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5.2 Kelvin-Helmholz Instability for continuous shear
and stratification

5.2.1 Heuristic reasoning

Due to viscosity, shear flow exists along the boundary of a jet, a wake or a plume . On the
interface of salt and fresh water, density stratification further comes into play. When will
dynamic instability occur?
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Figure 5.2.1: Exchanging fluid parcels in a strified shear flow

Refering to Figure 5.2.1, Consider two fluid parcels, each of unit volume, at levels z and
z+dz. Let their positions be interchanged. To overcome gravity, the force needed to lift the
heavier fluid parcel by 7 is

_ _ __ dp
9[p(z) = p(z +m)] = —g=—n.
Work needed to lift the heavier parcel by dz is

dﬁ z+dz 1
g2 dny = —=dpdz.
gdz/z nan 2:02

Similarly, the work needed to push the light parcel down by dz is —% gdpdz. Therefore the

total work needed is
—gdpdz.



Before the exchange, the total kinetic energy is
1
570[U2 + (U + dU)?]

where Boussinesq approximation is used. After the exchange, the parcels mix with the
surrounding fluid and attain the average velocity

(U+U+dU)/2=U+dU/2
Therefore the total kinetic energy is
(U + dU /2)?

The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

g [U? + (U +dU)? - 2(U +dU/2)?} = gdU?

If the net available kinetic energy exceeds the work needed for the exchange, the disturbance
will grow and the flow will become unstable, i.e.,

pdU?
4
Let the Richardson number be defined by

> —gdpdz

_g;ﬁ
R, = d(pj 2 (5.2.1)
(%)
Instabilty occurs if
1 —4
Z > R, = p dz (522)

(Chandrasekar, 1961 ).
Remark: A slightly more accurate estimate can be made without Boussinesq approxima-
tion. Before the exchange, the total kinetic energy is

1
5 {PU* + (7 + dp) (U + dU)*}.
After the exchange, the parcels mix with the surrounding fluid and attain the average velocity

(U+U+dU)/2=U +dU/2

but their densities are preserved. Therefore the total kinetic energy is

%(ﬁ +p+dp)(U +dU/2)?



The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

P 1
gdUQ-UdUdp4—dedU2
Ignoring the last term, the necessary condition for instability is
P o R
ZdU —UdUdp + dedU > —gdpdz
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On the left-hand side, the third term is negligible compared to the first. The ratioi of the
second term on the left to the term on the right is

vdu U?

R S —

g dz gL

where L is the length scale of stratification. As long as the last ratio is very small, the
criterion R; < 1/4 still holds.
Let us confirm the heuristic result but the linearize theory.

5.2.2 Linearized instability theory for continuous shear and strat-
ification.

Let the total flow field be (U 4w, w, P+p, p+ p) where U, P, p represent the backgraound flow
(u,w, p, p) the dynamical perturbations of infinitesimal magnitude. The linearized governing
equations are: continuity:

Uy +w, =0 (5.2.3)
incompressiblity:
pr +Upy +wp =0 (5.2.4)
where _
-/ = @
dz
and momentum conservation:
p(u + Uuy +wU,) = —p, (5.2.5)
ﬁ(wt + Uw:r) = —p. — pg- (526)
where p denotes the perturbation of density from p.
Let us follow Miles and introduce a new unknown 7 by enoting g = —p'n, then Eqn.

(5.2.4) gives
N+ Ul = w (5.2.7)



Consider
n = F(z)e*@=, (5.2.8)

where
c=w/k =c, +ic.

For fixed k the flow is unstable if ¢; > 0, since

e—ikct — e—ikcrtek:cit.
Let
{u,w,p, p} = {i(2),@(2), p(2), =7 F(2)} €~ (5.2.9)
We get from Eqn. (5.2.7)
w =1ik(U — o)F,, (5.2.10)
from Eqn. (5.2.3)
u=—[U-c¢)FY, (5.2.11)

and from Eqn. (5.2.5)
p(ik(U — ¢)u + U'[ik(U — ¢)F)) = pik

or

plU = ) (U =) FI' + U'(U = c)F] = p,

hence
p=pU —c)’F'. (5.2.12)

Substituting Eqns. (5.2.9), (5.2.10), (5.2.11) and (5.2.12) into Eqn. (5.2.6), we get
PU — ¢?F| +7p[N* — k(U — 0)?| F =0, (5.2.13)
where N is the Brunt-Vaisala frequency defined by

g dp
N2 =_-2— 5.2.14
= ( )

Let the top and bottom be rigid walls, then w = 0. Hence,
n=0 ie, F=0, z=0,d. (5.2.15)

The argument is unchanged if the top and bottom are at z = co and z = —oo. Equations
(5.2.13) and (5.2.15) consititute an eigenvalue problem where ¢ = ¢, + ic; is the eigenvalue.
If ¢; > 0, instability occurs.
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5.2.3 A necessary condition for instability (J.W. Miles, L. N.
Howard).

For brevity we set W = U — ¢. Miles further introduce G = VW F, so that Eqn. (5.2.13)
becomes

wa — 1pU”+k2ﬁW+£ 1U’2—N2 G=0. 5.2.16
2 W \4

The boundary conditions are
G(0) = G(d) = 0. (5.2.17)

Multiplying Eqn. (5.2.16) by G* and integrating by parts

d 1 1 G
— 1|12 2 2 = (=77 2 (712 _ ar2 * 2 _
/O{pW(|G1|+I<:|G1|)+2(pU)|G|+p<4U N>W|W|}dz 0.

(5.2.18)
We now seek the necessary condition for instability, i.e., ¢; # 0. Writing
W=U-=c¢)—ic; W'=(U=¢)+ic
and substituting these in (5.2.18), we get
d
/ (U ¢, —ic)) (|G 2 +k2| G )
0
Lo onii2 = (L 2) : Gz}
- U2 - N — )| — = 0.
+ (U |G +p<4U U e +ie) | - [Phdz =0
Separating the imaginary part, we get, if ¢; # 0,
d d 1 G
_ 12 1.2 2 _ "2 2 g _
[F(@ P w16yt [7(95- 307) | 5 P dz=0
For this to be true it is necessary that N? < £(U”")? or
N 5E 1
R; = = _pd o (5.2.19)
? Ul 2 U 2 4
") (d_)

This confirms the heurisic result as the necessary (but not sufficient) condition for instabililty
(J.W. Miles, L. N. Howard).



