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3.6 Karman’s momentum integral approach

Ref: Schlichting: Boundary layer theory

With a general pressure gradient the boundary layer equations can be solved by a va-
riety of modern numerical means. An alternative which can still be employed to simplify
calculations is the momentum integral method of Karman. We explain this method for a
transient boundary layer along the x-axis forced by an unsteady pressure gradient outside.
This pressure gradient can be due to some unsteady and nonuniform flow such as waves or
gust.
Let us limit our discussoin to a two dimentional flow. Recall the continuity

ux + wz = 0 (3.6.1)

and boundary layer equation:

ρ(ut + uux + wuz) = −px + µuzz (3.6.2)

0 = −pz (3.6.3)

The boundary conditions are

u = w = 0, z = 0; u→ U, w → 0, z →∞. (3.6.4)

For general U(x, t) the longitudinal pressure gradient is

−px = ρ(Ut + UUx) (3.6.5)

so that
ρ(ut + uux + wuz) = ρ(Ut + UUx) + µuzz (3.6.6)

Instead of solving the initial-boundary-value problem accurately we introduce a moment
method by integrating the momentum equation across the boundary layer, then make a rea-
sonable assumption on the velocity profile to get the longitudinal variation of the boundary
layer thickness. This is called the Karman’s momentum integral approximation in boundary
layer theory.
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Let us add the following two equations

−µuzz = ρ {Ut + UUx − (ut + uux + wuz)}

and
0 = (U − u)ux + (U − u)wz

to get,

−µuzz = ρ

(
∂

∂t
(U − u) + ∂

∂x
[u(U − u)] + (U − u)∂U

∂x
+

∂

∂z
[(w(U − u)]

)

Now let us integrate across the boundary layer,

µuz|0 = ρ

(
∂

∂t

Z ∞
0
(U − u)dz + ∂

∂x

Z ∞
0
u(U − u)dz + ∂U

∂x

Z ∞
0
(U − u)dz

)
+ ρ[w(U − u)]∞0

The boundary terms again vanish. Finally, we have,

∂

∂t

Z ∞
0

ρ(U − u)dz + ∂

∂x

Z ∞
0

ρ
³
Uu− u2

´
dz +

∂U

∂x

Z ∞
0
(U − u)dz = µ

∂u

∂z

¯̄̄̄
¯
0

(3.6.7)

This is the Kármán momentum integral equation, representing the momentum balance across
the thickness of the boundary layer.

Figure 3.6.1: Displacement thickness
.

Karman also introduces the displacement thickness as a measure of the lost volume

Uδ1 =
Z ∞
0
(U − u) dz, or δ1 =

Z ∞
0

µ
1− u

U

¶
dz, (3.6.8)
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and the momentum thickness as a measure of the lost momentum

U2δ2 =
Z ∞
0
u(U − u)dz, or δ2 =

Z ∞
0

u

U

µ
1− u

U

¶
dz, (3.6.9)

both due to the slowing down of the fluid in the boundary layer. See Figure 3.6.1.
In certain cases when the velocity profile in the boundary layer can be reasonably guessed

in advance, the Karman momentum intergal equation can be the basis of obtaining an
approximate solution. The procedure is to assume a reasonable profile :

u = Uf
µ
y

δ

¶
(3.6.10)

and substitute (3.6.10 ) into (3.6.7) equation. After evaluating the integrals a differential
equation is obtained for the boundary layer thickness δ(x, t), which can be more easily solved
for certain initial and boundary conditions.


