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3.10 Oscillatory Boundary Layers

3.10.1 Stokes problem

If the viscosity is weak or the frequency is high (time scale is small) , there is a boundary
layer near the boundary of an oscillating body or the solid bottom under a wave.
Let the external flow have the tangential velocity u = <U(x)e−iωt. If the inertia parame-

ter is small, then
uux, vuy
ut

= O
µ
Uo
ωL

¶
¿ 1.

If furthermore

1À U

ωL
À ν

ωL2

we keep keep just the most important viscous stress term and seek perturbation solution in
successive powers of the inertia parameter. Let us save the trouble of nondimensionalization
and assume

u = u1 + u2 + . . . (3.10.1)

with the understanding that the relative orders of magnitude is represented by the subscripts,
i.e., u1 is the leading order and u2 is smaller than u1 by a factor O(

U
ωL
À ν

ωL2
), etc. We get

from the Navier-Stokes equations the leading order approximation

∂u1
∂t

=
∂

∂t
Re

³
Ue−iωt

´
+ ν

∂2u1
∂y2

y > 0 (3.10.2)

subject to the boundary conditions that

u1 → ReUe−iωt y →∞ (3.10.3)

and
u1 = 0 y = 0 (3.10.4)

Let
u1 = Re

h
û1(x, y)e

−iωt + Ue−iωt
i

(3.10.5)

then

−iωU − iωû1 = −iωU + ν
d2û1
dy2
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Therefore,
d2û1
dy2

+
iω

ν
û1 = 0 (3.10.6)

û1 → 0, y →∞ (3.10.7)

û1 = −U1(x), y = 0 (3.10.8)

The solution is

û1 = −U(x) exp
∙
−(1− i)y

r
ω

2ν

¸
(3.10.9)

or,

u1 = <
½
U(x)

∙
1− exp

µ
−(1− i)y

r
ω

2ν

¶¸
e−iωt

¾
(3.10.10)

The sign of
√−i is chosen so that (3.10.7) is satisfied. The boundary layer thickness is

δ =

s
2ν

ω
(3.10.11)

It is easy to show that the vorticity at the wall is

− ∂u1
∂y

¯̄̄̄
¯
y=0

= (1− i)U
r
ω

2ν
= e−iπ/4U (3.10.12)

which has the phase lag of π/4 behind U , and diffuses away from y = 0 like a propagating
wave exponentially attentuated after the Sokes boundary layer thickness O(δ).

3.10.2 Induced Streaming

By considering the small effect of convective inertia, the second order improvement is phys-
ically even more interesting.
If the inviscid outer flow has tangential variation dU

dx
6= 0, then by continuity there is

transverse flow v1 in the boundary layer :

v1 = −
Z y

0

∂u1
∂x
dy = ie−iωt

dU

dx

Z y

0

h
1− e−(1−i)y/δ

i
dy (3.10.13)

= −e−iωtdU
dx

(
y − δ

1− i
h
1− e−(1−i)y/δ

i)

which is valid in y ≤ O(δ) only.
Let us examine the second order:

∂u2
∂t
− ν

∂2u2
∂y2

= U
dU

dx
−
Ã
u1

∂u1
∂x

+ v1
∂u1
∂y

!

= U
dU

dx
−
"
∂ (u1u1)

∂x
+
∂ (u1v1)

∂y

#
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Taking average over a period

−ν ∂
2ū2
∂y2

= U
dU

dx
−
Ã
∂u1u1
∂x

+
∂u1v1
∂y

!

On the right-hand-side the last two terms u1u1, u1v1 are wave-induced Reynolds stresses

u1u1 = rate of transporting x-momentum in x-direction

u1v1 = rate of transporting x-momentum in y-direction

Alternatively:

−ν ∂
2ū2
∂y2

=
1

2

∂

∂x
U2 − 1

2

∂

∂x
u21 − v1

∂u1
∂y

Let
α = (1− i)/δ (3.10.14)

Since

v1 = ie
−iωt 1

α

dU

dx

³
αy − 1 + e−αy

´
∂u1
∂y

= αU(x)e−iωte−αy

−v1 ∂u1
∂y

=
1

2
Re

"
U∗
dU

dx

α∗

α
e−α

∗y
³
αy − 1 + e−αy

´#
Thus

−ν ∂
2ū2
∂y2

= G(y) ≡ 1
2

d|U |2
dx

h
1−

³
1− e−αy

´ ³
1− e−α∗y

´i
+ReU∗

dU

dx

α∗
α
e−α

∗y
³
αy − 1 + e−αy

´
ν
∂ū2
∂y

=
Z ∞
y
G(y0)dy0

ν ū2 =
Z y

0
dy00

Z ∞
y00
G(y0)dy0

= −y
Z ∞
y
G(y0)dy0 +

Z y

0
y00G(y00)dy00

One more integration gives

−ωū2 = ReF4 U
dU∗

dx
. where

F4 = −1
2
(1− 3i)e−(1−i)η − i

2
e−(1+i)η − 1

4
(1 + i)e−2η

+
1

2
(1 + i)ηe−(1−i)η +

3

4
(1− i)
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Note that as y →∞, just outside the boundary layer,

ū2 = − 1

4ω
Re

"
(3− i)U dU

∗

dx

#

Let U = Aeiγ

U
dU∗

dx
= Aeiγ

dAe−iγ

dx
=
dA2/2

dx
− iA2dγ

dx
Hence

ū2(∞) = − 1

4ω

Ã
3

2

dA2

dx
− 3A2dγ

dx

!
(3.10.15)

Example: Progressive waves, U = Uoe
ikx, where Uo, k are constants

ū2(∞) = 3k

4ω
U2o (3.10.16)

3.10.3 Physics of the Induced Streaming

Take a progressive water waves as an example:
Outside the B.L. :

u∞ = A cos(ωt− kx) (3.10.17)

Inside the B.L.
u = A

h
cos(ωt− kx)− e−y/δ cos(ωt− kx− y/δ)

i
(3.10.18)

where the velocity amplitude A is related to the surface amplitude ”a” by

A = aω/ sinh kh (3.10.19)

Let’s find the induced transverse velocity v

∂u

∂x
= A sin(ωt− kx)−Ae−y/δ sin(ωt− kx− y/δ)

v∞ = −
Z yÀδ

0

∂u

∂x
dy = −y A sin(ωt− kx)− 1

2
Akδ cos(ωt− kx) + 1

2
Akδ sin(ωt− kx)

Now

u∞v∞ = −1
4
A2kδ < 0

where the sin(ωt−kx) terms in v∞ are out of phase with u∞ by π/2, hence does not contribute
to the mean.
Now consider a slice of boundary layer one wavelength long. Because of periodicity, there

is no net transfer of momentum or forces at two ends x0 and x0+2π/k. But the momentum
transfer downwards is A2

4
kδ, causing a positive shear stress. To balance it there must be a

non-zero µ∂ū
∂y
at all levels y below the top. Hence, ū 6= 0, resulting in induced streaming.

Homework: Find the induced streaming in Stokes boundary layer under a standing
wave with

U(x) = A cos kx e−iωt.
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Figure 3.10.1: Reynolds stress and Induced streaming in Stokes layer
.


