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3.7 'Transient boundary layer along a flat plate

Consider the two dimensional boundary layer near edge of half infinite plane along the x
axis due to the impulsive start along its own plane. There is no motion anywhere for ¢ < 0.
At t = 0 the plane suddenly advances from right to left perpendicular to its leading edge.
What is the boundary layer flow? Referring to Figure 3.7.1 where the coordinate system is
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Figure 3.7.1: Front of boundary layer

fixed on the plane. For all £ > 0,
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The boundary layer equation reads:
p(u + vug + wu,) = pu,, (3.7.1)

and the Karman momentum inetgral equation reads

(3.7.2)

%/Ooop(U—u)dz+%/ooop(Uu—u2)dz:u%
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Let us assume

(3.7.3)

then .
5, =36 /0 (1— f(n))dy = 16 (3.7.4)



b= 0 [~ )L = Fn)dn = awo (3.7.5)
and o
u, = gf’(O). (3.7.6)
Substituting into Eq. (3.7.2)
a6 ,00 U,
OélUE + O[QU % = I/gf (0)
Therefore,
0(6/2) 0(6/2)

(aq) 5 + (aU) o vf'(0) (3.7.7)

which is a first order wave (hyperbolic) equation for §2/2. We must add the boundary and
initial conditions:

5(0,1)
d(z,0)

0, Vt>0 (3.7.8)
0, Vz>0 (3.7.9)

Solution:

The fact that the boundary value in (3.7.8) is independent of ¢ for all ¢ suggests that the
solution is independent t for sufficiently large z, i.e.,

o (6*\ _2vf(0)
s (2) 1 -

subject to the boundary condition (3.7.8). The solution is simply

~2vf(0)z
d= 1/7 (3.7.11)

This is the approximate version of the solution by Blasius who solved the steady boundary
layer equation
Uy, + vuy = v, for >0, y>0 (3.7.12)

by the method of similarity.
On the other hand, the fact that the initial value in (3.7.8) is independent of z for all =
suggests that the solution is independent of x for sufficiently large ¢, i.e.,

% (%) _ 2”?; /1(0) (3.7.13)

subject to the initial condition (3.7.9). The solution is simply

5= ,/QV]; ()¢ (3.7.14)




This is the approximate version of the solution by Rayleigh’s problem which is known to be
governed by

u = vy, for t>0, y>0 (3.7.15)

To find the range of each solution in the x ~ ¢ plane, we equate the two §’s and get

o O_/QUt
= "

(3.7.16)
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Thus (3.7.11) holds in the wedge = > o‘;—[l]t > 0 and (3.7.14) holds in the wedge 0 < z < O‘;—lUt
See Figure 3.7.2.

Physically: if ¢ > ajz/asU, (3.7.11) applies and one has the steady Blasius flow past a
semi-infinite plate; the boundary layer is already in the steady state. See Figure 3.7.3, If
t < aqgz/asU, (3.7.14) applies and one has Rayleigh’s problem of impulsively started plane
infinite in both z < 0 and z > 0. The boundary layer is still in the initial stage and the
effect of the leading edge is not felt elsewhere. The result is summarized in Figure 3.7.4.

To calculate o and ay let us make a special choice of the velocity profile so that f(0) =

0, f(1) = f"(1) = 0 (due to Karman and Polhausen)
f)y=2n—2n"+n* 0<n<1 (3.7.17)

Note that
F0)=0, f'(n)=2—6n>+4n°, f"(n)=—12n+ 12 (3.7.18)
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then

(1—2n+2¢° —n")dn=3/10=03
(20— 20 +0*) (1= 2n+ 25 — ") dy = 37/315 = 0.117

and
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Hence the displacement thickness of the Blasius boundary layer is

2vf'(0)z UT
——— = 1754/ — 3.7.19
OQU U ( )

(51 :a16:a1

The momentum integral method is the special case of the moment method, since the
Karman equation is the zeroth moment of the boundary layer equation. For the classical
steady boundary layer problem solved exactly by Blasius using the similarity method, the
momentum integral approximation gives fairly good results, even with various crude profiles,
see Table 3.1 below.
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Figure 3.7.2: Evolution of a transient boundary layer. (a) Blasius region and Rayleigh region
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Figure 3.7.3: Evolution of a transient boundary layer. (b) Blasius region

3.7.1 Appendix: Solution by a formal reasoning

A more formal solution can be obtained as follows: Let

a=aq b=aU  c=vf(0)

o (62 9 (62

The solution can be facilitated by a change of coordinates from (x,t) to (&, () where

then

E=ax+ bt (=ar—10bt (3.7.21)

then
g 006 00¢ 0 008 0 ¢

5t 0ot oCot ox  0¢dr  aco

(#), = (@) (),
(#), = (7),0+ ()0



Figure 3.7.4: Evolution of a transient boundary layer. (c¢) Rayleigh region

Velocty profile Displacment boundary layer thickness
B =10, 1=z o
i 1.732
sin & 1.741
2n—2n° +nt 1.754
Blausius 1.721

Table 3.1: Comparson of approximate solution by momentum integral method with the exact
solution of Blasius
Therefore, from (3.7.7),

> [an (67), — ab (), + ab (82), + b () | =

Loy _ ¢ vfi(0)
2 <5 )5 N 2ab N 2(1/1(1/2[]
Integrate once
& _ vf'(0)
— = 7.22
= S+ GO (37.22)

where G is an arbitrary function of (.
To determine G({) we first use the initial condition that § = 0 at ¢ = 0 for all > 0.

vf'(0)
= 2041042U(£)t:0 + G(¢)i=0
" 7(0)
= 2041042U<ax) + G(az) for x> 0.
Therefore

¢>0 (3.7.23)




What is G(¢) for ¢ < 07 Let us use the boundary condition at z = 0 that § = 0 for all

t>0. £(0)
v
0= 2()[10(2U(§)$:0 + G(C)z:o
" 7'(0)
v
Note that for ¢t > 0, —bt < 0. Therefore,
vf'(0)
= for all . 7.24
G(¢) 2041042UC orall (<0 (3.7.24)

Egs. (3.7.23) and (3.7.24) complete the solution for all ¢ > 0 and ¢ < 0.
Let us return to z and ¢

6 vf'(0) ., wf(0) . wf(0)

2bt for ax—0bt>0

2 200U 20005U°  2a100U
vf'(0) vf'(0) vf'(0)
— = 2 f —bt <0
2a1a2U§ * 20zloz2UC 200000 a o ar
Therefore,
2 /
s 2Oy s 22, (3.7.25)
(0%} Qg
and
2v (0 U
J= 2l ):L' for z < 222¢ (3.7.26)
Of2U p

These are the same as (3.7.14) and (3.7.11).



