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Chapter 4. Thermal effects on fluid flow

4.1 Heat and energy conservation

Recall the basic equations for a compressible fluid. Mass conservation requires that :

ρt +∇ · ρ~q = 0 (4.1.1)

Momentum conservation requires that :

ρ (~qt + ~q∇ · ~q) = −∇p+∇·
=
τ +ρ~f (4.1.2)

where the viscous stress tensor
=
τ has the components

³
=
τ
´
ij
= τij = µ

Ã
∂qi
∂xj

+
∂qi
∂xi

!
+ λ

∂qk
∂xk

δij

There are 5 unknowns ρ, p, qi but only 4 equations. One more equation is needed.

4.1.1 Conservation of total energy

Consider both mechanical ad thermal energy. Let e be the internal (thermal) energy per
unit mass due to microscopic motion, and q2/2 be the kinetic energy per unit mass due to
macroscopic motion. Conservation of energy requires

D

Dt

ZZZ
V
ρ

Ã
e+

q2

2

!
dV rate of incr. of energy in V (t)

= −
ZZ
S

~Q · ~n dv rate of heat flux into V

+
ZZZ

V
ρ~f · ~q dV rate of work by body force

+
ZZ
X

~Σ · ~q dS rate of work by surface force
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Use the kinematic transport theorm, the left hand side becomes

ZZZ
V
ρ
D

Dt

Ã
e+

q2

2

!
dV

Using Gauss theorem the heat flux term becomes

−
ZZ
S
QinidS = −

ZZZ
V

∂Qi
∂xi

dV

The work done by surface stress becomesZZ
S
Σjqj dS =

ZZ
S
(σjini)qj dS

=
ZZ
S
(σijqj)ni dS =

ZZZ
V

∂(σijqj)

∂xi
dV

Now all terms are expressed as volume integrals over an arbitrary material volume, the
following must be true at every point in space,

ρ
D

Dt

Ã
e+

q2

2

!
= −

∂Qi
∂xi

+ ρfiqi +
∂(σijqi)

∂xj
(4.1.3)

As an alternative form, we differentiate the kinetic energy and get

ρ
De

Dt
+ ρqi

Dq1
Dt| {z } = ρfiqi + qi

∂σij
∂xj| {z }−

∂Qi
∂xi

− p
∂qi
∂xi

+
∂(τijqi)

∂xj
(4.1.4)

Becasue of momentum conservation, the terms inhluded in the underbraces cancel, leaving

ρ
De

Dt
= −

∂Qi
∂xi

− p
∂qi
∂xi

+
∂(τijqi)

∂xj
(4.1.5)

We must now add Fick’s law of heat conduction

Qi = −K
∂T

∂xi
(4.1.6)

where K is the heat conductivity, and the following equations of state

e = e(p, T ) (4.1.7)

ρ = ρ(p, T ) (4.1.8)

Now there are 10 unknowns qi, Qi, ρ, p, e, T , and 10 equations: 1 from (4.1.1), 3 from (4.1.2),
1 from (4.1.5), 3 from (4.1.6), 1 from (4.1.7) and 1 from (4.1.8).
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4.1.2 Equations of state:

For a perfect gas:

e = CvT (4.1.9)

p = ρRT, where R = Cp − Cv. (4.1.10)

The specific heats Cv (constant volume) and Cp (constatn pressure) are measured in Joules
/kg -dyne.
For a liquid:

e = CT (4.1.11)

ρ = ρ̄o
³
T̄o, p̄o

´
+

∂ρ

∂p

¯̄̄̄
¯
T

∆p+
∂ρ

∂T

¯̄̄̄
¯
p

∆T + · · ·

where ρ̄o, T̄o, p̄o are some constant reference density, temperature, and pressure respectively,
while ∆p = p− p̄o and ∆T = T − T̄o. are the variations in pressure and temperature. These
variations are usually small in environmental problems. We define the thermal expansioin
coefficient β by :

β = −
1

ρ

∂ρ

∂T

¯̄̄̄
¯
p

=
1

V

∂V

∂T

¯̄̄̄
¯
p

(4.1.12)

where V denotes the specific volume (volume per unit mass), and the bulk modulus 1/ε by

ε = −
1

ρ

∂ρ

∂p

¯̄̄̄
¯
T

= −
1

V

∂V

∂p

¯̄̄̄
¯
T

(4.1.13)

ρ ∼= ρ̄o(1− β∆T + ε∆p) (4.1.14)

For liquids

O(β) ∼ 10−3/oK, O(ε) ∼ 10−6/atm

Rewrite Eqn. (4.1.5)

ρ
De

Dt
+ ρqi

Dqi
Dt

= ρqifi + qi
∂σij
∂xj

+
∂

∂xi
K
∂T

∂xi
− p

∂qi
∂xi

+ τij
∂qi
∂xj

(4.1.15)

