
1

Notes on
1.63 Advanced Environmental Fluid Mechanics

Instructor: C. C. Mei, 2001
ccmei@mit.edu, 1 617 253 2994

October 15, 2002
3-8impulsive.tex

3.8 Impulsive motion of a blunt body and tendency for

separation

Ref: H. Schlichting, Boundary layer theory, p 400 ff.

As an example of unsteady boundary layer, let us consider the initial stage (UoT/L¿ 1)
of a boundary layer due to the impulsive start of motion near a blunt body, see the sketch
in Figure 3.8.1.

Figure 3.8.1: Boundary layer around a blunt body
.

Let us start with the boundary layer approximation and introduce a perturbation expan-
sion in powers of the small ratio UoT/L,

u = u(1) +
µ
UoT

L

¶
u(2) +

µ
UoT

L

¶2
u(3) · · · , (3.8.1)

p = p(1) +
µ
UoT

L
)p(2) + (

UoT

L

¶2
p(3) + · · · (3.8.2)

We then get

u(1)x + v(1)y +
µ
UoT

L

¶³
u(2)x + v(2)y

´
+ · · · = 0, (3.8.3)
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and

u
(1)
t +

UoT

L
u
(2)
t +

UoT

L
(u(1)u(1)x + v(1)u(1)y ) +O

µ
UoT

L

¶2
=
UoT

L
UUx + u

(1)
yy +

UoT

L
u(2)yy +O

µ
UoT

L

¶2
(3.8.4)

(3.8.5)

Equating the coefficients of
³
UoT
L

´0
we get the first (leading) order perturbation equations

in normalized coordinates,
u(1)x + v(1)y = 0, (3.8.6)

u
(1)
t = u(1)yy (3.8.7)

subject to the initial conditions:

u(1) = v(1) = 0. t = 0, ∀y; (3.8.8)

and the boundary condtions

u(1) = v(1) = 0. y = 0, ∀t; (3.8.9)

u(1) = U, y →∞ (3.8.10)

Equating the coefficient of
³
UoT
L

´
, we get the second order perturbation equations in

normalized coordinates,
u(2)x + v(2)y = 0, (3.8.11)

u
(2)
t + (u(1)u(1)x + v(1)u(1)y ) = UUx + u

(2)
yy +O

µ
UoT

L

¶2
(3.8.12)

subject to the same initial and boundary conditions on the wall as the first order problem,
except that

u(2) → 0, y →∞ (3.8.13)

.
To return to physical variables, we need only add the coeficient ν in front of the viscous

stress term uyy in (3.8.7), and (3.8.12). The first order problem for the tangential velocity
is precisely the Rayleigh problem

u
(1)
t = u(1)yy (3.8.14)

subject to the initial conditions:

u(1) = 0. t = 0, ∀y; (3.8.15)

and the boundary condtions
u(1) = 0. y = 0, ∀t; (3.8.16)
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u(1) = U, y →∞ (3.8.17)

The solution is

u(1)(x, y, t) = U(x)erf(η) = U(x)
2√
π

Z η

0
e−η

2

dη (3.8.18)

where
η =

y√
2νt

(3.8.19)

Integrating the continuity equation (3.8.6) we get

v(1) = −
Z y

0

∂u1
∂x
dy = −dU

dx
2
√
νt
Z η

0
erf(η) dη (3.8.20)

To simply the notation we introduce

erf(η) = ζ 00(η),
Z η

0
erf(η) dη = ζ0(η) (3.8.21)

so that

u(1) = U(x)ζ 00(η), v
(1) = −dU

dx
2
√
νtζ0(η) (3.8.22)

The second-order approximation is

u
(2)
t − νu(2)yy = UUx − u(1)u(1)x − v(1)u(1)y (3.8.23)

subject to the initial and boundary conditions that

u(2)(y, 0) = 0, u(2)(y, t) = 0 fory = 0,∞ (3.8.24)

