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6.5 Geothermal Plume

Consider a steady, two dimensional plume due to a line source of intense heat in a porous
medium. From Darcy’s law:
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These are the momentum equations for slow motion in porous medium. Mass conservation
requires

Uy +w, =0 (6.5.3)

Energy conservation requires
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Equation of state:
p=po(l—p(T—1Tp)) (6.5.5)
Consider the flow induced by a heat source. Let
i: (U,U)), T:T0+T,7 D =Do +p/ (656)
where pg is the hydrostatic pressure satisfying
Ip
_6—z0 — pog = 0.
and p/, T" are dynamical perturbations. Therefore, (6.5.2) can be written
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Eqn. (6.5.1) can be written
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6.5.1 Boundary layer approximation

Eliminating p’ from Eqns. (6.5.7) and (6.5.8), we get

% (wx - uz) = ngﬂT;;
Let
U = ¢z7 w = _'(p:c

then

k

For an intense heat source, we expect the plume to be narrow and tall. Let us apply the
boundary layer approximation and check its realm of validity later,

U << w 2 > 2
’ ox ~ 0z
hence
on 2 _gpoﬁkTg2
1
or "
—Eww >~ gpoST, (6.5.11)

which is the same as ignoring 9p'/dz in Eqn. (6.5.7).
Alternatively , since u < w 0p'/dx =~ 0, we muast have p’ = p’ outside the plume. But
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outside the plume, hence 9p’/0z ~ 0 inside as well.
Applying the B.L. approximation on Eqn. (6.5.4)

uT" + wT! = ~T., (6.5.12)
where X\ denotes the thermal difusivity. Using the continuity equation we get
(uI")y + (WT'), =Ty,

Integrating across the plume,
a o0
&pOC’ /_oo wTl'dz =0 (6.5.13)

since T" = 0 outside the plume. It follows that

pOC'/ wT’ dx = —pOC/ Y, T' dz = @ = constant. (6.5.14)
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6.5.2 Similarity solution

Now let
r=M\z* z2=Nz =X T = \T

ﬁ c—a adj* _ drpx
k>\ (ax*>_ gGpoBAT™.

From Eqn. (6.5.11)

For invariance we require,

c—a=d. (6.5.15)
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Therefore,
c+d=0. (6.5.16)

From Eqn. (6.5.12)
)\c+d—a—b — )\d—Za.

implying,
c+a—-b=0. (6.5.17)
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In view of these we introduce the following similarity variables,
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Note that at the center line n =0
w = —1hy o< 23 f1(0)(=)27H3 ~ 273 F(0) ~ 273 (6.5.19)
T' o z7Y2h(0) (6.5.20)
and
b o 22/3 (6.5.21)
Thus the velocity and temperature along the centerline decay as z~'/3 and the plume width
grows as 22/3.
Substituting these into Eqns. (6.5.4) and (6.5.11), we get, after some algebra
d
4 = Ah (6.5.22)



where .
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The boundary conditions are,
ff=0 (¥=0)

f”(O) = 0, (w(ov Z) = wmax)

along the center line, and

fl(£0) = 0
h(oco) = 0
Integrating Eqn. (6.5.24), we get
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=17
Using Eqn. (6.5.23), we get
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Integrating again, we get
67.}“ 2 Jc2
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where f() = fmax. Let f = foF, then
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which can be integrated to give
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Therefore,

What is fy? Use Eqn. (6.5.14)
— —hdn=1
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since

0< F <1
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and .
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Therefore,
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This determines fo!
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The solution is plotted in Figure 6.5.1 and Figure 6.5.2, after defining
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The similarity variable is
X [(Qfo\ [9\YS @
723\ 6y (ﬁ) 22/3
Hence the plume width decreases with increasing
Q) 4y _ @ (NToY T (YT s
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i.e., increasing heat source strength.

6.5.3 Checking the boundary layer approximation.
oy P L-5/3

~ Z y
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2 2
88;;2;/ ~ 275/3, %3;/ ~ 277/3

hence for large z, B. L. approximation is good.
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Ficure 63. Pattern of two-dimensional convection in a porous medium from a
boundary source.

Figure 6.5.1: Theoretical solution for a geothermal plume due to Yih



122 Convection in Porous Media
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Figure 5.19 Dimensionless temperature profiles for plume rise above a horizontal
line source of heat in a porous medium (Lee, 1983, Cheng, 1985a, with
permission from Hemisphere Publishing Corporation).

Figure 6.5.2: Comparison of theory and experiment. From Nield and Bejan



