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2.3 A gravity current

For the highly nonlinear equation, a relatively simple solution is that of a stationary (or
permanent) wave which is profile advancing at a constant speed without changing its shape.
Mathematically the profile is describable as

h(x, t) = h(x− Ct) = h(σ), σ = x− Ct (2.3.1)

By the chain rule of differentiation,
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=
dh
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∂σ
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Hence (2.3.30) reduces to an ordinary differential equation,

−C dh
dσ
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!#
= 0 (2.3.2)

Integrating once we get

−Ch+ ρg cos θ

3µ

"
h3
Ã
tan θ − dh

dσ

!#
= constant

Let the gravity current advance along a dry bed, then h = 0 is a part of the solution. The
constant of integration must be set to zero. Introducing the dimensionless variables

h = Hch
0, σ = Lcσ

0, with Lc = Hc/ tan θ, (2.3.3)

where Hc is the maximum depth far upstream, we get

− 3Cµ

ρgH2
c sin θ

h0 + h03
Ã
1− dh

0

dσ0

!
= 0, (2.3.4)

Let the gravity current be uniform far upstream, then

h0 → 1,
dh0

dσ0
→ 0, as σ0 → −∞. (2.3.5)
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It follows that
3Cµ

ρgH2
c sin θ

= 1

or,

C =
ρgH2

c sin θ

3µ
(2.3.6)

and

h0
"
−1 + h02

Ã
1− dh

0

dσ0

!#
= 0, (2.3.7)

One of the solution is h0 = 0, representing the dry bed. For the nontrivial solution, we
rewrite

dσ0 = − h2dh

1− h2 = dh
∙
1− 1

2

µ
1

1− h +
1

1 + h

¶¸
(2.3.8)

which can be integrated to give

h0 +
1

2
log

Ã
1− h0
1 + h0

!
= σ0 − σ0o (2.3.9)

This is an implicit relation between h0 and σ0, and represents a smooth surface decreasing
monotonically from h = 1 at σ0 ∼ −∞ to h0 = 0 at the front σ0 = σ0o, as plotted in Figure
2.3.1. Note from (2.3.8) that dσ0/dh0 = 0 when h0 = 0, implying infinite slope at the tip of
the gravity current. This infinity violates the original approximation that dh0/dσ0 = O(1).
Fortunately it is highly localized and does not affect the validity of the theory elsewhere (see
Liu & Mei, 1989, JFM).
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Figure 2.3.1: Gravity current down an inclined plane

Eq. (2.3.6) tells us that the speed of the front is higher for a thicker layer, steeper slope
or smaller viscosity. This relation can be confirmed by a quicker argument. In the fixed
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frame of reference, the total flux must be equal to CH. therefore C must be equal to the
depth-averaged velocity u which is given by (2.3.19) with ∂h/∂x = 0.
A similar analysis has been applied to a fluid-mud which is non-Newtionian characterized

by the yield stress. Laboratory simulations have been reported by Liu & Mei (J. Fluid Mech.
207, 505-529.) who used a kaolinite/water mixture. Figure 2.3.2 shows the setup of the
inclined flume and Figure 2.3.3 shows the recorded profiles of the gravity current along with
the theory . The agreement is very good, despite the steep front where the approximation
is locally invalid.

Figure 2.3.2: Experiment setup for a mud current down an inclined plane. From Liu & Mei
1989.
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Figure 2.3.3: Profiles of a mud current down an inclined plane. From Liu & Mei 1989.


