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3.8 Impulsive motion of a blunt body and tendency for
separation
Ref: H. Schlichting, Boundary layer theory, p 400 ff.
As an example of unsteady boundary layer, let us consider the initial stage (U,T'/L < 1)

of a boundary layer due to the impulsive start of motion near a blunt body, see the sketch
in Figure 3.8.1.
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Figure 3.8.1: Boundary layer around a blunt body

Let us start with the boundary layer approximation and introduce a perturbation expan-
sion in powers of the small ratio U,T"/L,
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Equating the coefficients of (%) we get the first (leading) order perturbation equations
in normalized coordinates,

ul + 0l =0, (3.8.6)
ult) = u&/) (3.8.7)
subject to the initial conditions:
WM =0l =0. t=0, Vy (3.8.8)
and the boundary condtions
u) =0 =0. y=0, Vi (3.8.9)
=U, y— o (3.8.10)

Equating the coefficient of (UZT

), we get the second order perturbation equations in
normalized coordinates,

u? + 0P =0, (3.8.11)
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subject to the same initial and boundary conditions on the wall as the first order problem,
except that
u? 50, y— oo (3.8.13)

To return to physical variables, we need only add the coeficient v in front of the viscous
stress term u,, in (3.8.7), and (3.8.12). The first order problem for the tangential velocity
is precisely the Rayleigh problem

ug) = ull (3.8.14)

subject to the initial conditions:
D=0, t=0, Yy (3.8.15)

and the boundary condtions
uWM=0. y=0, V¢ (3.8.16)
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The solution is

uY(z,y,t) = U(z)erf(n) = U(a;)% /077 e~ dn

where
n=—
V2t
Integrating the continuity equation (3.8.6) we get
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To simply the notation we introduce

erf(n) = ¢\(n), /0 " ext(n) dn = Goln)

so that 7
u = U(@)Gm), v = ——=2vitGo(n)

The second-order approximation is

u® — I/Uz(j} =UU, —uWMull) — v(l)uél)
subject to the initial and boundary conditions that
u®(y,0) =0, u®(y,t)=0 fory=0,00

The right hand side of (3.8.23) can be worked out so that

U§2) - l/u?(jj) =UU, [1 — (erf(n))” + e /077 erf(n) dn]

= UU, [1 = (W) + hh"| = UU,F(n)

A similarity solution is possible. Let us seek a one-parameter transformation,

u® = @ =2,y =A%

From (3.8.23) we get

ou@’ 02’
)\a—b o V}\a—?c

ot oy’ = UUwF()‘C_b/Qn/)

Note that z is just a parameter. Clearly a = b = 2¢ so that we can take
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Substituting (3.8.26) into (3.8.25), we get a linear ordinary differential equation
"4 2nf = 4f = 4[(6)” = Gty — 1] (3.8.27)
subject to the boundary conditions that
f=0, n=0,00 (3.8.28)
The solution is not difficult (see Schlichting, eq. 15.43, p. 400).
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The solution is plotted in Figure 3.8.2.
The total solution is

u = Uerf(n) + tUU, f(n) (3.8.30)

Figure 3.8.2: Solution to the problem of impulsive start.

Separation
For a given U(z) when and where will separation first occur? Namely, when is
ou

— = Qaty =0
oy 4



Let us use (3.8.30) for a crude estimate. Since
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It can be show n that at n =0,
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Note that t; > 0 only for U, < 0, i.e., a decelerated flow. This is a very crude and mathe-
matically illigitimate estimate since we are equating two terms of different order.
Neveltherless let us apply this result to the impulsive flow passing a circular cylinder
from the left. Let U, be the constant velocity at infinity and the polar angle § be measured
from the upstream stagnation point, then x = af where a is the radius, see Figure 3.8.3. It
is well known in the potential theory that the potential is

ts =

(3.8.31)
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The tangential velocity along the cylinder » = a is

1909 U, 2
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or

U =2U,sin(m — 0) = 2U,sin(f) = 2U, sinz/a

The minimum ¢4 occurs at the riear stagnation point, x = ma at which
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Note that the last condition indicates the illigitimacy of this estimate. Nevertheless we use
it here as an order-of-magnitude guide which may be improved by working out higher order
terms.

In offshore stuctures, wave induced oscillatory flows acound a pile can be separated and
hence affect the drag force on the pile. As an order estimate we take U, = wA where
w =frequency and A =wave amplitude. Hence there is no separation if

@A 035, or & <23
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Since flow changes direction after every half period 7/w, there is no separation in every half

period if
A 0.35
—<—=0.1
a s

This is of course very crude. Experimentally Keulegan and Carpenter have estiblished
that separation occurs in waves if A/a exceeds 1. The ratio A/a is now known as the
Keulegan and Carpenter number.

Figure 3.8.3: Definition of coordinates for a circular cylinder.



