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3.3 Viscous Flow at High Reynolds Numbers

Let us first give a heuristic estimates of boundary layer in steady flows.
Consider a particle near the wall to be influenced by viscosity. After traveling a distance
x from the edge, it has been under viscous influence for a time of t = x/U. Let U be large.
For finite z, ¢ is small so that vorticity is spread sideways to the width (1) ~ (vz/U)"?.
Let us define this width to be the boundary layer, which has thickness § = O (vz/U)">.
Alternatively we start from Navier-Stokes equations :
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When viscosity is important y = O(d),z = O(L), convective inertia is comparable to viscous

stresses.
From continuity
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From z—momentum
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Shear stress on the awall :

To ou

= UV —
p oy

U | U
O—I/gNVU i

T0 v 2
1—2 = 2 _— = —
spU Ur Re

Hence the drag coefficient is,
Cp =
For water v = 107° ft*/sec. Let U = 1 ft/sec L =1 ft, then Re = 10°. Hence,
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and
Cp ~ 0.003.

Experiments for flat plates (Schlichting, p. 133) show that: C'p ~ 0.002, but experiments
for a circular cylinder show that Cp ~ 0(1) because flow is separated for most Re .

3.3.1 Systematic Boundary-layer Approximation
Let u = O(U), = = O(L), y = 0(9). From continuity, v = O(UJ/L). Let u — Uu, v —
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From Eqn. (3.3.6)
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From Eqn. (3.3.7)
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From Eqn. (3.3.8)
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To keep the dominant viscous stress term in Eqn. (3.3.10), we must have
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From Eqn. (3.3.11)

and from Eqn. (3.3.10)
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In physical variables, we have to leading order
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The pressure is constant across the boundary layer and must be the same as the pressure

just outside. In the inviscid outer flow
1
UU, +VU, = ——p,.
p

Since V = 0 on the wall, p, = —pUU,. Hence, inside the boundary layer:

Uy + VUy = UUy + vity,.
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This is the classical boundary layer approximation for high Re flows, due to Prandtl

(1905).



