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5.2 Kelvin-Helmholz Instability for continuous shear

and stratification

5.2.1 Heuristic reasoning

Due to viscosity, shear flow exists along the boundary of a jet, a wake or a plume . On the
interface of salt and fresh water, density stratification further comes into play. When will
dynamic instability occur?

Figure 5.2.1: Exchanging fluid parcels in a strified shear flow

Refering to Figure 5.2.1, Consider two fluid parcels, each of unit volume, at levels z and
z+dz. Let their positions be interchanged. To overcome gravity, the force needed to lift the
heavier fluid parcel by η is

g [ρ(z)− ρ(z + η)] = −gdρ
dz
η.

Work needed to lift the heavier parcel by dz is

−gdρ
dz

Z z+dz

z
ηdη = −1

2
dρ dz.

Similarly, the work needed to push the light parcel down by dz is −1
2
gdρdz. Therefore the

total work needed is
−gdρ dz.
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Before the exchange, the total kinetic energy is

1

2
ρ[U2 + (U + dU)2]

where Boussinesq approximation is used. After the exchange, the parcels mix with the
surrounding fluid and attain the average velocity

(U + U + dU)/2 = U + dU/2

Therefore the total kinetic energy is

ρ(U + dU/2)2

The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

ρ

2

n
U2 + (U + dU)2 − 2(U + dU/2)2

o
=
ρ

4
dU2.

If the net available kinetic energy exceeds the work needed for the exchange, the disturbance
will grow and the flow will become unstable, i.e.,

ρdU2

4
> −gdρdz

Let the Richardson number be defined by

Ri ≡
−g

ρ
dρ
dz³

dU
dz

´2 (5.2.1)

Instabilty occurs if

1

4
> Ri ≡

−g
ρ
dρ
dz³

dU
dz

´2 (5.2.2)

(Chandrasekar, 1961 ).
Remark: A slightly more accurate estimate can be made without Boussinesq approxima-

tion. Before the exchange, the total kinetic energy is

1

2

n
ρU2 + (ρ+ dρ)(U + dU)2

o
.

After the exchange, the parcels mix with the surrounding fluid and attain the average velocity

(U + U + dU)/2 = U + dU/2

but their densities are preserved. Therefore the total kinetic energy is

1

2
(ρ+ ρ+ dρ)(U + dU/2)2
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The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

ρ

4
dU2 − UdUdρ+ 1

4
dρdU2

Ignoring the last term, the necessary condition for instability is

ρ

4
dU2 − UdUdρ+ 1

4
dρdU2 > −gdρdz

or
1

4
−

1
ρ
dρ
dz

1
U
dU
dz

+
1

4

dρ

ρ
>
−g

ρ
dρ
dz³

dU
dz

´2
On the left-hand side, the third term is negligible compared to the first. The ratioi of the
second term on the left to the term on the right is

U

g

dU

dz
∼ U

2

gL

where L is the length scale of stratification. As long as the last ratio is very small, the
criterion Ri < 1/4 still holds.
Let us confirm the heuristic result but the linearize theory.

5.2.2 Linearized instability theory for continuous shear and strat-
ification.

Let the total flow field be (U+u,w, P+p, ρ̄+ ρ̃) where U, P, ρ̄ represent the backgraound flow
(u,w, p, ρ̃) the dynamical perturbations of infinitesimal magnitude. The linearized governing
equations are: continuity:

ux + wz = 0 (5.2.3)

incompressiblity:
ρ̃t + U ρ̃x + wρ

0 = 0 (5.2.4)

where

ρ0 ≡ dρ
dz

and momentum conservation:

ρ (ut + Uux + wUz) = −px (5.2.5)

ρ (wt + Uwx) = −pz − ρ̃g. (5.2.6)

where ρ̃ denotes the perturbation of density from ρ̄.
Let us follow Miles and introduce a new unknown η by enoting ρ̃ = −ρ0η, then Eqn.

(5.2.4) gives
ηt + Uηx = w (5.2.7)
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Consider

η = F (z)eik(x−ct), (5.2.8)

where

c = ω/k = cr + ici.

For fixed k the flow is unstable if ci > 0, since

e−ikct = e−ikcrtekcit.

Let

{u,w, p, ρ̃} = {û(z), ŵ(z), p̂(z),−ρ0F (z)} eik(x−ct) (5.2.9)

We get from Eqn. (5.2.7)

ŵ = ik(U − c)F, , (5.2.10)

from Eqn. (5.2.3)

û = −[(U − c)F ]0, (5.2.11)

and from Eqn. (5.2.5)

ρ (ik(U − c)û+ U 0[ik(U − c)F ]) = p̂ik
or

ρ[(U − c)(−)[(U − c)F ]0 + U 0(U − c)F ] = ρ̂,

hence

p̂ = ρ(U − c)2F 0. (5.2.12)

Substituting Eqns. (5.2.9), (5.2.10), (5.2.11) and (5.2.12) into Eqn. (5.2.6), we get

h
ρ(U − c)2F 0

i0
+ ρ

h
N2 − k2(U − c)2

i
F = 0, (5.2.13)

where N is the Brunt-Väisälä frequency defined by

N 2 = −g
ρ

dρ

dz
. (5.2.14)

Let the top and bottom be rigid walls, then w = 0. Hence,

η = 0 i.e., F = 0, z = 0, d. (5.2.15)

The argument is unchanged if the top and bottom are at z = ∞ and z = −∞. Equations
(5.2.13) and (5.2.15) consititute an eigenvalue problem where c = cr + ici is the eigenvalue.
If ci > 0, instability occurs.
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5.2.3 A necessary condition for instability (J.W. Miles, L. N.
Howard).

For brevity we set W = U − c. Miles further introduce G = √WF , so that Eqn. (5.2.13)
becomes

(ρWG0)0 −
∙
1

2
(ρU 0)0 + k2ρW +

ρ

W

µ
1

4
U 02 −N2

¶¸
G = 0. (5.2.16)

The boundary conditions are
G(0) = G(d) = 0. (5.2.17)

Multiplying Eqn. (5.2.16) by G∗ and integrating by partsZ d

0

½
ρW

³
| G01 |2 +k2 | G1 |2

´
+
1

2
(ρU 0)0 |G|2 + ρ

µ
1

4
U 02 −N2

¶
W ∗ | G

W
|2
¾
dz = 0.

(5.2.18)
We now seek the necessary condition for instability, i.e., ci 6= 0. Writing

W = (U − cr)− ici W ∗ = (U − cr) + ici
and substituting these in (5.2.18), we getZ d

0

n
ρ(U − cr − ici)

³
| G0 |2 +k2 | G |2

´

+
1

2
(ρU 0)0 |G|2 + ρ

µ
1

4
U 02 −N2

¶
(U − cr + ici) | G

W
|2
¾
dz = 0.

Separating the imaginary part, we get, if ci 6= 0,Z d

0
ρ
³
(| G0 |2 +k2 | G |2

´
dz +

Z d

0
ρ
µ
gβ − 1

4
(U 0)2

¶
| G
W
|2 dz = 0.

For this to be true it is necessary that N2 < 1
4
(U 0)2 or

Ri =
N2

(U 0)2
=
−g

ρ̄
dρ̄
dz³

dU
dz

´2 < 1

4
. (5.2.19)

This confirms the heurisic result as the necessary (but not sufficient) condition for instabililty
(J.W. Miles, L. N. Howard).