In summary, we have, for a perfect gas

ρCv
DT

Dt
= −p

∂qi
∂xi

+
∂

∂xi
K
∂T

∂xi
+ τij

∂qi
∂xj

(4.1.16)

and for an incompressible liquid

ρC
DT

Dt
=

∂

∂xi
K
∂T

∂xi
+ τij

∂qi
∂xj

(4.1.17)
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Recall that

Φ = τij
∂qi
∂xj

(4.1.18)

is the rate of viscous dissipation. Thus the rate of change in internal energy is equal to the
sum of rate of pressure working to compress the fluid, viscous dissipation, and heat diffusion.
More will be said about the incompressiblilty of liquid later.

4.2 Approximations for small temperature variation

4.2.1 Mass conservation and almost incompressibilty :

Recall the law of mass conservation:

−
1

ρ

Dρ

Dt
= ∇ · ~q

Let the time scale be L/U . The left-hand-side is of the order U
L
∆ρ
ρ
while the right-hand-side

is U
L
. For ∆T = O(10oC), their ratio is

∆ρ

ρ
∼
∆T

T
∼
10oK

300oK
¿ 1

Therefore,
∇ · ~q = 0. (4.2.1)

The fluid is approximately incompressible even if ∆T 6= 0.

4.2.2 Momentum conservation and Boussinesq approximation

In static equilibirum ~qo ≡ 0. Therefore,

−∇po + ~fρo = 0. (4.2.2)

Let p = pd + po where pd is the dynamic pressure

ρ = ρd + ρo

−∇p+ ρ~f = −∇po + ρo ~f −∇pd + (ρ− ρo) ~f

Therefore,

ρ
D~q

Dt
= −∇pd +∇·

=
τ + (ρ− ρo) ~f| {z }

buoyancy force

(4.2.3)

Now
ρ = ρ̄o[1− β(∆To +∆Td)]) (4.2.4)
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Hence
ρo = ρ̄o(1− β∆To), ρd = −ρ̄oβ∆Td,

and
(ρ− ρo)~f = −ρ̄o(−g)β∆Td~k = ρ̄ogβ∆Td~k (4.2.5)

For mildly varying ρo and small ρ− ρo, we ignore the variation of density and approximate
ρo by a constant everywhere, except in the body force. This is called the Boussinesq
approximation. Thus

ρ̄o
D~q

Dt
= −∇pd +∇·

=
τ +ρ̄ogβ∆Td ~k (4.2.6)

where
ρ̄o = ρo(z = 0)

4.2.3 Total energy

Using Eqn. (4.2.1) in Eqn. (4.1.17) and the Boussinesq approximation

ρ̄oC
DT

Dt
=

∂

∂xi
K
∂T

∂xi
+ Φ (4.2.7)

Here T is the total temperature (static + dynamic).
Now

Φ

ρ̄oC
DT
Dt

∼
µU2/L2

ρ̄oC
U∆T
L

∼
µ

ρ̄oUL

U2

C∆T
=
E

Re

where

E =
U2

C∆T
= Eckart No., Re =

ρUL

µ
= Reynolds No.

In environmental problems, ∆T ∼ 10 oK,L ∼ 10 m,U ∼ 1m/sec, the last two columns of

Table 4.1: Typical values E/Re for air and water

Water Air
C (erg/s-gr-◦K) 4 × 107 107

K (ergs-cm-◦K) 0.6 × 105 0.3 × 105

ν(cm2/s) 102 2 × 10−2

β(1/◦K) 10−3 1/300
E 0.25 × 10−2 10−4

Re 105 0.5 × 105

Table 4.1 is obtained. Hence Φ is negligible, and

ρ̄oC
DT

Dt
=

∂

∂xi
K
∂T

∂xi
(4.2.8)
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Only convection and diffusion are dominant. This is typical in natural convectin problems.
Remark 1. In many engineering problems (aerodynamics, rocket reentry, etc.), heat

is caused by frictional dissipation in the flow, therefore, Φ is important. These are called
forced convection problems. In environmental problems, flow is often the result of heat
addition. Here we have thenatural convection.
Remark 2: Since T̄ appears as a derivative only, only the variation of T , i.e., the

difference T − T̄o matters, where T̄o is a reference temperature.
Remark 3: In turbulent natural convection

u = ū+ u0 T = T̄ + T 0 (4.2.9)

Averaging Eqn. (4.2.8)

ρ̄oc
DT̄

Dt
= − ρ̄oc

∂

∂xi
u0iT 0| {z }

heat flux by turbulence

+
∂

∂xi
K
∂T̄

∂xi
(4.2.10)

If the the correlation term is modeled as eddy diffusion, the form would be similar to (4.2.8).


