energy conservation requires

u
∂T

∂x
+ w

∂T

∂z
= γ

µ
∂2T

∂x2
+
∂2T

∂z2

¶
(6.5.4)

Equation of state:
ρ = ρ0 (1− β(T − T0)) (6.5.5)

Consider the flow induced by a heat source. Let

~q = (u, w), T = T0 + T
0, p = po + p0 (6.5.6)

where p0 is the hydrostatic pressure satisfying

−∂p0
∂z
− ρ0g = 0.

and p0, T 0 are dynamical perturbations. Therefore, (6.5.2) can be written

µ

k
w = −∂p

0

∂z
+ gρ0βT

0. (6.5.7)

Eqn. (6.5.1) can be written
µ

k
u = −∂p

0

∂x
. (6.5.8)

µ

k
w = −∂p

0

∂z
− ρ0g (6.5.9)
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6.5.1 Boundary layer approximation

Eliminating p0 from Eqns. (6.5.7) and (6.5.8), we get

µ

k
(wx − uz) = gρ0βT 0x.

Let
u = ψz, w = −ψx

then

ψxx + ψzz = −gρ0βk
µ

T 0x (6.5.10)

For an intense heat source, we expect the plume to be narrow and tall. Let us apply the
boundary layer approximation and check its realm of validity later,

u¿ w,
∂

∂x
À ∂

∂z
.

hence

ψxx ∼= −gρ0βk
µ

T 0x

or
−µ
k
ψx ∼= gρ0βT 0, (6.5.11)

which is the same as ignoring ∂p0/∂x in Eqn. (6.5.7).
Alternatively , since u¿ w ∂p0/∂x ≈ 0, we muast have p0 ∼= p0 outside the plume. But

∂p0

∂z
= 0

outside the plume, hence ∂p0/∂z ≈ 0 inside as well.
Applying the B.L. approximation on Eqn. (6.5.4)

uT 0x + wT
0
z = γT 0xx (6.5.12)

where λ denotes the thermal difusivity. Using the continuity equation we get

(uT 0)x + (wT 0)z = γT 0xx.

Integrating across the plume,
∂

∂z
ρ0C

Z ∞
−∞

wT 0 dx = 0 (6.5.13)

since T 0 = 0 outside the plume. It follows that

ρoC

Z ∞
−∞

wT 0 dx = −ρ0C
Z ∞
−∞

ψx T
0 dx = Q = constant. (6.5.14)
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6.5.2 Similarity solution

Now let
x = λax∗ z = λbz∗ ψ = λcψ∗ T 0 = λdT ∗.

From Eqn. (6.5.11)
µ

k
λc−a

µ
∂ψ∗

∂x∗

¶
= −gρ0βλdT ∗.

For invariance we require,
c− a = d. (6.5.15)

−
Z

∂ψ∗

∂x∗
T ∗

T0
dx∗ λc−a+a+d = Q.

Therefore,
c+ d = 0. (6.5.16)

From Eqn. (6.5.12)
λc+d−a−b = λd−2a.

implying,
c+ a− b = 0. (6.5.17)

Finaaly

c =
a

2
, d = −a

2
, b =

3

2
a.

In view of these we introduce the following similarity variables,

η =
³ g
ν2

´1/9 x

z2/3

ψ

Q
=

³ g
ν2

´1/9
z1/3f(η) (6.5.18)

T 0

T0
=

³g
ν

´1/9
z−1/3 h(η).

Note that at the center line η = 0

w = −ψx ∝ z1/3f 0(0)(−)z−2/3 ∼ z−1/3f 0(0) ∼ z−1/3 (6.5.19)

T 0 ∝ z−1/3h(0) (6.5.20)

and
b ∝ z2/3 (6.5.21)

Thus the velocity and temperature along the centerline decay as z−1/3 and the plume width
grows as z2/3.
Substituting these into Eqns. (6.5.4) and (6.5.11), we get, after some algebra

−df
dη
= Ah (6.5.22)
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where

A =
T0βk

Q

µ
g2

ν

¶1/3
(6.5.23)

and

− d
dη
(fh) =

3γ

Q

d2h

dη2
. (6.5.24)

The boundary conditions are,

f = 0 (ψ = 0)

f 00(0) = 0, (w(0, z) = wmax)

along the center line, and

f 0(±∞) = 0

h(±∞) = 0.

Integrating Eqn. (6.5.24), we get

−fh = 3γ

Q
h0.

Using Eqn. (6.5.23), we get

−ff 0 = 3γ

Q
f 00.

Integrating again, we get
6γf 0

Q
= f20 − f2

where f0 = fmax. Let f = f0F , then

1− F 2 = 6γ

Qf0
F 0

which can be integrated to give

Qf0
6k

η =
1

2
ln
1 + F

1− F = tanh−1F 0 ≤ F < 1.

Therefore,

F (η) = tanh
Qf0
6γ

η.

What is f0? Use Eqn. (6.5.14)

−
Z ∞
−∞

df

dη
h dη = 1

since

f 0 = f0F 0 =
Qf20
6γ
sech2

Qf0
6γ

η
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and

h = − 1
Q
f 0.

Therefore,

1

Q

µ
Qf 20
6γ

¶2 Z ∞
−∞

sech4
µ
Qf0
6γ

η

¶
dη =

Q2f30
6kT0βγ

µ
ν

g

¶1/3 Z ∞
−∞
sech4zdz = 1.

since Z ∞
−∞
sech4zdz = 4/3.

This determines f0!

f0 =

µ
9γT0βk

2Q2

¶1/3µ
g2

ν

¶1/9
(6.5.25)

The solution is plotted in Figure 6.5.1 and Figure 6.5.2, after defining

ψ

γ
= 6Z1/3 tanh

X

Z2/3
(6.5.26)

T

T0

Q

f0

µ
6γ

Qf0

¶2
=

1

Z1/3
sech2

µ
X

Z2/3

¶
(6.5.27)

where

X =

µ
Qf0
6γ

¶3 ³ g
ν2

´1/3
x, Z =

µ
Qf0
6γ

¶3 ³ g
ν2

´1/3
z (6.5.28)

The similarity variable is
X

Z2/3
=

µ
Qf0
6γ

¶³ g
ν2

´1/6 x

z2/3

Hence the plume width decreases with increasingµ
Qf0
6γ

¶³ g
ν2

´1/6
=
Q

6γ

µ
9γT0βk

2Q2

¶1/3µ
g2

ν

¶1/9
∝ Q1/3

i.e., increasing heat source strength.

6.5.3 Checking the boundary layer approximation.

∂2ψ

∂x2
∼ z−1, ∂2ψ

∂z2
∼ z−5/3

∂2T 0

∂x2
∼ z−5/3, ∂2T 0

∂z2
∼ z−7/3

hence for large z, B. L. approximation is good.
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Figure 6.5.1: Theoretical solution for a geothermal plume due to Yih
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Figure 6.5.2: Comparison of theory and experiment. From Nield and Bejan


