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5.4 Viscous effects on the instability of parallel flow

The instability of parallel flows (in pipes, channels, boundary layers, jet wakes, plumes) is
important to understand the transition to turbulence and has been studied by numerous
theoreticians and experimentalists. The inviscid theory does not tell us why some flows
without the point of inflection are unstable, as observed in pipes by Reynolds.
It turns out tha viscosity can be destabilizing. This topic is very fully described in

books by Lin, Drazin and Reid, and Drazin. We only give a brief sketch for the steady
two-dimensional boundary layer on an semi infinite flat plate ( Blasius’ problem) here.

5.4.1 Role of viscosity

By considering a control volume one wavelength long, it is possible to show that the balance
of mechanical energy requires that

∂E

∂t
= ρM − µN (5.4.1)

where
E =

ρ

2

ZZ
(u02 + v02)dxdy (5.4.2)

is the kinetic energyof the disturbance in the volume,

ρM = −ρλ
ZZ
u0v0

dU

dy
dxdy (5.4.3)

is the rate of working by Reynolds stress against the shear in the basic flow, and

µN = µ
ZZ
(ζ 02)dxdy (5.4.4)

is the rate of dissippation, with

ζ 0 =
∂v0

∂x
− ∂u0

∂y

being the vorticity. Derivation of this formula is left as a homework exercise.
For large µ, ∂E

∂t
< 0, hence viscosity is stabilizing. However for small µ the first term

which is also affected by viscosity can overwhelm the second term near the wall, hence
viscosity can also be destabilizing.
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Figure 5.4.1: An oscillatory Stokes boundary layer

An argument due to C. C. Lin (MIT) is sketched below.
Near the wall of a parallel shear flow such as Blasius boundary layer of thickness δ (or a

channel flow of depth δ), a wave-like disturbance introduces an oscillatory Stokes boundary
layer. Refering to Figure 5.4.1, the oscillatory boundary layer has the thickness of the order

δo =
q
2ν/ω. Let us calculate the Reynolds stress due to wave disturbances in this boundary

layer.
For this purpose let us consider first the vorticity disturbance in the Stokes boundary

layer. After linearization, the vorticity satisfies

ζ 0t + Uζ
0
x + v

0ζ̄y = ν(ζ 0xx + ζ 0yy) (5.4.5)

In the case of traveling wave disturbance

(u0, v0, η0) = ((û0(y), v̂0(y), η̂0(y))ei(kx−ωt)

Inside the Stokes layer, ζ 0 ∼= −u0y so that u0 ∼ δoζ
0. From continuity we have v0 ∼ kδou0.Now

consider the two convection terms:

Uζ 0x
ζ 0t
∼ Ukζ

0

ωζ 0
∼ U
C

where C = ω/k, and
v0ζ̄y
ζ 0t
∼ kδ

2
oUζ

0

ωζ 0δ2
∼ U
C

δ2o
δ2

Close enough to the wall U/C ¿ 1; the convective terms are negligible.
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On the other hand,
ζ 0xx/ζ

0
yy ∼ (kδ)2

Hence in the wall boundary layer, we have approximately

ζ 0t = νζ 0yy (5.4.6)

The boundary conditions are :

ζ 0 = Aei(kx−ωt), y = 0 (5.4.7)

and
ζ 0 → 0, y →∞. (5.4.8)

This boundary value problem is just the Stokes problem of a plate oscillating in its own
plane. The solution is, in complex form,

ζ 0 =
³
Aeiθeαy

´
, where θ = kx− ωt, α =

−1 + i
δo

(5.4.9)

The real part is to be taken at the end.
Let us calculate u0 from the vorticity,

u0 = −
Z y

0
ζ 0 dy = −Aeiθ

Z y

0
eαydy =

A

α
eiθ(1− eαy) (5.4.10)

and v0 from continuity,

v0 = −
Z y

0
u0xdy = −

ikA

α
eiθ
Z y

0
(1− eαy)dy = −ikA

α
eiθ
∙
y − 1

α
(eαy − 1)

¸
(5.4.11)

For y/δo ¿ 1 or αy ¿ 1 we can approximate u0, v0 as power series

u0 ∼= −A
α
eiθ
Ã
αy +

α2y2

2
+ · · ·

!
(5.4.12)

and

v0 ∼= ikA

α
eiθ
Ã
αy2

2
+
α2y3

6
+ · · ·

!
(5.4.13)

Now we shall take the time average to get the Reynolds Stress u0v0. For two sinusoidal
functions f = <Fe−iωt and g = <Geiωt, it can be shown that the time average over a period
is

fg =
ω

2π

Z t+2π/ω

t
fg dt =

1

2
<(FG∗) = 1

2
<(F ∗G) (5.4.14)

