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4.4 Buoyant plume from a steady heat source

[Reference]:
Gebhart, et. al. (Jalluria, Maharjan, Saammakia),
Buoyancy-induced Flows and Transport, 1988, Hemisphere Publishing Corporation
Let T = T — T,, = temperature variation where Tynfty is a constant (no ambient
stratification). For a strong enough heat source, we expect boundary layer behavior,
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The boundary layer equations are
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The centerline r = 0 is an axis of symmetry,
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Rewrite (4.4.3) as
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after using continuity. Now integrating the last equation from r» = 0 to r = o

dr
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Using the boundary conditions, we get or

Note that
/ onrdrupCT = rate of buoyancy flux
0
= rate of heat flux
= ((given rate of heat release at z = 0)
therefore,
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This is a boundary condition.
Let the stream function 1 be defined by
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(4.4.1) is automatically satisfied. From the momentum equation:

rOr ) rdxdr 1 Oxdr \r Or or | or

From the energy equation
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and from the buoyancy flux condition
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Try a similarity solution with the one-parameter transformation
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From (4.4.10),
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From these three equations we get

We leave it as an exercise to show that the similarity variable can be taken to be

r
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and the similarity solutions to be
Y =xF(n), and T =z"'G(n)
After much algebra, and noting
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we get from (4.4.10)
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and from (4.4.11)
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Before integrating, let us normalize :
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where prime denotes d/d7n. Setting v = v and
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Similar normalization of (4.4.19) gives
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. which can be simplified to B o
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P, = 7= Prandtl Number (4.4.26)

For water v = 1072cm?/s,k = 1.42cm?/s, hence Pr = 7. For air v = 0.145cm?/s, k =
0.202cm?/s, hence Pr = 0.75.
We now integrate (4.4.25)to give

nG' + P.FG = constant

Since 9 (z,0) = 0, we must have F'(0) = 0 ; the constant above is zero.

nG' + P.FG =0 (4.4.27)
Equation (4.4.27) can be written
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G(7) = G(0) exp <—PT /0 ! %dﬁ) (4.4.28)

Substituting Eqn. (4.4.28) into Eqn. (4.4.23), the resulting equation for F' must be integrated
numerically. )
Now let us find the boundary condtions for F' or F'.



Eqn. (4.4.8 ) becomes
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is the boundary condition for F' and G. Now (4.4.31) defines o, the scale of G. Note that
larger () implies larger o0 and smaller «. Thus a stronger heat source leads to a greater
centerline temperature and a thinner plume. Also,
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The radial velocity is, in general
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The numerical results by Mollendorf & Gelhart, 1974, are shown in Figs. 4.4.1, for
various Prandtl numbers. A schlierian photograph due to Gebhart (copied from Van Dyke
An Album of Fluid Motion) is hown in Figure fig:plumeVD.

Remark:
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Along the centerline u(z,0) = (%)0 = constant depending on P,. Why? Buoyancy acceler-

ation is counteracted by entrainment.



Remark: Let the radius of the plume be a which varies as
o~ /2

1 since

This is consistent with the behavior that u ~ 2°, and T ~ z~
2, _
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On the other hand the mass flux rate is

ua- ~ T

and the momentum flux rate is
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hence both approach zero at the source. Thus a plume is the result of energy source, not of
mass or momentum.
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Figure 4.4.1 Velocity profiles in an axisymmetric plume. (From Mollendorf and Gebhart, 1974.)
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Figure 4.4.2 Temperature profiles in an axisymmetric plume. (From Mollendorf and Gebhart, 1974.)

Figure 4.4.1: Velocity and temperature profiles in a thermal plume
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203, Plane convection plume rising
from a heated horizontal wire. A thin
wire & i long is heated electrically in
armospheric air. Each fringe in this inere-
fesogram represents a temperature differ-
ence of 14°C, The reference grid wines are
apaced ¥ by 4 in, In good accord with self-
sirpilar solutions of the houndarylayer
equations, the width of the phame grows s
the fi-power of height, Gebhar, Fern &
Scher 1970

Figure 4.4.2: A 2D thermal plume from a line heat source.
Gebhart, Pera and Schoor 1970,

From Van Dyke, photo by



