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2.3 A gravity current

For the highly nonlinear equation, a relatively simple solution is that of a stationary (or
permanent) wave which is profile advancing at a constant speed without changing its shape.
Mathematically the profile is describable as

h(z,t) = h(z — Ct) = h(o), o=x—Ct (2.3.1)
By the chain rule of differentiation,

Oh(z —Ct) _dhdo _ . dh  Oh(x—Ct) _dhdo _ dh

ot doot do dr  dodzx do
Hence (2.3.30) reduces to an ordinary differential equation,
dh  pgcost d | 4 dh'\|
Cda + Su do [h (tan@ da)] =0 (2.3.2)

Integrating once we get

—Ch+ pg;(zs@ [h?’ <tan9 — @ﬂ = constant

Let the gravity current advance along a dry bed, then h = 0 is a part of the solution. The
constant of integration must be set to zero. Introducing the dimensionless variables

h=HNMW, o=Lyo', with L.=H./tan0, (2.3.3)

where H, is the maximum depth far upstream, we get

3Cu ., an’'
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pgH? Sin9h h do’ 0 (2:3.4)

Let the gravity current be uniform far upstream, then
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h' =1, i 0, as o — —o0. (2.3.5)
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It follows that
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One of the solution is A" = 0, representing the dry bed. For the nontrivial solution, we
rewrite 12dh ) ) )
do' =~ =dh 1= o (7= + 7 )] 238
M R s\1—% 1+h (2.38)
which can be integrated to give
1 1—-n
"+ =1 =0 -0 2.3.
h—|—20g<1+h,> o —o, (2.3.9)

This is an implicit relation between A’ and o', and represents a smooth surface decreasing
monotonically from h = 1 at ¢/ ~ —oco to A’ = 0 at the front ¢’ = ¢/, as plotted in Figure
2.3.1. Note from (2.3.8) that do’/dh' = 0 when A’ = 0, implying infinite slope at the tip of
the gravity current. This infinity violates the original approximation that dh'/do’ = O(1).
Fortunately it is highly localized and does not affect the validity of the theory elsewhere (see
Liu & Mei, 1989, JFM).
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Figure 2.3.1: Gravity current down an inclined plane

Eq. (2.3.6) tells us that the speed of the front is higher for a thicker layer, steeper slope
or smaller viscosity. This relation can be confirmed by a quicker argument. In the fixed



frame of reference, the total flux must be equal to C'H. therefore C' must be equal to the
depth-averaged velocity @ which is given by (2.3.19) with 0h/0z = 0.

A similar analysis has been applied to a fluid-mud which is non-Newtionian characterized
by the yield stress. Laboratory simulations have been reported by Liu & Mei (J. Fluid Mech.
207, 505-529.) who used a kaolinite/water mixture. Figure 2.3.2 shows the setup of the
inclined flume and Figure 2.3.3 shows the recorded profiles of the gravity current along with
the theory . The agreement is very good, despite the steep front where the approximation
is locally invalid.
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Fioure 7. Experimental set-up for gravity currents down a dry bed.

Figure 2.3.2: Experiment setup for a mud current down an inclined plane. From Liu & Mei
1989.
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FicUurE 8. Comparison between theory and measured profiles. Curve (a) @ = 1.47°, phase speed =
5.22 cm/s. maximum depth = 0.71 em and %2 = 0.31 cm. The corresponding data points are marked
+. (b) 8 = 0.90°, phase speed = 9.46 cm/s, maximum depth = 1.22 ecm and % = 0.51 em. The
corresponding data points are marked x .

Figure 2.3.3: Profiles of a mud current down an inclined plane. From Liu & Mei 19809.