The right hand side of (3.8.23) can be worked out so that

u
(2)
t − νu(2)yy = UUx

∙
1− (erf(η))2 + e−η2

Z η

0
erf(η) dη

¸
= UUx

h
1− (h0)2 + hh00

i
= UUxF (η) (3.8.25)

A similarity solution is possible. Let us seek a one-parameter transformation,

u(2) = λau(2)
0
, t = λbt0, y = λcy0

From (3.8.23) we get

λa−b
∂u(2)

0

∂t0
− νλa−2c

∂2u(2)
0

∂y02
= UUxF (λ

c−b/2η0)

Note that x is just a parameter. Clearly a = b = 2c so that we can take

u(2)

t
= f(η)UUx (3.8.26)
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Substituting (3.8.26) into (3.8.25), we get a linear ordinary differential equation

f 00 + 2ηf 0 − 4f = 4
h
(ζ 00)

2 − ζ0ζ
00
0 − 1

i
(3.8.27)

subject to the boundary conditions that

f = 0, η = 0,∞ (3.8.28)

The solution is not difficult (see Schlichting, eq. 15.43, p. 400).

f = erfc(η)

"
− 3√

π
e−η

2

+ 2−
Ã
3√
π
+

4

3π
√
π

!
+

√
π

2
(2η2 + 1)

#

+
1

2
(2η2 − 1)erfc2(η) + 2

3
e−2η

2

(3.8.29)

+ e−η
2

"
η√
π
− 4

3π
+ η

Ã
3√
π
+

4

3π
√
π

!#

The solution is plotted in Figure 3.8.2.
The total solution is

u = Uerf(η) + tUUxf(η) (3.8.30)

Figure 3.8.2: Solution to the problem of impulsive start.
.

Separation
For a given U(x) when and where will separation first occur? Namely, when is

∂u

∂y
= 0aty = 0
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Let us use (3.8.30) for a crude estimate. Since

∂u

∂y
= [U(erfη)0 + UUx t f 0(η)]

∂η

∂y

It can be show n that at η = 0,

(erfη)0 =
2√
π
, f 0(η) =

2√
π

µ
1 +

4

3π

¶
It follows that

U + ts

µ
1 +

4

3π

¶
UUx = 0

or

ts = − 0.7
UUx

(3.8.31)

Note that ts > 0 only for Ux < 0, i.e., a decelerated flow. This is a very crude and mathe-
matically illigitimate estimate since we are equating two terms of different order.
Neveltherless let us apply this result to the impulsive flow passing a circular cylinder

from the left. Let Uo be the constant velocity at infinity and the polar angle θ be measured
from the upstream stagnation point, then x = aθ where a is the radius, see Figure 3.8.3. It
is well known in the potential theory that the potential is

φ = Uo

Ã
r +

a2

r

!
cos(π − θ)

The tangential velocity along the cylinder r = a is

1

r

∂φ

∂θ
=
Uo
r

Ã
r +

a2

r

!
sin(π − θ), r = a

or
U = 2Uo sin(π − θ) = 2Uo sin(θ) = 2Uo sinx/a

The minimum ts occurs at the riear stagnation point, x = πa at which

ts =
0.35a

Uo
, or

Uots
a

= 0.35

Note that the last condition indicates the illigitimacy of this estimate. Nevertheless we use
it here as an order-of-magnitude guide which may be improved by working out higher order
terms.
In offshore stuctures, wave induced oscillatory flows acound a pile can be separated and

hence affect the drag force on the pile. As an order estimate we take Uo = ωA where
ω =frequency and A =wave amplitude. Hence there is no separation if

ωAts
a

< 0.35, or
A

a
<
0.35

ωts
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Since flow changes direction after every half period π/ω, there is no separation in every half
period if

A

a
<
0.35

π
= 0.1

This is of course very crude. Experimentally Keulegan and Carpenter have estiblished
that separation occurs in waves if A/a exceeds 1. The ratio A/a is now known as the
Keulegan and Carpenter number.

Figure 3.8.3: Definition of coordinates for a circular cylinder.
.