Here the time average is equal to the space average over a wavelength and to the phase
average.
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Substitituting (5.4.12) and (5.4.13) into (5.4.14), we get

−u0v0 = −1
2
<
("
−A

∗

α∗

Ã
α∗y +

α∗2y2

2
+ · · ·

!# "
ikA

α

Ã
αy2

2
+
α2y3

6
+ · · ·

!#)

= −1
2
<
(
ik|A|2
2

y3 − ik|A|
2

|α|2
Ã
α(α∗)2

4
+
α∗α2

6

!
y4 + · · ·

)

= −1
2
<
½
ik|A|2

∙
1

4

−1− i
δo

+
1

6

−1 + i
δo

y4 · · ·
¸¾

=
k|A|2
24δo

y4 + · · ·

The Reynold stress is therefore positive

−ρu0v0 = ρ|A|2
24

y4
k

δ
> 0 (5.4.15)

to the leading order and is proportional to
√
µ. On the other hand, the rate of dissipation

is proportional to the integral of

µζ 0
2 ∝ µ|A|2 (5.4.16)

For sufficiently small viscotiy work done by the Reynolds stress to the mean shear can
therefore overwhelm disspation, leading to instatbilty. This estimate has also been cofirmed
by fuller anslysis (see Lin, p 62ff.) .
Homework Use the solution (5.4.9), (5.4.10) and (5.4.11) without assuming small y/δ0

and compute ρM and µN and discuss the result.

5.4.2 Orr-Sommerfeld theory

The comoplete solution of the viscous instability problem begins with the linearized Navier-
Stokes equations. Starting from a basic shear flow ~Q = (U(y), 0), we consider an infinitesimal
disturbance with the velocity field ~q = (u(x, y, t), v(x, y, t)) which is much smaller than U .
Introduce the stream fundtion

u =
∂ψ

∂y
, v = −∂ψ

∂x

and assume a normal mode disturbance

ψ = f(y)eik(x−Ct). where C = ω/k

subject to the boundary conditions that

ψ = 0,ψy = 0, y = 0, on the wall (5.4.17)

ψ = 0,ψy = 0, y = d(or ∞) (5.4.18)
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After nondimensionalization and lineaization of the Navier-Stokes equations we get the
Orr-Sommerfeld equation for f(y)

f 0000 − 2k2f 000 + k4f = −ikR
h
(U(y)− C)(f 00 − k2f)− U 00f

i
(5.4.19)

where R is the Reynolds number. The boundary conditions are

f = f 0 = 0, y = 0, 1 (5.4.20)

the eignevalue problem can be solved numerically.
For the boundary layer, computations (Tolmien and Schlichting) show that the threshold

of instability Ci = 0 is a hairpin-like curve in the plane of kδ1(x) vs. R1(x) = Uδ1/ν where
δ1(x) ∝ √x is the displacement thickness, as shown in Figure 5.4.2. At a fixed x, a sinudoidal
disturbance of wave number k is stable if the Reynolds number is within certain hairpin-like
band. The is also a critical Reynolds number below which all disturbaqnces are stable, and
above which some distrubances are unstable.

Figure 5.4.2: Instbility region of a Blasius boundary layer. krδ1 vs. Reδ1 where δ1 is the

displacemenet thickness which increases with
q
(x).

Verifications were first made in a landmark experiment by Schubauer, Skramstad and
Dryden (1945). With controled disturbances where the amplitude and wavelength of the
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sinusodial distrubance were introduced by a loudspeaker, the Tolmien-Schlichting threshold
was confirmed. Under the test condition

U = 53ft/s,

q
u02

U
= 3× 10−4

they found that natural disturbances were still wave-like at x = 7ft, but waves are amplified
at 9 ft. Occasional bursts appeared at 10.5 feet and signals become random at 11 ft. Later

Figure 5.4.3: Comparison of theory and experiments on boundary layer instability. From
Lin

experiments (See Figure 5.4.4) and nonlinear theories showed the following development as
x increases :

1. For small x a laminar boundray layer is stable.



7

2. For sufficiently long waves, linear instability leads to Tolmien-Schlichting waves.

3. Tolmien-Schlichting waves grow large. Nonlinearity sets in. Disturbances become 3-
dimensional. Spanwise periodicity appears. Local instablitiy occurs.

4. Reynolds-stress generates higher harmonics. Turbulent spots appear.

5. Turbulent spots grow and overlap.

6. Boundary layer becomes turbulent.

Figure 5.4.4: Experiments on boundary layer instability. From Schlichting.

This evolution is summarized in Figure 5.4.5
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Figure 5.4.5: Spatial evolution of Blasius’ boundary layer from instability to turbulence
instability. From Drazin, 2002.


