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2.5 Stokes flow past a sphere

[Refs]
Lamb: Hydrodynamics
Acheson : Elementary Fluid Dynamics, p. 223 ft

One of the fundamental results in low Reynolds hydrodynamics is the Stokes solution for
steady flow past a small sphere. The apllicatiuon range widely form the determination of
electron charges to the physics of aerosols.

The continuity equation reads

V-¢d=0 (2.5.1)
With inertia neglected, the approximate momentum equation is
\Y
0=—-L1,vyg (2.5.2)
p

Physically, the presssure gradient drives the flow by overcoming viscous resistence, but does
affect the fluid inertia significantly.

Refering to Figure 2.5 for the spherical coordinate system (r,0,¢). Let the ambient
velocity be upward and along the polar (z) axis: (u,v,w) = (0,0,W). Axial symmetry
demands

a —
96 0, and ¢=(g.(r,0),qe(r,0),0)
Eq. (2.5.1) becomes
10 , 10,
§E<T qr) + 90 (gosin®) =0 (2.5.3)

As in the case of rectangular coordinates, we define the stream function v to satisify the
continuity equation (2.5.3) identically
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At infinity, the uniform velocity W along z axis can be decomposed into radial and polar
components

(2.5.4)
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¢ = Wcosf = T~ 00 (2.5.5)
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Figure 2.5.1: The spherical coordinates

The corresponding stream function at infinity follows by integration

Y = grz sin?f, 7~ oo (2.5.6)
Using the vector identity
Vx(Vxq)=V(V-q —Vq (2.5.7)
and (2.5.1), we get
V2i=-Vx(Vxq=-Vx( (2.5.8)

Taking the curl of (2.5.2) and using (2.5.8) we get

—

Vx(Vx()=0 (2.5.9)

After some straightforward algebra given in the Appendix, we can show that

7=V X <¢—€¢’> (2.5.10)
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(=VXI=VXVX (rsin@ rsin 6 8r2+ r2 06 \sinf 00 (2.5.11)

Now from (2.5.9)
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hence, the momentum equation (2.5.9) becomes a scalar equation for .

2 . 2
(%—l—s%e% (sii@%)) =0 (2.5.12)
The boundary conditions on the sphere are
&=0 ¢g=0 on r=a (2.5.13)
The boundary conditions at oo is
R %72 sin? 0 (2.5.14)
Let us try a solution of the form:
Y(r,0) = f(r)sin® 0 (2.5.15)
then f is governed by the equi-dimensional differential equation:
2
lj—; — %1 f=0 (2.5.16)
whose solutions are of the form f(r) oc 7™, It is easy to verify that n = —1, 1,2, 4 so that

A
f(r) ==+ Br + Cr*+ Dr*
r
or 4
Y = sin* 6 [——l—Br—i—Cr2+Dr4
r
To satisfy (2.5.14) we set D = 0,C = W/2. To satisfy (2.5.13) we use (2.5.4) to get

w A B A B
¢ =0=5+=5+—=0, ¢=0=W-—=4+—=0
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Hence
A—EW(L?’ B——§Wa
=7 , =—

Finally the stream function is

Wi, o 3ar| .,

= — — — — | sin“ 6 2.5.17
¥ 2[r+27‘ 2]5”“ (25.17)
Inside the parentheses, the first term corresponds to the uniform flow, and the second term
to the doublet; together they represent an inviscid flow past a sphere. The third term is
called the Stokeslet, representing the viscous correction.

The velocity components in the fluid are: (cf. (2.5.4) :

a®  3a
¢ = Wcosb [1 to5 5] (2.5.18)
. a®  3a
@ = —Wsinf [1 ~ 3 E] (2.5.19)



2.5.1 Physical Deductions

1.

Streamlines: With respect to the the equator along 6 = /2, cos 6 and ¢, are odd while
sinf and gy are even. Hence the streamlines (velocity vectors) are symmetric fore and

aft.

. Vorticity:
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Pressure : From the r-component of momentum equation

dp uWa

p cosf(= —uV x (V xq))
Integrating with respect to r from r to oo, we get

3 uWw
P = Poo — §HTSCLCOSH

Stresses and strains: 5 5
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On the sphere, r = a, e,, = 0 hence o,, = 0 and

3uW
Ty = _p+ Orr = —Pxo + _,u— cos 6
2 a
On the other hand
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Hence at r = a:

3uWw .

Trg = Opg = J4€rg = 5 sin 6

The resultant stress on the sphere is parallel to the z axis.
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The constant part exerts a net drag in z direction
2w s 3uW
D = / ad¢/ dfsinfY, == 5“—47m2 = 6mruWa
o o a

This is the celebrated Stokes formula.
A drag coefficient can be defined as
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5. Fall velocity of a particle through a fluid. Equating the drag and the buoyant weight

of the eparticle

47
6muWoa = —-a*(ps = p1)g
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hence

in cgs units. For a sand grain in water,

Ap 25-1
Ps 1

1.5, v=10"%cm?/s

W, = 32,670 a’cm/s (2.5.25)

To have some quantitative ideas, let us consider two sand of two sizes :

a=10"2ecm =10"*m: W, = 3.27cm/s;
a=10"%cm = 107" = 10um, W, = 0.0327cm/s = 117cm/hr

For a water droplet in air,

A 1
2r _ e 10°, v =0.15 cm?/sec
Pf -
then
217.8)103
W, = %az (2.5.26)

in cgs units. If a = 1073 ¢cm = 10pm, then W, = 1.452 cm/sec.

Details of derivation

Details of (2.5.10).
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Details of (2.5.11).
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