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4.3 Convection driven by buoyancy - Mountain Wind

ref: Prandtl: Fluid Dynamics.

Due to solar heating during the day, a mountain slope may be warmer than the surround-
ing air in a summer night. Let the air near a mountain slope be stably stratified

T, =Ty + Ny, (4.3.1)
where T, = constant, and N > 0. Let the slope temperature be :
T, =T, + Ny, (4.3.2)

where 177 > Tj. See the left of Figure 4.3.2. Consider first the static equilibrium:
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Figure 4.3.1: Thermal convection along a slope
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Let A and B be two points with the same elevation but A is on the slope and B is in the
air. Since pa < pp,
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The pressure gradient must drive an upward flow along the slope.
Let us consider the dynamics. Let

<0

T(z,y)=T,+0(y) (4.3.3)

and
p(z,y) = p, + S(y) = static density + dynamic density (4.3.4)

By the equation of state,

p=po[l—B(T—To)]=po[l —B(To —To)] — po30.

Therefore
po=poll —B(T, —Tp)] = po (1 — BNY') (4.3.5)
and
Note by ratation of coordinates,
T,—To= Ny = N(xzsina + ycosa). (4.3.7)
The flow equations are:
Uy + vy, =0 (4.3.8)
p (utly + vuy) = —Ppaz + 1 (Uge + Uyy) — (p — pa) gsina (4.3.9)
p (Wvy + v0y) = —Day + b (Vaz + Vyy) — (P — pa) gCOS @ (4.3.10)
uTy + 0T, =k (Tow + Tyy) (4.3.11)
where T is the total temperature and
K
k=—.
PoCp

is the thermal diffusivity. Since 0/0z = 0, v = 0 from continuity. From Eqn. (4.3.9)

Yy, + (Bgsina) § = 0. (4.3.12)



after invoking Boussinesq approximation. In Eqn. (4.3.11),

T T
g—m = a&: = Nsina.
Therefore,
ulN sin o = kb,,,. (4.3.13)

Combining Eqns. (4.3.12) and (4.3.13), we get
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The velocity is
u=Ue "sinn sothat wu(0)=0 (4.3.18)
The temperature is
0 = Ope " cosn (4.3.19)

The boundary conditions at n ~ oo are satisfied. In order that 6(0) =T) — To on n = 0 we
choose

00 - Tl - TO (4320)
Note that the boundary layer thickness is
vk 1/
~O) ~ | —mMm— 4.3.21
0~ 0(0) (pgNsinQQ) (4.3.21)

Thus if o |, 1 as 1/sin’ .
Using Eqn. (4.3.13), we get
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Hence,

1/2
U =6, (%) (4.3.22)



Finally
1\ /2
u= (T, — Tp) <%> e "sinn. (4.3.23)
and
0 = (Ty — To)e "cosn (4.3.24)

It is easy to show from (4.3.13) that the total mass flux rate is

do

M=/0 pudy = po Bk 2
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Note from (4.3.22) that U is independent of . If a |, the buoyancy force is weaker, but
the shear rate du/Jy is smaller, hence the wall resistance is smaller. U is not reduced!
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Figure 4.3.2: Wind along a valley due to feeding from mountains

On a warm slope (due to solar heating during the day) , air rises at night. If there are
two slopes forming a valley, fluid must be supplied from the bottom of the valley; this is the
reason for valley wind blowing from low altitude to high.

On a cold slope (due to radiation loss at night) air sinks at high noon. Valley wind must
flow from high to low.



